JPH0529154B2 - - Google Patents

Info

Publication number
JPH0529154B2
JPH0529154B2 JP62132347A JP13234787A JPH0529154B2 JP H0529154 B2 JPH0529154 B2 JP H0529154B2 JP 62132347 A JP62132347 A JP 62132347A JP 13234787 A JP13234787 A JP 13234787A JP H0529154 B2 JPH0529154 B2 JP H0529154B2
Authority
JP
Japan
Prior art keywords
plasma discharge
discharge tube
tube
cylindrical
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62132347A
Other languages
Japanese (ja)
Other versions
JPS63260092A (en
Inventor
Itsuo Nagata
Daiki Myamoto
Ichiro Ooshima
Tokihiko Ooshima
Shigekazu Hirata
Satoshi Nakada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOSAKA FUJI KOGYO KK
OOSAKAFU
Original Assignee
OOSAKA FUJI KOGYO KK
OOSAKAFU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOSAKA FUJI KOGYO KK, OOSAKAFU filed Critical OOSAKA FUJI KOGYO KK
Priority to JP13234787A priority Critical patent/JPS63260092A/en
Publication of JPS63260092A publication Critical patent/JPS63260092A/en
Publication of JPH0529154B2 publication Critical patent/JPH0529154B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/031Metal vapour lasers, e.g. metal vapour generation

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、同軸放電型の金属蒸気レーザー発振
装置に関し、特に、レーザー管が外套管とこれの
内部に挿入されたプラズマ放電管とで構成されて
いて、これら外套管とプラズマ放電管との間に断
熱材層がプラズマ放電管を囲繞するように設けら
れている金属蒸気レーザー発振装置、例えば銅蒸
気レーザー発振装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a coaxial discharge type metal vapor laser oscillation device, in particular a laser tube consisting of a jacket tube and a plasma discharge tube inserted inside the jacket tube. The present invention relates to a metal vapor laser oscillation device, such as a copper vapor laser oscillation device, in which a heat insulating material layer is provided between the mantle tube and the plasma discharge tube so as to surround the plasma discharge tube.

(従来技術及びその問題点) 金属レーザーの内でも銅蒸気レーザーは高出
力、高効率、高利得、高繰返し可能と多くの特徴
をもつた優れたもので、色素レーザーとのマツチ
ングが良い事から、原子、レーザー法ウラン濃縮
で注目されている。この他の医療や、加工の分野
でも脚光を浴びているが、この種の同軸放電型の
発振装置ではプラズマ放電管が1500度C以上の高
温に加熱されるため、プラズマ放電管自体を熱衝
撃に強い材質のものにすることは当然のこととし
て、このプラズマ放電管の断熱保温についても十
分な考慮が必要となつてくる。
(Prior art and its problems) Among metal lasers, copper vapor lasers are excellent with many features such as high output, high efficiency, high gain, and high repeatability, and are well matched with dye lasers. It is attracting attention for its uranium enrichment by atomic and laser methods. This type of coaxial discharge type oscillator is also attracting attention in other medical and processing fields, but since the plasma discharge tube is heated to a high temperature of over 1500 degrees Celsius, the plasma discharge tube itself is subjected to thermal shock. It goes without saying that the plasma discharge tube should be made of a material that is resistant to heat, but sufficient consideration must also be given to the insulation and heat retention of the plasma discharge tube.

