JP4927433B2 - Electric furnace - Google Patents

Electric furnace Download PDF

Info

Publication number
JP4927433B2
JP4927433B2 JP2006115397A JP2006115397A JP4927433B2 JP 4927433 B2 JP4927433 B2 JP 4927433B2 JP 2006115397 A JP2006115397 A JP 2006115397A JP 2006115397 A JP2006115397 A JP 2006115397A JP 4927433 B2 JP4927433 B2 JP 4927433B2
Authority
JP
Japan
Prior art keywords
heating element
length
electric furnace
heat generating
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006115397A
Other languages
Japanese (ja)
Other versions
JP2007285644A (en
Inventor
剛 阿部
宏司 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkato Corp
Original Assignee
Nikkato Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkato Corp filed Critical Nikkato Corp
Priority to JP2006115397A priority Critical patent/JP4927433B2/en
Publication of JP2007285644A publication Critical patent/JP2007285644A/en
Application granted granted Critical
Publication of JP4927433B2 publication Critical patent/JP4927433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Heating (AREA)
  • Furnace Details (AREA)

Description

本発明は、ランタンクロマイトを主成分とする円筒型の抵抗発熱体の内部を加熱室として利用する電気炉に関する。   The present invention relates to an electric furnace that uses the inside of a cylindrical resistance heating element mainly composed of lanthanum chromite as a heating chamber.

ペロブスカイト型結晶構造を有するランタンクロマイト(LaCrO)を主成分とした、必要に応じてLaの一部をSr、Caなどで、Crの一部をCo、Ni、Al、Mgなどで置換固溶した組成を有する発熱体(以下単にランタンクロマイト系という)は、1500℃以上の高温酸化雰囲気において優れた安定性と長寿命をもつセラミックス抵抗発熱体として広く利用されている。 Mainly composed of lanthanum chromite (LaCrO 3 ) having a perovskite-type crystal structure. If necessary, part of La is replaced with Sr, Ca, etc., and part of Cr is replaced with Co, Ni, Al, Mg, etc. A heating element having the above composition (hereinafter simply referred to as a lanthanum chromite system) is widely used as a ceramic resistance heating element having excellent stability and long life in a high-temperature oxidizing atmosphere of 1500 ° C. or higher.

従来、一般に用いられている抵抗発熱体を使用した電気炉は、図1に示すように複数の棒状発熱体12を用いて加熱室を加熱する構造になっているが、このような構造の電気炉では、装置の構造が複雑かつ大型化するなどの欠点があり、また熱効率が低く加熱室の体積に対して消費電力が高くなるため発熱体の使用温度及び昇温速度などの性能面及び寿命面にも限界があった。なお図1において13は断熱材、14は炉心管を示す。   Conventionally, an electric furnace using a resistance heating element generally used has a structure in which a heating chamber is heated using a plurality of rod-shaped heating elements 12 as shown in FIG. Furnace has drawbacks such as complicated and large equipment structure, and low heat efficiency and high power consumption with respect to the volume of the heating chamber. There were limits to the surface. In FIG. 1, 13 is a heat insulating material, and 14 is a core tube.

そこで図2に示すように発熱体の構造を円筒型の一本の発熱体15を用いて、中空部を加熱室とする構造にすることにより、電気炉の熱効率を向上し、使用温度及び昇温速度などの性能面及び寿命面を改善することが可能であり、炭化ケイ素(SiC)のら管型、複ら管型発熱体などで一部実用化されているが、炭化ケイ素発熱体の場合、酸化及び熱伝導率などの特性上、発熱体の寸法を長尺化する必要があり、ひいては電気炉が大型化してしまう問題がある。またこの方法によっても炭化ケイ素発熱体では実用上1600℃までが限界であり、それ以上での温度での使用ができないという問題がある。なお図2において、16は発熱部、17は端子部、18は電極、19はリード線、20は断熱材、21は炉心管を示す。   Therefore, as shown in FIG. 2, the structure of the heating element is made of a cylindrical heating element 15 and the hollow portion is used as a heating chamber, so that the thermal efficiency of the electric furnace is improved and the operating temperature and temperature rise are increased. It is possible to improve the performance and service life such as the temperature speed, and some silicon carbide (SiC) pipe-type and double-tube type heat generators have been put to practical use. In this case, it is necessary to lengthen the size of the heating element due to characteristics such as oxidation and thermal conductivity, which leads to a problem that the electric furnace becomes large. Also, this method has a problem that the silicon carbide heating element is practically limited to 1600 ° C. and cannot be used at higher temperatures. In FIG. 2, 16 is a heat generating portion, 17 is a terminal portion, 18 is an electrode, 19 is a lead wire, 20 is a heat insulating material, and 21 is a core tube.

そこで発熱体の材料として高温での使用が可能で長寿命であるランタンクロマイトを使用し、図3に示すように発熱部3と両端部からなる円筒型の発熱体1に2ケ所のスリット5を設けることによって端子部2を一方に集中することにより発熱体の長尺化を防ぎ、図4に示すように発熱体内部を加熱室として用いることにより電気炉を一体型化し、これらにより電気炉をコンパクト化すること、及び発熱体の形状及び材料の特性を適切な範囲に設定することによって上記問題を解決した電気炉が特許文献1に開示されている。なお図3において、4は折り返し端部、6は電極、7は金属リード部品であり、図4において、1は発熱体、22は断熱材、23は炉心管を示す。   Therefore, lanthanum chromite, which can be used at a high temperature and has a long life, is used as a material for the heating element, and two slits 5 are formed in the cylindrical heating element 1 including the heating part 3 and both ends as shown in FIG. By providing the terminal portion 2 on one side, the length of the heating element is prevented, and as shown in FIG. 4, the electric furnace is integrated by using the inside of the heating element as a heating chamber. Patent Document 1 discloses an electric furnace that solves the above problems by downsizing and setting the shape of the heating element and the characteristics of the material within an appropriate range. In FIG. 3, 4 is a folded end, 6 is an electrode, 7 is a metal lead component, and in FIG. 4, 1 is a heating element, 22 is a heat insulating material, and 23 is a core tube.

しかしながら特許文献1の電気炉は、発熱体1の発熱部3と両端部が同一の材料であり比抵抗が同一であるために、両端部の抵抗値を小さくするため両端部の外径を発熱部の外径よりも大きくし、これにより両端部の断面積を発熱部の断面積よりも大きくすることで両端部の抵抗発熱を防ぐ必要があることから、所望の大きさの加熱室寸法を得るためには発熱体の内径に対して外径をより大きくする必要があるため、十分にコンパクトな電気炉とならない問題があった。また、両端部が肉厚になることから、両端部と発熱部との境界部分での熱衝撃に弱く、発熱体の形状を大きくした場合、急速加熱ができず短寿命になるなどの問題があった。   However, since the electric furnace of Patent Document 1 is made of the same material and has the same specific resistance at both ends as the heat generating portion 3 of the heating element 1, the outer diameters of both ends are heated to reduce the resistance value at both ends. It is necessary to prevent the resistance heat generation at both ends by making the cross-sectional area of both ends larger than the cross-sectional area of the heat-generating part by making it larger than the outer diameter of the part. In order to obtain it, since it is necessary to make the outer diameter larger than the inner diameter of the heating element, there is a problem that the electric furnace is not sufficiently compact. In addition, since both ends are thick, they are vulnerable to thermal shock at the boundary between both ends and the heat generating part, and if the shape of the heating element is increased, rapid heating is not possible and the life is shortened. there were.

特開2003−139472号公報JP 2003-139472 A

本発明はこのような従来の問題点を解決し、発熱体の有効加熱領域が大きく、高温での使用が可能であり、耐熱衝撃性に優れているため急速加熱が可能であり、長寿命のランタンクロマイト系発熱体からなるコンパクトな電気炉を提供することを目的とする。   The present invention solves such conventional problems, the heating element has a large effective heating area, can be used at high temperatures, and has excellent thermal shock resistance, enabling rapid heating, and having a long service life. An object of the present invention is to provide a compact electric furnace comprising a lanthanum chromite heating element.

本発明は、発熱部と両端部の電気抵抗の相違を、形状、すなわち外径比ではなく、材料の比抵抗自体を変えることにより適正な比率とし、両端部の肉厚を小さくすることにより発熱体の内径を相対的に大きくし、これにより有効加熱領域を大きくし、及び発熱体の形状を適切な範囲に設定することにより、前記目的を達成することができた。   In the present invention, the difference in electrical resistance between the heat generating portion and both ends is set to an appropriate ratio by changing the specific resistance itself of the material, not the outer diameter ratio, and heat is generated by reducing the wall thickness at both ends. The above object could be achieved by relatively increasing the inner diameter of the body, thereby increasing the effective heating area, and setting the shape of the heating element within an appropriate range.

すなわち本発明は、発熱部と両端部からなる円筒型のランタンクロマイト系発熱体において、発熱部の材料の1000℃の比抵抗が0.1〜3.5Ωcmの範囲にあり、両端部の材料の1000℃の比抵抗が0.02〜0.5Ωcmの範囲にあり、発熱部の材料の1000℃の比抵抗と両端部の材料の1000℃の比抵抗の比率([発熱部の比抵抗]/[両端部の比抵抗])が1.5〜100の範囲にあり、該発熱体の発熱部の長さと内径との比率([発熱部の長さ]/[内径])が0.6〜10の範囲にあり、該発熱体の内径と肉厚との比率([内径]/[肉厚])が6〜50の範囲にあり、該発熱体の一方の端面を基端とし、該基端面を2等分割する位置から垂直方向に2ケ所のスリットを設けることによって端子部を一方に集中し、該スリットの長さと発熱体の全長との比率([スリットの長さ]/[全長])が0.5〜0.95の範囲にあり、該端子部に高温用金属電極膜を取り付けた発熱体と、該発熱体の外側に装着した断熱材と、該発熱体の中空部内に装着したセラミックス炉心管とを備え、該炉心管の中空部内を有効加熱室としたことを特徴とする電気炉に関する。   That is, according to the present invention, in a cylindrical lanthanum chromite heating element composed of a heat generating portion and both ends, the specific resistance at 1000 ° C. of the material of the heat generating portion is in the range of 0.1 to 3.5 Ωcm, and The specific resistance at 1000 ° C. is in the range of 0.02 to 0.5 Ωcm, and the ratio of the specific resistance at 1000 ° C. of the material of the heat generating part to the specific resistance of 1000 ° C. of the material at both ends ([specific resistance of the heat generating part] / [Specific resistance of both ends] is in the range of 1.5 to 100, and the ratio of the length of the heat generating portion to the inner diameter ([length of heat generating portion] / [inner diameter]) of the heat generating element is 0.6 to The ratio between the inner diameter and the thickness of the heating element ([inner diameter] / [thickness]) is in the range of 6 to 50, and one end face of the heating element is the base end, and the base By providing two slits in the vertical direction from the position where the end face is divided into two equal parts, the terminal part is concentrated on one side, and A heating element in which the ratio of the length of the lit to the total length of the heating element ([slit length] / [full length]) is in the range of 0.5 to 0.95, and a high-temperature metal electrode film is attached to the terminal portion. An electric furnace comprising: a heat insulating material attached to the outside of the heating element; and a ceramic core tube attached in the hollow portion of the heating element, wherein the hollow portion of the core tube is an effective heating chamber. .

以下に、図面を参照しつつ、本発明の電気炉について説明する。   The electric furnace of the present invention will be described below with reference to the drawings.

図5および図6は、本発明の電気炉の発熱体を示す図である。即ち、図5は本発明電気炉の発熱体を正面から見た図、図6(A)は本発明電気炉の発熱体を側面から見た図、図6(B)は図6(A)のA−A′断面図である。   5 and 6 are diagrams showing a heating element of the electric furnace of the present invention. 5 is a view of the heating element of the electric furnace of the present invention as viewed from the front, FIG. 6A is a view of the heating element of the electric furnace of the present invention as viewed from the side, and FIG. 6B is a view of FIG. It is AA 'sectional drawing.

図5および図6において、発熱体1は、端子部2と発熱部3と折り返し端部4からなる円筒型のランタンクロマイト系セラミックスからなり、発熱体の基端面(端子部側)を2等分割する位置から垂直方向に2ケ所のスリット5を設け、端子部電極を一方に集中して端子部2とし、該端子部2に高温用電極6及び金属リード部品7を取り付け、両端部間を発熱部3としたものである。かくして、電流は、一方の端子部→一方の発熱部→折り返し端部→他方の発熱部→他方の端子部へと流れることとなる。   5 and 6, the heating element 1 is made of a cylindrical lanthanum chromite ceramic composed of a terminal part 2, a heating part 3 and a folded end part 4, and the base end face (terminal part side) of the heating element is divided into two equal parts. Two slits 5 are provided in the vertical direction from the position where the terminal electrode is concentrated, and the terminal portion electrode is concentrated on one side to form the terminal portion 2, and the high temperature electrode 6 and the metal lead component 7 are attached to the terminal portion 2, and heat is generated between both ends. This is part 3. Thus, the current flows from one terminal part → one heat generating part → the folded end part → the other heat generating part → the other terminal part.

該発熱体1は発熱体の発熱部と両端部の電気抵抗比を形状、すなわち外径比ではなく、材料の比抵抗自体を変えることにより抵抗比が設けられている。このため、図3(A)に示される特開2003−139472号公報記載の発熱体のように両端の外径を大きくする必要がなく、これによって、発熱体の外形寸法に対して、内径を特開2003−139472号公報記載の発熱体と比べて相対的に大きくすることが可能であり、ひいては炉内有効加熱領域を大きくすることが可能となる。   The heating element 1 is provided with a resistance ratio by changing the electrical resistance ratio between the heating part and both ends of the heating element, that is, by changing the specific resistance of the material, not the outer diameter ratio. For this reason, it is not necessary to increase the outer diameter of both ends like the heating element described in JP-A-2003-139472 shown in FIG. Compared to the heating element described in Japanese Patent Application Laid-Open No. 2003-139472, it is possible to make it relatively large, and as a result, it is possible to enlarge the effective heating area in the furnace.