ところが、このプラズマ放電管を断熱保温する
ための従来の断熱材層は、綿状のセラミツクスフ
アイバーを、プラズマ放電管をその長さ方向全域
に亘つて被包するように配設してなるもので、プ
ラズマ放電管はその両端を両側の環電極で支持す
るようにしていた。ところが、使用時にプラズマ
放電管内部が1500度C以上もの高温になると、プ
ラズマ放電管は変形し易い状態となるが、このプ
ラズマ放電管の中間部はセラミツクスフアイバー
で支持されている状態にあるものの、このセラミ
ツクスフアイバー自体非常にやわらかいものであ
るためそれによつては支持され得ず、結局は実重
によつて下向き弯曲状に変形するに至つていた。
また、プラズマ放電管の両端部が電極と接触して
いるため、使用中に高温に加熱されたプラズマ放
電管の熱が電極を通じて外部に逃げてしまい。こ
の放電管の両端部側が中央部側よりも低温とな
り、均一な金属蒸気等が得られない欠点があつ
た。
However, the conventional heat insulating material layer for insulating the plasma discharge tube is made by disposing cotton-like ceramic fibers so as to cover the entire length of the plasma discharge tube. The plasma discharge tube was supported at both ends by ring electrodes on both sides. However, when the inside of the plasma discharge tube reaches a high temperature of over 1500 degrees Celsius during use, the plasma discharge tube becomes easily deformed, although the middle part of the plasma discharge tube is supported by ceramic fibers. Since the ceramic fiber itself is very soft, it could not be supported by it, and eventually it was deformed into a downward curved shape by the actual weight.
Additionally, since both ends of the plasma discharge tube are in contact with the electrodes, the heat of the plasma discharge tube, which is heated to high temperatures during use, escapes to the outside through the electrodes. Both ends of the discharge tube were lower in temperature than the center, and a drawback was that uniform metal vapor could not be obtained.

(問題点を解決するための技術的手段) 本発明は上記の問題点に鑑み、従来断熱材に全
面的に用いられていたセラミツクスフアイバーに
代え、断熱材として機能と構造材としての機能を
併せ持つセラミツクスボードにより形成した略ド
ーナツ状セラミツクス片によつて少なくとも断熱
材層を構成、プラズマ放電管を両側の電極で支持
させる必要がないようにしたもので、それにより
使用時におけるプラズマ放電管の加熱による弯曲
変形を防止するとともに、このプラズマ放電管の
全長に亘つて均一な温度分布が得られるようにす
ることを目的としている。この目的を達成するた
めの技術的手段は、断熱材層6,6が、セラミツ
クス製の支持管12内にその全長に亘り多数個の
略ドーナツ状セラミツクス片14…を密に装填も
の、もしくは該支持管12内に複数個の同様セラ
ミツクス片14…を相互間にセラミツクスフアイ
バーを介装して所要箇所に装填されたものからな
り、前記セラミツクス片14…の空洞部13を挿
通するようにプラズマ放電管3が嵌合支持されて
いるとともに、該放電管3と同軸線上に配置した
両側の環電極15,15が相互の対向方向に突出
する筒状部15aを有し、該筒状部15aの先端
部がプラズマ放電管3の両端部内に非接触状態で
突入されていることを特徴とする。
(Technical means for solving the problems) In view of the above-mentioned problems, the present invention has been developed to replace the ceramic fibers that were conventionally used as insulation materials, and to have both functions as insulation materials and structural materials. At least a heat insulating material layer is formed by a roughly donut-shaped ceramic piece formed from a ceramic board, eliminating the need to support the plasma discharge tube with electrodes on both sides, thereby preventing the heating of the plasma discharge tube during use. The purpose is to prevent curved deformation and to obtain a uniform temperature distribution over the entire length of this plasma discharge tube. A technical means for achieving this purpose is that the heat insulating material layers 6, 6 are formed by densely filling a large number of approximately donut-shaped ceramic pieces 14 within the support tube 12 made of ceramics over the entire length of the support tube 12; The supporting tube 12 is made up of a plurality of similar ceramic pieces 14 loaded at required locations with ceramic fibers interposed between them, and a plasma discharge is applied to the ceramic pieces 14 so as to pass through the cavities 13 of the ceramic pieces 14. The tube 3 is fitted and supported, and ring electrodes 15, 15 on both sides disposed coaxially with the discharge tube 3 have a cylindrical portion 15a that protrudes in mutually opposing directions. It is characterized in that the tip end is inserted into both ends of the plasma discharge tube 3 in a non-contact manner.

尚、ドーナツ状セラミツクス片を形成するセラ
ミツクスボードは例えばジルカー社製のサフイー
ルアルミナボード(SALI)を用いるとよい。ま
たドーナツ状とは中心部に穴があいている円筒状
のもので、いわゆるドーナツの形状に限定しな
い。
As the ceramic board forming the donut-shaped ceramic piece, it is preferable to use, for example, Saphial Alumina Board (SALI) manufactured by Zilker. Moreover, the donut shape is a cylindrical shape with a hole in the center, and is not limited to the so-called donut shape.