該発熱体1の材料として用いられるランタンクロマイト系セラミックスは、発熱部の材料の1000℃の比抵抗が0.1〜3.5Ωcmの範囲にあり、両端部の材料の1000℃の比抵抗が0.02〜0.5Ωcmの範囲にあることが必要である。発熱部の比抵抗が0.1Ωcm未満の場合、抵抗値が低すぎて発熱体として低電圧−大電流駆動となるため電極と金属端子との接触不良が起こりやすいばかりか、リード部分を大型化する必要があるため実用性がなく、3.5Ωcmを超える場合は発熱体の抵抗値が大きすぎて通電発熱させることができない。両端部の比抵抗は理論的には0でも問題ないが、一般的にランタンクロマイト系セラミックスでは比抵抗が0.015Ωcm未満では材料の耐熱性、強度、耐久性が劣るため実用性がなく、0.5Ωcmを超える場合、端子部電極が抵抗発熱を起こすため短寿命となる。このため、発熱部の材料の1000℃の比抵抗が0.1〜3.5Ωcmの範囲にあり、両端部の材料の1000℃の比抵抗が0.02〜0.5Ωcmの範囲にあることが必要であり、発熱部の材料の1000℃の比抵抗が0.15〜1.0Ωcmの範囲にあり、両端部の材料の1000℃の比抵抗が0.025〜0.2Ωcmの範囲にあることがより望ましく、さらに発熱部の1000℃における比抵抗が0.2〜0.5Ωcmの範囲にあり、両端部の材料の1000℃の比抵抗が0.03〜0.15の範囲にあることがより好ましい。また、該発熱体1では、発熱部の材料の1000℃の比抵抗と両端部の材料の1000℃の比抵抗の比率([発熱部の比抵抗]/[両端部の比抵抗])が1.5〜100の範囲にあることが必要である。比抵抗の比率が1.5未満の場合、発熱部と両端部の抵抗の比率が小さく、発熱部のみならず両端部や端子部が抵抗発熱を起こし、その結果、両端部や端子部、端子部電極において破損が発生しやすく短寿命となる。比抵抗の比率が大きい場合は特に問題ないが、100を超える場合には材料の機械的特性などが大きく異なるため、成形、焼成が難しく、また発熱体が得られても昇温時に容易に破損するため発熱体として使用できない。このため、発熱部と両端部との1000℃における比抵抗の比率が1.5〜100の範囲にあることが必要であり、発熱部と両端部との比抵抗の比率が1.75〜50の範囲にあることがより望ましく、2〜25の範囲にあることがより好ましい。   In the lanthanum chromite ceramic used as the material of the heating element 1, the specific resistance at 1000 ° C. of the material of the heating part is in the range of 0.1 to 3.5 Ωcm, and the specific resistance of 1000 ° C. of the material at both ends is 0. It must be in the range of 0.02 to 0.5 Ωcm. If the specific resistance of the heat generating part is less than 0.1 Ωcm, the resistance value is too low and the heat generating element is driven at a low voltage and a large current, so that the contact between the electrode and the metal terminal is likely to occur, and the lead part is enlarged. Therefore, if it exceeds 3.5 Ωcm, the resistance value of the heating element is too large to generate heat by energization. Although the specific resistance at both ends is theoretically 0, there is no problem. However, in the case of lanthanum chromite ceramics, if the specific resistance is less than 0.015 Ωcm, the heat resistance, strength, and durability of the material are inferior, so there is no practicality. If it exceeds 0.5 Ωcm, the terminal electrode will generate resistance heat, resulting in a short life. For this reason, the specific resistance at 1000 ° C. of the material of the heat generating part is in the range of 0.1 to 3.5 Ωcm, and the specific resistance of 1000 ° C. of the material at both ends is in the range of 0.02 to 0.5 Ωcm. Necessary, the specific resistance at 1000 ° C. of the material of the heat generating part is in the range of 0.15 to 1.0 Ωcm, and the specific resistance of 1000 ° C. of the material at both ends is in the range of 0.025 to 0.2 Ωcm. More preferably, the specific resistance at 1000 ° C. of the heat generating part is in the range of 0.2 to 0.5 Ωcm, and the specific resistance at 1000 ° C. of the material at both ends is in the range of 0.03 to 0.15. More preferred. Further, in the heating element 1, the ratio of the specific resistance at 1000 ° C. of the material of the heat generating portion to the specific resistance at 1000 ° C. of the material at both ends ([specific resistance of the heat generating portion] / [specific resistance of both ends]) is 1. It must be in the range of 5-100. When the ratio of specific resistance is less than 1.5, the resistance ratio between the heat generating part and both end parts is small, and not only the heat generating part but also both end parts and terminal parts generate resistance heat. As a result, both end parts, terminal parts, and terminals The partial electrodes are easily damaged and have a short life. If the ratio of specific resistance is large, there is no particular problem, but if it exceeds 100, the mechanical properties of the material are greatly different, so it is difficult to mold and fire. Therefore, it cannot be used as a heating element. For this reason, it is necessary that the ratio of the specific resistance at 1000 ° C. between the heat generating portion and both ends is in the range of 1.5 to 100, and the ratio of the specific resistance between the heat generating portion and both ends is 1.75 to 50. It is more desirable to be in the range of 2 to 25, and it is more preferable to be in the range of 2 to 25.

該発熱体1は発熱部と両端部の比抵抗が異なる材料から構成される。比抵抗の制御は、ランタンクロマイトの構成元素であるLaの一部をSr、Caなどで、Crの一部をCo、Ni、Al、Mgなどで置換固溶させることにより行うことができる。これらの置換比率については適宜、発熱体として十分に使用可能な機械的特性、耐熱性、耐久性を有しており、かつ前記比抵抗及び比抵抗の比率を有するものであればよく、発熱体の材料として使用する上で置換する元素の種類、置換比率については特に限定されないが、一般的にはLaをSrまたはCaで0.1〜20mol%程度、CrをAlで0〜40mol%程度置換したものを用いることが多い(詳細は特開2005−317210号公報参照)。また、該発熱体1は発熱部と両端部を特性の異なる材料として一体成形することにより得られるが、その方法については公知のセラミックスの成形方法で可能であり、特性の異なる原料粉体を適宜充填し成形することで行うことができる。   The heating element 1 is made of a material having different specific resistances at the heating part and at both ends. The specific resistance can be controlled by substituting a part of La, which is a constituent element of lanthanum chromite, with Sr, Ca, etc., and a part of Cr with Co, Ni, Al, Mg, etc. Any suitable substitution ratio may be used as long as it has mechanical characteristics, heat resistance and durability that can be sufficiently used as a heating element, and has the ratio of the specific resistance and the specific resistance. Although there are no particular limitations on the type of element to be substituted and the substitution ratio when used as a material, the La is generally substituted by about 0.1 to 20 mol% with Sr or Ca, and the Cr is substituted with about 0 to 40 mol% with Al. In many cases, the above are used (for details, refer to Japanese Patent Laid-Open No. 2005-317210). The heating element 1 can be obtained by integrally forming the heat generating part and both end parts as materials having different characteristics. The method can be performed by a known ceramic forming method. This can be done by filling and molding.