(実施例) 以下本発明の実施例を図面にもとづいて説明す
る。
(Example) Examples of the present invention will be described below based on the drawings.

第1図は銅蒸気レーザー発振装置を縦断面図で
示しており、この図において1はレーザー管で、
円筒状の外套管2と、この外套管2内部に同心状
に挿入配置されたプラズマ放電管3と、外套管2
の両端部に連結用筒状部材4,4を介して気密的
に連結された端板5,5と、から構成されてい
る。6はレーザー管1内においてプラズマ放電管
3を囲繞するように設けられた円筒状の断熱状層
であり、この断熱材層6の外周面と外套管2内周
面との間に中管7aが同心状に介装され、この中
管7aの外側に水冷室7bが、またその内側に真
空断熱室7cがそれぞれ環状に形成されている。
更に各連結用筒状部材4の外側にも環状の水冷室
4aが形成されている。
Figure 1 shows a copper vapor laser oscillation device in a longitudinal section, and in this figure 1 is a laser tube;
A cylindrical mantle tube 2, a plasma discharge tube 3 inserted concentrically into the mantle tube 2, and a mantle tube 2.
End plates 5, 5 are airtightly connected to both ends of the cylinder via connecting cylindrical members 4, 4. Reference numeral 6 denotes a cylindrical heat insulating layer provided in the laser tube 1 so as to surround the plasma discharge tube 3, and a middle tube 7a is provided between the outer peripheral surface of the heat insulating material layer 6 and the inner peripheral surface of the outer tube 2. are interposed concentrically, and a water-cooled chamber 7b is formed on the outside of this inner tube 7a, and a vacuum insulation chamber 7c is formed inside thereof in an annular shape.
Further, an annular water cooling chamber 4a is also formed on the outside of each connecting cylindrical member 4.

前記外套管2は高強度で熱膨脹率の小さいガラ
スで形成されている。前記プラズマ放電管3は、
アルミナ系のフアインセラミツクスにより形成さ
れた円筒状の外管部8と、この外管部8内にスラ
イド可能に嵌合された円筒状の内管部9と、から
構成され、円筒状内管部9は軸方向に所要間隔で
分割された複数個の分割体9a…によつて、構成
され、各分割体9aは、フアインセラミツクスの
一種である窒化硼素〔BN(ボロンナイトラン
ド)〕の焼結体からなる。また各分割体9aの左
右両端部には第2図に明示されるように、互いに
他の分割体9aの対向端部とそれぞれ半径方向に
重なり合つた状態で係合しうる係合段部10,1
1が形成されており、したがつて各分割体9aは
相対向する係合段部10,11を互いに係合させ
た状態で外管部8内にスライド可能にして且つ取
外し可能に嵌挿されている。尚、第2図に示すよ
うに分割体9a…によつて形成される内管部9の
外周面と前記外管部8の内周面との〓間Sには、
各分割体9aの嵌め込み時に窒化硼素の焼結体の
粉末が挿入されるようになつている。
The mantle tube 2 is made of glass with high strength and low coefficient of thermal expansion. The plasma discharge tube 3 is
It is composed of a cylindrical outer tube part 8 formed of alumina-based fine ceramics, and a cylindrical inner tube part 9 that is slidably fitted into the outer tube part 8. The section 9 is composed of a plurality of divided bodies 9a divided at required intervals in the axial direction, and each divided body 9a is made of boron nitride [BN (boron nitland)], which is a type of fine ceramics. Consists of sintered body. Further, as clearly shown in FIG. 2, at both left and right ends of each divided body 9a, there are engaging step portions 10 that can be engaged with opposing ends of other divided bodies 9a in a radially overlapping state. ,1
1 is formed, and therefore, each divided body 9a is slidably and removably inserted into the outer tube part 8 with the opposing engaging step parts 10 and 11 engaged with each other. ing. As shown in FIG. 2, in the space S between the outer circumferential surface of the inner tube section 9 and the inner circumferential surface of the outer tube section 8 formed by the divided bodies 9a...
Powder of a sintered body of boron nitride is inserted when each divided body 9a is fitted.

前記断熱材層6は、プラズマ放電管3と同心状
に配置されたアルミナ系フアインセラミツクスか
らなる円筒状支持管12と、この支持管12内に
その長さ方向全域に亘り密接状態で装填されてい
る多数個の略ドーナツ状セラミツクス片14…
と、から構成されていて、これら略ドーナツ状セ
ラミツクス片群14…のそれぞれの円筒状空洞部
13を挿通するように前記プラズマ放電管3が嵌
合支持されている。また、支持管12内に嵌合さ
れた略ドーナツ状セラミツクス片群14…のうち
両端部側にある数個のセラミツクス片14′はそ
の穴径が若干小さくなつていて、これらのセラミ
ツクス片14′によつてプラズマ放電管3の抜け
出しが防止されるようになつている。15はプラ
ズマ放電管3の両側に該放電管3と同軸線状に配
置された一対の環電極であり、筒状部15aとそ
の一端側に連設された外向きフランジ部15bと
で構成され、相互の筒状部15a,15aが対向
する状態でそれぞれフランジ部15bにおいて筒
状部材4に固定されている。そして各環電極15
の筒状部15aはセラミツクス片14′の径小空
洞部13′に挿入され、その先端部が第1図で明
らかなようにプラズマ放電管3に触れることなく
離間した状態でその内管部9端部に若干突入して
いる。前記支持管12の両端部は連結用筒状部材
4,4に連結固定されている。前記各ドーナツ状
セラミツクス片14,14′はジルカー社製のサ
フイールアルミナボード(SALI)によつて形成
されたもので、非常にすぐれた断熱性を有してい
る。
The heat insulating material layer 6 includes a cylindrical support tube 12 made of alumina-based fine ceramics arranged concentrically with the plasma discharge tube 3, and a cylindrical support tube 12 made of alumina-based fine ceramics that is placed in close contact with the entire length of the support tube 12. A large number of approximately donut-shaped ceramic pieces 14...
The plasma discharge tube 3 is fitted and supported so as to be inserted into the cylindrical cavity portion 13 of each of these approximately donut-shaped ceramic piece groups 14. Furthermore, among the group of approximately donut-shaped ceramic pieces 14 fitted into the support tube 12, several ceramic pieces 14' on both end sides have slightly smaller hole diameters, and these ceramic pieces 14' This prevents the plasma discharge tube 3 from coming off. A pair of ring electrodes 15 are disposed on both sides of the plasma discharge tube 3 coaxially with the discharge tube 3, and are composed of a cylindrical portion 15a and an outward flange portion 15b connected to one end thereof. The cylindrical portions 15a, 15a are fixed to the cylindrical member 4 at the flange portions 15b, respectively, with the cylindrical portions 15a facing each other. and each ring electrode 15
The cylindrical part 15a is inserted into the small diameter cavity 13' of the ceramic piece 14', and the inner tube part 9 is inserted into the inner tube part 9 with its tip part not touching the plasma discharge tube 3 as shown in FIG. There is a slight protrusion at the end. Both ends of the support tube 12 are connected and fixed to the connecting cylindrical members 4, 4. Each of the donut-shaped ceramic pieces 14, 14' is made of SALI alumina board (SALI) manufactured by Zilker, and has excellent heat insulation properties.

第2図に示されるように、プラズマ放電管3の
内管部9を構成している各分割体9aの内周面に
は螺旋状の溝部からなる多数の凹部16…が形成
され、それらのうちの任意の凹部16に銅蒸気発
生用の銅片Pが係止される。
As shown in FIG. 2, a large number of recesses 16 consisting of spiral grooves are formed on the inner circumferential surface of each divided body 9a constituting the inner tube portion 9 of the plasma discharge tube 3. A copper piece P for generating copper vapor is locked in any of the recesses 16.