該発熱体1では、発熱部3の長さと内径との比率([発熱部の長さ]/[内径])を0.6〜10の範囲とする必要がある。発熱部の長さと内径との比率が0.6未満の場合、発熱部の長さが内径に対して短すぎて十分な炉内温度分布が得られず実用上電気炉として使用することができない。また発熱部の長さが10を超える場合、有効加熱領域のアスペクト比が大き過ぎて実用性がない上、発熱体が長尺化するためコンパクトな電気炉とならないばかりか、長時間の使用による変形によってスリット間での接触が生じ、回路的短絡が発生する可能性がある。このため、発熱部3の長さと内径との比率([発熱部の長さ]/[内径])を0.6〜10の範囲とする必要があり、0.8〜5の範囲とすることがより望ましく、1.0〜3の範囲にあることがより好ましい。   In the heating element 1, the ratio of the length and the inner diameter of the heat generating portion 3 ([length of the heat generating portion] / [inner diameter]) needs to be in the range of 0.6 to 10. When the ratio between the length of the heat generating portion and the inner diameter is less than 0.6, the length of the heat generating portion is too short with respect to the inner diameter, so that a sufficient furnace temperature distribution cannot be obtained and cannot be used as an electric furnace in practice. . Also, if the length of the heat generating part exceeds 10, the aspect ratio of the effective heating region is too large to be practical, and since the heat generating element becomes longer, not only a compact electric furnace can be obtained, but also due to long time use. Deformation can cause contact between the slits, which can cause a short circuit. For this reason, the ratio of the length and the inner diameter of the heat generating portion 3 ([length of the heat generating portion] / [inner diameter]) needs to be in the range of 0.6 to 10, and should be in the range of 0.8 to 5. Is more desirable and is more preferably in the range of 1.0 to 3.

該発熱体1では、発熱体の内径と肉厚との比率([内径]/[肉厚])を6〜50の範囲とする必要がある。発熱体の内径と肉厚との比率が50を超える場合、内径に対して肉厚が小さ過ぎて発熱体の強度が十分に得られず短寿命となる。発熱体の肉厚と内径との比率が6未満の場合、内径に対して肉厚が大き過ぎて発熱体の熱容量が大きくなり、急速加熱を行った場合発熱体内部での温度勾配が大きくなり熱応力による破損が発生する可能性がある。このため、発熱体の内径と肉厚との比率([内径]/[肉厚])を6〜50の範囲とする必要があり、10〜35の範囲とすることがより望ましい。   In the heating element 1, the ratio of the inner diameter and the thickness of the heating element ([inner diameter] / [thickness]) needs to be in the range of 6-50. When the ratio between the inner diameter and the wall thickness of the heating element exceeds 50, the wall thickness is too small with respect to the inner diameter, and the strength of the heating element cannot be obtained sufficiently, resulting in a short life. When the ratio between the thickness of the heating element and the inner diameter is less than 6, the thickness is too large relative to the inner diameter, and the heat capacity of the heating element increases. When rapid heating is performed, the temperature gradient inside the heating element increases. Damage due to thermal stress may occur. For this reason, the ratio ([inner diameter] / [thickness]) between the inner diameter and the wall thickness of the heating element needs to be in the range of 6 to 50, and more preferably in the range of 10 to 35.

また該発熱体1では、発熱体に設けられたスリット5の長さと発熱体1の全長との比率([スリットの長さ]/[全長])が0.5〜0.95の範囲にある必要がある。スリットの長さと発熱体の全長との比率が0.5未満の場合には、発熱体全長に占める発熱部の長さが短すぎて、コンパクトな電気炉とならないばかりか、折り返し端部が不要に長くなるため単位発熱部面積に対する消費電力が高くなり短寿命となる。該スリットの長さと発熱体の全長との比率が0.95を超える場合、折り返し端部が短すぎて繰り返しの昇降温による破損が発生しやすく短寿命となる。このため、スリット5の長さと発熱体1の全長との比率([スリットの長さ]/[全長])が0.5〜0.95の範囲にある必要があり、スリットの長さと発熱体の全長との比率([スリットの長さ]/[全長])が0.6〜0.9の範囲とすることがより望ましい。   In the heating element 1, the ratio of the length of the slit 5 provided in the heating element to the total length of the heating element 1 ([slit length] / [full length]) is in the range of 0.5 to 0.95. There is a need. If the ratio of the slit length to the total length of the heating element is less than 0.5, the length of the heating element in the total length of the heating element is too short, and not only a compact electric furnace is required, but also no folded end is required. Therefore, the power consumption per unit heat generating area is increased and the life is shortened. When the ratio between the length of the slit and the total length of the heating element exceeds 0.95, the folded end is too short, and damage due to repeated heating and cooling is likely to occur, resulting in a short life. Therefore, the ratio of the length of the slit 5 to the total length of the heating element 1 ([slit length] / [full length]) needs to be in the range of 0.5 to 0.95. It is more preferable that the ratio ([slit length] / [full length]) to the overall length is in the range of 0.6 to 0.9.

図7は、本発明の電気炉の一例を示す断面図であり、発熱体1の中空部内には、セラミックス炉心管8を装着し、この中空部内を有効加熱室とする。セラミックス炉心管8は、この内部に被加熱物を置くことにより、発熱体1からの蒸発物によって被加熱物が汚染されることを防止できる。該セラミックス炉心管8の厚さ、長さ、及び外寸法は、電気炉の仕様に応じて適宜決めることができ、さらに、該セラミックス炉心管8は電気炉の仕様に応じて長さ方向に対して位置によって厚みや外寸法などを変化させてもよい。また、該セラミックス炉心管8は発熱体1と密着させても良いが、発熱部3では非接触とすることで、より一層被加熱物への汚染防止効果が向上する。   FIG. 7 is a cross-sectional view showing an example of the electric furnace according to the present invention. A ceramic furnace core tube 8 is mounted in the hollow portion of the heating element 1, and the hollow portion serves as an effective heating chamber. The ceramic furnace core tube 8 can prevent the heated object from being contaminated by the evaporated material from the heating element 1 by placing the heated object therein. The thickness, length, and external dimensions of the ceramic furnace core tube 8 can be determined as appropriate according to the specifications of the electric furnace. Further, the ceramic core tube 8 can be arranged in the length direction according to the specifications of the electric furnace. Depending on the position, the thickness and outer dimensions may be changed. Further, the ceramic core tube 8 may be brought into close contact with the heating element 1, but if the heating part 3 is not in contact, the effect of preventing contamination of the object to be heated is further improved.

セラミックス炉心管8は、電気炉を使用する温度域に応じて、従来電気炉の炉心管として用いられている各種の公知のセラミックスを使用することができるが、特に、純度95%以上、相対密度93%以上のアルミナ、ムライト、スピネル、安定化ジルコニア(安定化剤も含めた純度が95%以上)、マグネシア又はイットリアを使用することが望ましく、これらの材料を用いることにより、セラミックス炉心管8の耐熱性がさらに向上すると共に、発熱体1との反応も抑制され、被加熱物への汚染防止効果も向上する。   The ceramic furnace tube 8 can use various known ceramics conventionally used as a furnace tube of an electric furnace depending on the temperature range in which the electric furnace is used. It is desirable to use 93% or more of alumina, mullite, spinel, stabilized zirconia (purity including a stabilizer of 95% or more), magnesia or yttria. By using these materials, the ceramic core tube 8 The heat resistance is further improved, the reaction with the heating element 1 is suppressed, and the effect of preventing contamination of the object to be heated is also improved.