上述した銅蒸気レーザー発振装置の主要部の組
立方法につき簡単に説明すると、先ず外套管2及
びこの中に挿入した支持管12のそれぞれ両端部
に連結用筒状部材4,4を取付け、そしてこの支
持管12内に略ドーナツ状セラミツクス片14…
を順次嵌め込んでいつてそれにより連続的に形成
された一連の空洞部13…に、予め組立てたプラ
ズマ放電管3を嵌挿した後、更に前記支持管12
内におけるプラズマ放電管3の両端側に穴径の小
さい略ドーナツ状セラミツクス片14′を嵌め込
み、こうして円筒状断熱材層6を形成すると同時
にこの断熱材層6内部にプラズマ放電管3を保持
固定した状態とする。その後、この断熱材層6の
両端部の空洞部13′に環電極15,15の筒状
部15aを挿入配置し、そして連通用筒状部材
4,4に端板5,5を取付ける。尚、プラズマ放
電管3を前記空洞部13に嵌挿する前に、このプ
ラズマ放電管3の内管部9にはその分割体9aの
凹部16に銅片Pを係入しておく。このように凹
部16に係入しておけば銅片Pは不都合に移動す
ることがなく定位置に保持されることになる。ま
た、この装置を分解するには上記のような操作を
逆の順序で行えばよい。尚、第1図において17
aはプラズマ放電管3内にガス(例えばヘリウム
ガス)を供給するガス供給口、17bは真空引
口、18aは冷却水供給口、18bは冷却水排出
口、19は真空引口、20aは冷却水供給口、2
0bは冷却水排出口である。
To briefly explain the method of assembling the main parts of the copper vapor laser oscillation device described above, first, the connecting cylindrical members 4, 4 are attached to both ends of the outer tube 2 and the support tube 12 inserted therein, respectively. Approximately donut-shaped ceramic pieces 14 are disposed within the support tube 12.
After fitting the previously assembled plasma discharge tube 3 into a series of cavities 13 continuously formed by sequentially fitting the support tubes 12
Approximately donut-shaped ceramic pieces 14' with a small hole diameter were fitted into both ends of the plasma discharge tube 3 in the inside, thereby forming a cylindrical heat insulating material layer 6 and at the same time holding and fixing the plasma discharge tube 3 inside this heat insulating material layer 6. state. Thereafter, the cylindrical portions 15a of the ring electrodes 15, 15 are inserted into the hollow portions 13' at both ends of the heat insulating material layer 6, and the end plates 5, 5 are attached to the communicating cylindrical members 4, 4. Before inserting the plasma discharge tube 3 into the cavity 13, a copper piece P is inserted into the recess 16 of the divided body 9a of the inner tube 9 of the plasma discharge tube 3. By engaging in the recess 16 in this manner, the copper piece P will not move undesirably and will be held in a fixed position. In addition, to disassemble this device, the above operations can be performed in the reverse order. In addition, in Figure 1, 17
17b is a vacuum port, 18a is a cooling water supply port, 18b is a cooling water discharge port, 19 is a vacuum port, and 20a is a cooling port. Water supply port, 2
0b is a cooling water outlet.