上記発熱体1の外側には、断熱材9を装着する。発熱体1の外側に断熱材9を装着することによって、電気炉の熱効率を上げることができる。断熱材の材質としては、耐火煉瓦、耐火断熱煉瓦、キャスタブル耐火物、セラミックファイバー成形体等の各種の公知の耐火物を使用できる。又、セラミックファイバー成形体を使用する場合には、断熱性に優れ、蓄熱量が小さいために、消費電力を低減することができ、発熱体1を更に長寿命化することが可能となる。また、断熱材の材質としてセラミックスファイバー成形体を使用する場合、発熱体1と断熱材9との間に厚さ1〜5mm程度のセラミックス層10を形成することにより、発熱体1と断熱材9との反応をより一層少なくすることができ、発熱体1をより一層長寿命化することが可能となる。   A heat insulating material 9 is attached to the outside of the heating element 1. By mounting the heat insulating material 9 on the outside of the heating element 1, the thermal efficiency of the electric furnace can be increased. As a material of the heat insulating material, various known refractory materials such as refractory bricks, refractory heat insulating bricks, castable refractories and ceramic fiber molded bodies can be used. Further, when the ceramic fiber molded body is used, since the heat insulation is excellent and the heat storage amount is small, the power consumption can be reduced and the life of the heating element 1 can be further extended. When a ceramic fiber molded body is used as the material for the heat insulating material, the heat generating body 1 and the heat insulating material 9 are formed by forming a ceramic layer 10 having a thickness of about 1 to 5 mm between the heat generating body 1 and the heat insulating material 9. Reaction can be further reduced, and the life of the heating element 1 can be further extended.

本発明に係る電気炉においては、円筒型のランタンクロマイト系発熱体に2ケ所のスリットを設けることによって端子部を一方に集中しているため発熱体を従来よりも短尺化することができ、発熱部と端子部の電気抵抗比を形状、すなわち外径比ではなく、材料の比抵抗自体を変えることにより適正な比率とし、発熱体の肉厚を小さくすることにより発熱体の内径を相対的に大きくし、これにより有効加熱領域を大きくし、発熱体内部を有効加熱室として用いることにより電気炉を一体型化し、これらにより電気炉をコンパクト化することができる。また高温での使用が可能であり、耐熱衝撃性に優れるため急速加熱が可能であり、長寿命となるほか、各種雰囲気制御を行うことが可能である。また本電気炉は、縦型での使用はもちろんのこと、横型での使用も全く問題なく可能であり、試料の出し入れが容易であるというメリットも持ちあわせている。   In the electric furnace according to the present invention, since the terminal portion is concentrated on one side by providing two slits in the cylindrical lanthanum chromite-based heating element, the heating element can be made shorter than the conventional one. The electrical resistance ratio between the head part and the terminal part is not the outer diameter ratio but the appropriate ratio by changing the specific resistance of the material itself, and the inner diameter of the heating element is relatively reduced by reducing the thickness of the heating element. By enlarging and thereby increasing the effective heating area, and using the inside of the heating element as an effective heating chamber, the electric furnace can be integrated, thereby making the electric furnace compact. In addition, it can be used at high temperatures, has excellent thermal shock resistance, can be rapidly heated, has a long life, and can be controlled in various atmospheres. In addition, the electric furnace can be used in a vertical type as well as in a horizontal type without any problem, and has the merit that a sample can be taken in and out easily.

以下に本発明の実施例、比較例について下記に説明するが、本発明はこれらの実施例だけに限定するものではない。各発熱体の寸法などの条件は下記表1〜2に示す。   Examples of the present invention and comparative examples will be described below, but the present invention is not limited to these examples. Conditions such as dimensions of each heating element are shown in Tables 1 and 2 below.

実施例1
図7の電気炉において、発熱体1における発熱部及び両端部〔例えば、図5および図6(A)、(B)に示す〕のそれぞれを形成している材料が表1〜3に示す特性を有するランタンクロマイト系セラミックスを用いて、内径39mm、外径45mm、肉厚3mm、端子部2の長さ60mm、発熱部3の長さ65mm、折り返し端部4の長さ30mm、全長155mmの円筒体とし、その端子部の端面を2等分割する位置から折り返し端部に向かって垂直方向に2ケ所の幅3mm、長さ130mmの溝を設けスリット5とし、端子部2の下端から25mmの位置までの部位(外周面及び端面)に白金ペーストを塗布し、1300℃で焼き付けて、高温用電極6を形成したのち、ステンレス鋼SUS304からなる金属リード部品7を取り付けた。この発熱体1の中空部内に純度99.5%、相対密度97%のアルミナセラミックス炉心管8(以下炉心管と呼ぶ)(外径37mm×内径30mm×長さ400mm)を挿入し、発熱体1の外側に、純度99.5%、相対密度97%の円筒型のアルミナセラミックス10(外径10aの大きさが56mm、外径10bの大きさが52mm、内径10が48mm、全長120mm)を装着した。さらにその外側には断熱材9として、純度95%のα−アルミナ材質からなる、かさ密度0.7g/cmの成形体(セラミックファイバー成形体)を、中央部にアルミナセラミックス10の外径10bと同様の大きさの貫通孔を有する形状に加工して配置し、その外部を、耐火材を内張りにした金属缶体で取り囲み固定することによって、電気炉を得た。
Example 1
In the electric furnace of FIG. 7, the material forming each of the heat generating portion and both end portions [for example, shown in FIG. 5 and FIG. Using a lanthanum chromite ceramic having a cylindrical shape with an inner diameter of 39 mm, an outer diameter of 45 mm, a wall thickness of 3 mm, a length of the terminal portion 2 of 60 mm, a length of the heat generating portion 3 of 65 mm, a length of the folded end 4 of 30 mm, and a total length of 155 mm The end face of the terminal part is divided into two equal parts from the position where the end face of the terminal part is divided into two in the vertical direction toward the folded end part to form a slit 5 with a groove having a width of 3 mm and a length of 130 mm, and a position 25 mm from the lower end of the terminal part 2 After applying platinum paste to the part (outer peripheral surface and end face) and baking at 1300 ° C. to form the high temperature electrode 6, the metal lead part 7 made of stainless steel SUS304 is attached. . An alumina ceramic core tube 8 (hereinafter referred to as a core tube) (outer diameter 37 mm × inner diameter 30 mm × length 400 mm) having a purity of 99.5% and a relative density of 97% is inserted into the hollow portion of the heating element 1. A cylindrical alumina ceramic 10 (outer diameter 10a is 56mm, outer diameter 10b is 52mm, inner diameter 10 is 48mm, total length 120mm) with 99.5% purity and 97% relative density outside did. Further, as a heat insulating material 9 on the outer side, a molded body (ceramic fiber molded body) made of an α-alumina material having a purity of 95% and having a bulk density of 0.7 g / cm 3 is formed, and an outer diameter 10b of the alumina ceramic 10 is formed at the center. An electric furnace was obtained by arranging and processing into a shape having a through-hole having the same size as in Fig. 1, and surrounding and fixing the outside with a metal can body lined with a refractory material.

実施例2
図7の電気炉において、発熱体1における発熱部及び両端部の各々の材料が表1〜3に示す組成を有し、1000℃における比抵抗をそれぞれ0.22Ωcm、0.11Ωcmとしたランタンクロマイト系セラミックスを用いて、発熱体の内径64mm、外径68mm、肉厚2mmとして発熱体1を作製し、発熱体1の中空部内に純度99.5%、相対密度97%のアルミナセラミックス炉心管8(外径58mm×内径50mm×長さ400mm)を挿入し、発熱体1の外側に、純度99.5%、相対密度97%の円筒型のアルミナセラミックス10(外径10aの大きさが88mm、外径10bの大きさが82mm、内径10が76mm、全長120mm)を装着したこと以外は、実施例1と同様にして電気炉を得た。
Example 2
In the electric furnace of FIG. 7, the lanthanum chromite in which the materials of the heat generating part and both end parts of the heat generating element 1 have the compositions shown in Tables 1 to 3 and the specific resistance at 1000 ° C. is 0.22 Ωcm and 0.11 Ωcm, respectively. The heat generating element 1 is manufactured with a heat generating element having an inner diameter of 64 mm, an outer diameter of 68 mm, and a wall thickness of 2 mm, and an alumina ceramics core tube 8 having a purity of 99.5% and a relative density of 97% in the hollow portion of the heat generating element 1. (Outer diameter 58 mm × inner diameter 50 mm × length 400 mm) is inserted, and outside the heating element 1, a cylindrical alumina ceramic 10 having a purity of 99.5% and a relative density of 97% (the outer diameter 10 a has a size of 88 mm, An electric furnace was obtained in the same manner as in Example 1 except that the outer diameter 10b was 82 mm, the inner diameter 10 was 76 mm, and the total length was 120 mm.

実施例3
図7の電気炉において、発熱体1における発熱部及び両端部の各々の材料が表1〜3に示す組成を有し、1000℃における比抵抗をそれぞれ0.48Ωcm、0.18Ωcmとしたランタンクロマイト系セラミックスを用いて、発熱体1を作製したこと以外は、実施例1と同様にして電気炉を得た。
Example 3
In the electric furnace of FIG. 7, the lanthanum chromite having the composition shown in Tables 1 to 3 and the specific resistance at 1000 ° C. of 0.48 Ωcm and 0.18 Ωcm, respectively, in the heating element 1 of the heating element 1. An electric furnace was obtained in the same manner as in Example 1 except that the heating element 1 was produced using a ceramic.

実施例4
図7の電気炉において、表1〜3に示す組成と比抵抗を有するランタンクロマイト系セラミックスを用いて、発熱体1の内径80mm、外径88mm、肉厚4mm、端子部2の長さ100mm、発熱部3の長さ150mm、折り返し端部4の長さ50mm、全長300mm、スリット5の幅6mm、長さ265mmとして発熱体1を作製し、発熱体1の中空部内に純度99.5%、相対密度97%のアルミナセラミックス炉心管8(外径72mm×内径66mm×長さ600mm)を挿入し、発熱体1の外側に、純度99.5%、相対密度97%の円筒型のアルミナセラミックス10(外径10aの大きさが108mm、外径10bの大きさが100mm、内径10が94mm、全長250mm)を装着したこと以外は、実施例1と同様にして電気炉を得た。
Example 4
In the electric furnace of FIG. 7, using the lanthanum chromite ceramics having the compositions and specific resistances shown in Tables 1 to 3, the heating element 1 has an inner diameter of 80 mm, an outer diameter of 88 mm, a thickness of 4 mm, a length of the terminal portion 2 of 100 mm, The heating element 1 is manufactured with a length of the heating part 3 of 150 mm, a length of the folded end part 4 of 50 mm, a total length of 300 mm, a width of the slit 5 of 6 mm, and a length of 265 mm, and a purity of 99.5% in the hollow part of the heating element 1 An alumina ceramic core tube 8 (outer diameter 72 mm × inner diameter 66 mm × length 600 mm) having a relative density of 97% is inserted, and a cylindrical alumina ceramic 10 having a purity of 99.5% and a relative density of 97% is placed outside the heating element 1. (Except that the outer diameter 10a is 108 mm, the outer diameter 10b is 100 mm, the inner diameter 10 is 94 mm, and the total length is 250 mm). An electric furnace was obtained.

実施例5
図7の電気炉において、発熱体1における発熱部及び両端部の各々の材料が表1〜3に示す組成を有し、1000℃における比抵抗をそれぞれ0.4Ωcm、0.024Ωcmとしたランタンクロマイト系セラミックスを用いて、発熱部3の長さ60mm、折り返し端部4の長さ70mm、全長190mm、スリット5の長さ125mmとして発熱体1を作製し、発熱体1の外側に、純度99.5%、相対密度97%の円筒型のアルミナセラミックス10(外径10aの大きさが56mm、外径10bの大きさが52mm、内径10が48mm、全長150mm)を装着したこと以外は、実施例1と同様にして電気炉を得た。
Example 5
In the electric furnace of FIG. 7, the lanthanum chromite having the composition shown in Tables 1 to 3 and the specific resistance at 1000 ° C. of 0.4 Ωcm and 0.024 Ωcm, respectively, in the heating element 1 of the heating element 1. The heating element 1 is produced using a ceramic based material with a length of the heat generating part 3 of 60 mm, a length of the folded end 4 of 70 mm, a total length of 190 mm, and a length of the slit 5 of 125 mm. Example except that cylindrical alumina ceramic 10 (outer diameter 10a is 56 mm, outer diameter 10b is 52 mm, inner diameter 10 is 48 mm, total length 150 mm) with 5% and a relative density of 97% is mounted. An electric furnace was obtained in the same manner as in 1.

実施例6
図7の電気炉において、表1〜3に示す組成と比抵抗を有するランタンクロマイト系セラミックスを用いて、発熱体の内径50mm、外径55mm、肉厚2.5mm、端子部2の長さ110mm、発熱部3の長さ150mm、折り返し端部4の長さ40mm、スリット5の幅5mm、長さ265mmとして発熱体1を作製し、発熱体1の中空部内に純度99.5%、相対密度97%のアルミナセラミックス炉心管8(外径46mm×内径40mm×長さ600mm)を挿入し、発熱体1の外側に、純度99.5%、相対密度97%の円筒型のアルミナセラミックス10(外径10aの大きさが43mm、外径10bの大きさが64mm、内径10が59mm、全長240mm)を装着したこと以外は、実施例1と同様にして電気炉を得た。
Example 6
In the electric furnace shown in FIG. 7, using a lanthanum chromite ceramic having the composition and specific resistance shown in Tables 1 to 3, the heating element has an inner diameter of 50 mm, an outer diameter of 55 mm, a thickness of 2.5 mm, and a length of the terminal portion 2 of 110 mm. The heating element 1 is manufactured with a length of the heating part 3 of 150 mm, a length of the folded end 4 of 40 mm, a width of the slit 5 of 5 mm, and a length of 265 mm. The heating part 1 has a purity of 99.5% and a relative density in the hollow part. A 97% alumina ceramic core tube 8 (outer diameter 46 mm × inner diameter 40 mm × length 600 mm) is inserted, and a cylindrical alumina ceramic 10 (outside) having a purity of 99.5% and a relative density of 97% is placed outside the heating element 1. An electric furnace was obtained in the same manner as in Example 1 except that the diameter 10a was 43 mm, the outer diameter 10b was 64 mm, the inner diameter 10 was 59 mm, and the total length was 240 mm.