この実施例の銅蒸気レーザー発振装置では、プ
ラズマ放電管3を、多数個のドーナツ状セラミツ
クス片14…からなる断熱材層によつてその長さ
方向全域に亘り囲繞し支持しているので、プラズ
マ放電管3内部が1500度C以上の高温となつても
このプラズマ放電管3自体が弯曲状に変形するこ
とがない。またこのプラズマ放電管3がそれぞれ
フアインセラミツクス製の外管部8と内管部9と
かなり、しかももの内管部9が特に熱衝撃に強い
窒化硼素(ボロンナイトライド)の焼結体からな
るため、当該プラズマ放電管3内部が1500度C以
上の高温になつても熱衝撃によつて破損すること
がなく、またそのような高温が急激にかかつて万
が一内管部9の一部分が破損しても、この内管部
9が複数個の分割体9a…よりなるためその一部
の分割体のみ取替えればよいからきわめて経済的
である。また、窒化硼素は熱衝撃に強いのみなら
ず、加工性も良いため製作も容易に行える。そし
て各分割体9aの内周面に多数の凹部16が設け
てあるため、この凹部16を介して銅片を所定の
位置に保持させることができる。
In the copper vapor laser oscillation device of this embodiment, the plasma discharge tube 3 is surrounded and supported over its entire length by a heat insulating layer made of a large number of doughnut-shaped ceramic pieces 14. Even if the inside of the discharge tube 3 reaches a high temperature of 1500 degrees Celsius or higher, the plasma discharge tube 3 itself will not be deformed into a curved shape. The plasma discharge tube 3 has an outer tube part 8 and an inner tube part 9 made of fine ceramics, and the inner tube part 9 is made of a sintered body of boron nitride, which is particularly resistant to thermal shock. Therefore, even if the inside of the plasma discharge tube 3 reaches a high temperature of 1,500 degrees Celsius or higher, it will not be damaged by thermal shock, and in the unlikely event that such a high temperature suddenly occurs, a part of the inner tube section 9 will be damaged. However, since the inner tube portion 9 is made up of a plurality of divided bodies 9a, it is only necessary to replace some of the divided bodies, which is extremely economical. In addition, boron nitride is not only resistant to thermal shock but also has good workability, making it easy to manufacture. Since a large number of recesses 16 are provided on the inner peripheral surface of each divided body 9a, the copper piece can be held in a predetermined position via the recesses 16.

第1図の実施例では、セラミツクスの支持間1
2内にその長さ方向全域に亘り多数個のドーナツ
状セラミツクス片14…を連続状態で嵌合させて
断熱材層6を形成したが、第3図に示す実施例の
ように、複数個のドーナツ状セラミツクス片14
を、支持管12内の所要箇所のみ断片的に、例え
ば同図のように中央部側の2箇所及び端部側に1
箇所ずつ装填させてもよい。、しかしてこのよう
な断片的配置の場合にはドーナツ状セラミツクス
片14相互間に更には端部側に綿状のセラミツク
スフアイバー21をそれぞれ装填させるようにす
る。この場合はセラミツクス片14…及びセラミ
ツクスフアイバー21と支持管12とで断熱材層
6′が構成される。またこの場合、中央部側に配
置したセラミツクスフアイバー21は同図に示す
ようにその中央部が両端より漸次径小となるよう
な形状としてもよい。また、両側の環電極15は
第1図の実施例と同様に筒状部15aの先端部を
プラズマ放電管3の両端部内に非接触状態で突入
配置している。この実施例においても、プラズマ
放電管3の複数箇所が各ドーナツ状セラミツクス
片14によつて支持されているため、この放電管
3の高温加熱による弯曲変形を十分に防止できる
ものである。尚、この第3図において第1図の実
施例と同一部材については同一符号を付してい。
In the embodiment shown in FIG.
The heat insulating material layer 6 was formed by continuously fitting a large number of donut-shaped ceramic pieces 14 into the entire longitudinal direction of the heat insulating material layer 6. However, as in the embodiment shown in FIG. Donut-shaped ceramic piece 14
, in pieces only at required locations within the support tube 12, for example, as shown in the same figure, two locations on the center side and one on the end side.
It is also possible to load the parts one by one. However, in the case of such a piecemeal arrangement, cotton-like ceramic fibers 21 are loaded between the doughnut-shaped ceramic pieces 14 and further on the end sides. In this case, the heat insulating layer 6' is composed of the ceramic pieces 14, the ceramic fibers 21, and the support tube 12. In this case, the ceramic fiber 21 disposed toward the center may be shaped so that the diameter of the center is gradually smaller than that of both ends, as shown in the figure. Further, the ring electrodes 15 on both sides are disposed such that the tips of the cylindrical portions 15a protrude into both ends of the plasma discharge tube 3 in a non-contact manner, as in the embodiment shown in FIG. In this embodiment as well, since a plurality of locations of the plasma discharge tube 3 are supported by the doughnut-shaped ceramic pieces 14, it is possible to sufficiently prevent the discharge tube 3 from being bent due to high temperature heating. In FIG. 3, the same members as those in the embodiment shown in FIG. 1 are designated by the same reference numerals.

(発明の効果) 本発明によれば、断熱材としての機能を構造材
としての機能とを併せ持つた略ドーナツ状セラミ
ツクス片によつて、プラズマ放電管を支持させる
ことができるため、高温加熱によるプラズマ放電
管の弯曲変形を防止することができるとともに、
密接配置した該セラミツクス片、もしくは断片的
配置した該セラミツクス片とその間に介装される
セラミツクスフアイバーにより、断熱材層として
の本来の断熱機能が十分に発揮され、プラズマ放
電管内の高温状態の維持と外套管の高温化防止を
図ることができる。
(Effects of the Invention) According to the present invention, the plasma discharge tube can be supported by the approximately donut-shaped ceramic piece that has both the function of a heat insulating material and the function of a structural material. It is possible to prevent curved deformation of the discharge tube, and
The ceramic pieces that are closely arranged or the ceramic pieces that are arranged piecemeal and the ceramic fibers interposed between them can fully demonstrate their original insulation function as a heat insulating layer, and can maintain the high temperature state inside the plasma discharge tube. It is possible to prevent the outer tube from becoming too hot.

また、同軸放電型としてプラズマ放電管の両側
に同軸線上に配置される一対の環電極が該放電管
の端部内に一部を非接触状態で突入させているこ
とから、放電がプラズマ放電管の内部のみで行わ
れる上に、このプラズマ放電管の高熱が外部に逃
げることがなく、その結果プラズマ放電管はその
全長に亘り均一な温度分布が得られて励起効率が
非常に良くなり、安定したレーザー発振が得られ
る。
In addition, as a coaxial discharge type, a pair of ring electrodes coaxially arranged on both sides of the plasma discharge tube partially protrude into the end of the discharge tube in a non-contact manner, so that the discharge In addition to being carried out only inside the plasma discharge tube, the high heat of this plasma discharge tube does not escape to the outside, resulting in a uniform temperature distribution over the entire length of the plasma discharge tube, resulting in extremely high excitation efficiency and stable excitation. Laser oscillation can be obtained.

更に、断熱材層の組立にあたつては支持管内に
ドーナツ状のセラミツクス片を順次嵌め込んでゆ
けばよいから、その作業も非常に簡単となり、更
にプラズマ放電管の長さが変更されてもセラミツ
クス片を増やしたり減らしたりすることによつて
断熱材層の長さをプラズマ放電管の長さに応じて
容易に調整できる利点がある。
Furthermore, when assembling the heat insulating material layer, all that is needed is to fit the donut-shaped ceramic pieces into the support tube one after another, making the work very simple and even when the length of the plasma discharge tube is changed. There is an advantage that the length of the heat insulating layer can be easily adjusted according to the length of the plasma discharge tube by increasing or decreasing the number of ceramic pieces.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る金属蒸気レーザー発振装
置の一実施例を示す縦断面図、第2図は同上の装
置におけるプラズマ放電管の一部拡大縦断面図、
第3図は他の実施例を示す縦断面図である。 1…レーザー管、2…外套管、3…プラズマ放
電管、6,6′…断熱材層、8…プラズマ放電管
の外管部、9…内管部、9a…分割体、10,1
1…係合段部(係合部)、12…支持管、13…
空洞部、14…略ドーナツ状セラミツクス片、1
5…環電極、15a…筒状部、16…凹部、21
…セラミツクスフアイバー、P…銅片。
FIG. 1 is a vertical cross-sectional view showing an embodiment of a metal vapor laser oscillation device according to the present invention, and FIG. 2 is a partially enlarged vertical cross-sectional view of a plasma discharge tube in the same device.
FIG. 3 is a longitudinal sectional view showing another embodiment. DESCRIPTION OF SYMBOLS 1... Laser tube, 2... Outer tube, 3... Plasma discharge tube, 6, 6'... Heat insulating material layer, 8... Outer tube part of plasma discharge tube, 9... Inner tube part, 9a... Division body, 10, 1
DESCRIPTION OF SYMBOLS 1... Engagement step part (engaging part), 12... Support pipe, 13...
Hollow portion, 14...approximately donut-shaped ceramic piece, 1
5... Ring electrode, 15a... Cylindrical part, 16... Concave part, 21
...ceramic fiber, P...copper piece.