比較例1
実施例1における図7の電気炉において、発熱体1における発熱部及び両端部の各々が表1〜3に示す組成と物性を有する(とくに発熱部と両端部の1000℃における比抵抗をそれぞれ0.09Ωcm、0.042Ωcmとした)ランタンクロマイト系セラミックスを用いて発熱体1を作製したこと以外は、実施例1と同様にして電気炉を得た。
Comparative Example 1
In the electric furnace of FIG. 7 in Example 1, each of the heat generating part and both ends of the heating element 1 has the composition and physical properties shown in Tables 1 to 3 (particularly, the specific resistance at 1000 ° C. of the heat generating part and both ends is 0 respectively. An electric furnace was obtained in the same manner as in Example 1 except that the heating element 1 was produced using lanthanum chromite ceramics (0.09 Ωcm and 0.042 Ωcm).

比較例2
図7の電気炉において、発熱体1における発熱部及び両端部が表1〜3に示す組成と物性を有する(とくに発熱部と両端部の各々の1000℃における比抵抗をそれぞれ4.0Ωcm、0.3Ωcmとした)ランタンクロマイト系セラミックスを用いて発熱体1を作製したこと以外は、実施例1と同様にして電気炉を得た。
Comparative Example 2
In the electric furnace of FIG. 7, the heat generating part and both ends of the heat generating element 1 have the compositions and physical properties shown in Tables 1 to 3 (particularly, the specific resistance at 1000 ° C. of each of the heat generating part and both ends is 4.0 Ωcm, 0 An electric furnace was obtained in the same manner as in Example 1 except that the heating element 1 was prepared using lanthanum chromite ceramics (.3 Ωcm).

比較例3
図7の電気炉において、発熱体1における発熱部及び両端部が表1〜3に示す組成と物性を有する(とくに発熱部と両端部の各々の1000℃における比抵抗を0.24Ωcm、0.017Ωcmとした)ランタンクロマイト系セラミックスを用いて発熱体1を作製したこと以外は、実施例1と同様にして電気炉を得た。
Comparative Example 3
In the electric furnace of FIG. 7, the heat generating portion and both end portions of the heat generating element 1 have the compositions and physical properties shown in Tables 1 to 3 (particularly, the specific resistance at 1000 ° C. of each of the heat generating portion and both end portions is 0.24 Ωcm,. An electric furnace was obtained in the same manner as in Example 1 except that the heating element 1 was produced using lanthanum chromite ceramics (017 Ωcm).

比較例4
図7の電気炉において、発熱体1における発熱部及び両端部が表1〜3に示す組成と物性を有する(とくに発熱部と両端部の各々の1000℃における比抵抗を1.2Ωcm、0.55Ωcmとした)ランタンクロマイト系セラミックスを用いて発熱体1を作製したこと以外は、実施例1と同様にして電気炉を得た。
Comparative Example 4
In the electric furnace of FIG. 7, the heat generating part and both ends of the heating element 1 have the compositions and physical properties shown in Tables 1 to 3 (particularly, the specific resistance of each of the heat generating part and both ends at 1000 ° C. is 1.2 Ωcm, 0. An electric furnace was obtained in the same manner as in Example 1 except that the heating element 1 was produced using lanthanum chromite ceramics (55 Ωcm).

比較例5
図7の電気炉において、発熱体1における両端部が表1〜3に示す組成と物性を有する(とくに発熱部と両端部のそれぞれの1000℃における比抵抗を0.3Ωcm、0.23Ωcmとした)ランタンクロマイト系セラミックスを用いて発熱体1を作製したこと以外は、実施例1と同様にして電気炉を得た。
Comparative Example 5
In the electric furnace of FIG. 7, both ends of the heating element 1 have the compositions and physical properties shown in Tables 1 to 3 (particularly, the specific resistance at 1000 ° C. of the heating section and both ends is set to 0.3 Ωcm and 0.23 Ωcm, respectively. ) An electric furnace was obtained in the same manner as in Example 1 except that the heating element 1 was produced using lanthanum chromite ceramics.

比較例6
図7の電気炉において、発熱体1における発熱部及び両端部が表1〜3に示す組成と物性を有する(とくに発熱部と両端部の各々の1000℃における比抵抗を2.5Ωcm、0.024Ωcmとした)ランタンクロマイト系セラミックスを用いて発熱体1を作製したこと以外は、実施例1と同様にして電気炉を得た。
Comparative Example 6
In the electric furnace of FIG. 7, the heat generating part and both ends of the heating element 1 have the compositions and physical properties shown in Tables 1 to 3 (particularly, the specific resistance of each of the heat generating part and both ends at 1000 ° C. is 2.5 Ωcm, 0. An electric furnace was obtained in the same manner as in Example 1 except that the heating element 1 was produced using lanthanum chromite ceramics (which was 024 Ωcm).

比較例7
図7の電気炉において、発熱体1の内径54mm、外径60mm、発熱部3の長さ30mm、全長120mm、スリット5の長さ95mmとして発熱体1を作製し、発熱体1の中空部内に純度99.5%、相対密度97%のアルミナセラミックス炉心管8(外径48mm×内径40mm×長さ350mm)を挿入し、発熱体1の外側に、純度99.5%、相対密度97%の円筒型のアルミナセラミックス10(外径10aの大きさが78mm、外径10bの大きさが72mm、内径10が66mm、全長90mm)を装着したこと以外は、実施例1と同様にして電気炉を得た。
Comparative Example 7
In the electric furnace of FIG. 7, the heating element 1 is manufactured with an inner diameter of 54 mm, an outer diameter of 60 mm, a length of the heating part 3 of 30 mm, a total length of 120 mm, and a length of the slit 5 of 95 mm. An alumina ceramic core tube 8 (outer diameter 48 mm × inner diameter 40 mm × length 350 mm) having a purity of 99.5% and a relative density of 97% is inserted, and a purity of 99.5% and a relative density of 97% is placed outside the heating element 1. The electric furnace was installed in the same manner as in Example 1 except that the cylindrical alumina ceramic 10 (the outer diameter 10a was 78 mm, the outer diameter 10b was 72 mm, the inner diameter 10 was 66 mm, and the total length was 90 mm) was mounted. Obtained.