【特許請求の範囲】[Claims]

1 (A)液晶ポリエステル30〜90重量%と、(B)平均
径が15μm以下で平均長が200μm以下である無機
質の繊維状物または針状物3〜50重量%と、(C)ア
ルカリ土類金属炭酸塩3〜30重量%とからなるプ
リント配線板用樹脂組成物。
1 (A) 30 to 90% by weight of liquid crystal polyester, (B) 3 to 50% by weight of inorganic fibrous or acicular material having an average diameter of 15 μm or less and an average length of 200 μm or less, and (C) alkaline earth. A resin composition for a printed wiring board comprising 3 to 30% by weight of a similar metal carbonate.

Claims (1)

るようにプラズマ放電管が嵌合支持されていると
ともに、前記両側の環電極が相互の対向方向に突
出する筒状部を有し、該筒状部の先端部がプラズ
マ放電管の両端部内に非接触状態で突入されてい
ることを特徴とするガスレーザー発振装置。
The plasma discharge tube is fitted and supported so that the ring electrodes on both sides have cylindrical portions protruding in mutually opposing directions, and the tips of the cylindrical portions are fitted into both ends of the plasma discharge tube. A gas laser oscillation device characterized by being immersed in a non-contact state.
JP13234787A 1987-05-28 1987-05-28 Metal vapor laser oscillator Granted JPS63260092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13234787A JPS63260092A (en) 1987-05-28 1987-05-28 Metal vapor laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13234787A JPS63260092A (en) 1987-05-28 1987-05-28 Metal vapor laser oscillator

Publications (2)

Publication Number Publication Date
JPS63260092A JPS63260092A (en) 1988-10-27
JPH0529154B2 true JPH0529154B2 (en) 1993-04-28

Family

ID=15079223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13234787A Granted JPS63260092A (en) 1987-05-28 1987-05-28 Metal vapor laser oscillator

Country Status (1)

Country Link
JP (1) JPS63260092A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942062A (en) * 1974-10-15 1976-03-02 Rca Corporation Metal vapor laser discharge device
JPS5243975U (en) * 1975-09-25 1977-03-29

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123575U (en) * 1980-02-22 1981-09-19

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942062A (en) * 1974-10-15 1976-03-02 Rca Corporation Metal vapor laser discharge device
JPS5243975U (en) * 1975-09-25 1977-03-29

Also Published As

Publication number Publication date
JPS63260092A (en) 1988-10-27

Similar Documents

Publication Publication Date Title
KR20010095084A (en) Fluid heating apparatus
FI78060C (en) FOERFARANDE FOER UPPVAERMNING AV TJOCKVAEGGIGA GLASROER, JAEMTE ANORDNING.
JPH0529154B2 (en)
US4681995A (en) Heat pipe ring stacked assembly
US5698124A (en) Magnesia fiber draw furnace
JP3128325B2 (en) Small electric furnace for optical fiber processing
JPH0529153B2 (en)
KR100563501B1 (en) Optical fiber preform-heating furnace
US4805180A (en) Discharge tube apparatus
JP3378287B2 (en) heating furnace
JP5374249B2 (en) Microwave leakage suppression member and hybrid heating furnace
JPH0878142A (en) Ceramic heater
JP2004125202A (en) Electric resistance furnace
JPH0289381A (en) Metal vapor laser oscillation device
JP4053277B2 (en) Electric furnace
JP7095385B2 (en) Manufacturing method of carburized parts
KR100502238B1 (en) Sleeve for hot batch annealing furnace
JP2820423B2 (en) Ceramic heater furnace
US20040084441A1 (en) Resistance-heating element, and electric resistance furnace using the same
JP2580216B2 (en) Heater heater
JP2000226217A (en) Heating furnace for dehydrative sintering of porous glass preform
JP2003314970A (en) Tubular electric furnace
JPH10310444A (en) Heating furnace for producing base material for optical fiber
JP4927433B2 (en) Electric furnace
JPH11153385A (en) Muffle tube support member for high temperature furnace