比較例8
図7の電気炉において、発熱体1の内径24mm、外径30mm、発熱部3の長さ250mm、折り返し端部4の長さ50mm、全長360mm、スリット5の幅2mm、長さ310mmとして発熱体1を作製し、発熱体1の中空部内に純度99.5%、相対密度97%のアルミナセラミックス炉心管8(外径20mm×内径15mm×長さ800mm)を挿入し、発熱体1の外側に、純度99.5%、相対密度97%の円筒型のアルミナセラミックス10(外径10aの大きさが43mm、外径10bの大きさが39mm、内径10が35mm、全長330mm)を装着したこと以外は、実施例1と同様にして電気炉を得た。
Comparative Example 8
In the electric furnace of FIG. 7, the heating element 1 has an inner diameter of 24 mm, an outer diameter of 30 mm, a heating part 3 of 250 mm length, a folded end 4 length of 50 mm, a total length of 360 mm, a slit 5 width of 2 mm, and a length of 310 mm. 1 is inserted, and an alumina ceramic core tube 8 (outer diameter 20 mm × inner diameter 15 mm × length 800 mm) having a purity of 99.5% and a relative density of 97% is inserted into the hollow portion of the heating element 1, Other than mounting cylindrical alumina ceramic 10 (outer diameter 10a is 43 mm, outer diameter 10b is 39 mm, inner diameter 10 is 35 mm, total length 330 mm) with a purity of 99.5% and a relative density of 97% Obtained an electric furnace in the same manner as in Example 1.

比較例9
図7の電気炉において、発熱体1の内径55mm、外径57mm、肉厚1mmとして発熱体1を作製し、発熱体1の中空部内に純度99.5%、相対密度97%のアルミナセラミックス炉心管8(外径50mm×内径46mm×長さ400mm)を挿入し、発熱体1の外側に、純度99.5%、相対密度97%の円筒型のアルミナセラミックス10(外径10aの大きさが75mm、外径10bの大きさが69mm、内径10が63mm、全長120mm)を装着したこと以外は、実施例1と同様にして電気炉を得た。
Comparative Example 9
In the electric furnace shown in FIG. 7, the heating element 1 is manufactured with the heating element 1 having an inner diameter of 55 mm, an outer diameter of 57 mm, and a wall thickness of 1 mm, and an alumina ceramic core having a purity of 99.5% and a relative density of 97% in the hollow portion of the heating element 1. A tube 8 (outer diameter 50 mm × inner diameter 46 mm × length 400 mm) is inserted, and a cylindrical alumina ceramic 10 (outer diameter 10a having a purity of 99.5% and a relative density of 97% is placed outside the heating element 1. An electric furnace was obtained in the same manner as in Example 1 except that 75 mm, the outer diameter 10 b was 69 mm, the inner diameter 10 was 63 mm, and the total length was 120 mm.

比較例10
図7の電気炉において、実施例1と同様の組成と比抵抗を有するランタンクロマイト系セラミックスを用いて、内径23mm、外径32mm、肉厚4.5mm、発熱部3の長さ45mm、全長135mm、スリット5の幅1.5mm、長さ110mmとして発熱体1を作製し、発熱体1の中空部内に純度99.5%、相対密度97%のアルミナセラミックス炉心管8(外径20mm×内径15mm×長さ360mm)を挿入し、発熱体1の外側に、純度99.5%、相対密度97%の円筒型のアルミナセラミックス10(外径10aの大きさが42mm、外径10bの大きさが38mm、内径10が35mm、全長100mm)を装着したこと以外は、実施例1と同様にして電気炉を得た。
Comparative Example 10
In the electric furnace shown in FIG. 7, using an lanthanum chromite ceramic having the same composition and specific resistance as in Example 1, the inner diameter is 23 mm, the outer diameter is 32 mm, the wall thickness is 4.5 mm, the heating part 3 is 45 mm long, and the total length is 135 mm. The heating element 1 is manufactured with the slit 5 having a width of 1.5 mm and a length of 110 mm, and an alumina ceramics core tube 8 (outer diameter 20 mm × inner diameter 15 mm) having a purity of 99.5% and a relative density of 97% in the hollow portion of the heating element 1. X length 360 mm) is inserted, and outside of the heating element 1, a cylindrical alumina ceramic 10 having a purity of 99.5% and a relative density of 97% (the outer diameter 10a has a size of 42 mm and the outer diameter 10b has a size). An electric furnace was obtained in the same manner as in Example 1 except that 38 mm, inner diameter 10 was 35 mm, and the total length was 100 mm.

比較例11
図7の電気炉において、端子部2の長さ55mm、発熱部3の長さ30mm、折り返し端部4の長さ105mm、全長190mm、スリット5の長さ90mmとして発熱体1を作製し、発熱体1の外側に、純度99.5%、相対密度97%の円筒型のアルミナセラミックス10(外径10aの大きさが56mm、外径10bの大きさが52mm、内径10が48mm、全長150mm)を装着したこと以外は、実施例1と同様にして電気炉を得た。
Comparative Example 11
In the electric furnace shown in FIG. 7, the heating element 1 was prepared with the terminal portion 2 having a length of 55 mm, the heating portion 3 having a length of 30 mm, the folded end portion 4 having a length of 105 mm, a total length of 190 mm, and the slit 5 having a length of 90 mm. Outside the body 1, cylindrical alumina ceramic 10 having a purity of 99.5% and a relative density of 97% (the outer diameter 10a is 56 mm, the outer diameter 10b is 52 mm, the inner diameter 10 is 48 mm, and the total length is 150 mm) An electric furnace was obtained in the same manner as in Example 1 except that was attached.

比較例12
図7の電気炉において、発熱体1の内径24mm、外径30mm、端子部2の長さ240mm、折り返し端部4の長さ15mm、全長320mm、スリット5の幅2mm、長さ310mmとして発熱体1を作製し、発熱体1の中空部内に純度99.5%、相対密度97%のアルミナセラミックス炉心管8(外径20mm×内径15mm×長さ750mm)を挿入し、発熱体1の外側に、純度99.5%、相対密度97%の円筒型のアルミナセラミックス10(外径10aの大きさが43mm、外径10bの大きさが39mm、内径10が35mm、全長270mm)を装着したこと以外は、実施例1と同様にして電気炉を得た。
Comparative Example 12
In the electric furnace shown in FIG. 7, the heating element 1 has an inner diameter of 24 mm, an outer diameter of 30 mm, a terminal part 2 length of 240 mm, a folded end part 4 length of 15 mm, a total length of 320 mm, a slit 5 width of 2 mm, and a length of 310 mm. 1 is inserted, and an alumina ceramic core tube 8 (outer diameter 20 mm × inner diameter 15 mm × length 750 mm) having a purity of 99.5% and a relative density of 97% is inserted into the hollow portion of the heating element 1, Other than mounting cylindrical alumina ceramics 10 (outer diameter 10a is 43 mm, outer diameter 10b is 39 mm, inner diameter 10 is 35 mm, total length 270 mm) having a purity of 99.5% and a relative density of 97% Obtained an electric furnace in the same manner as in Example 1.

比較例13
実施例1における図7の電気炉と同等の構造を有する電気炉において、発熱体1として図3(A)及び図3(B)に示される形状をもち、該発熱体1における発熱部及び両端部の材料が表1に示す組成を有し、1000℃における比抵抗がいずれも0.3Ωcmであるランタンクロマイト系セラミックスを用いて、該発熱体1の内径32mm、発熱部3の外径36mm、端子部2の外径45mm、端子部2の肉厚6.5mm、発熱部3の肉厚2mmとして発熱体1を作製し、発熱体1の中空部内に純度99.5%、相対密度97%のアルミナセラミックス炉心管8(外径30mm×内径24mm×長さ400mm)を挿入したこと以外は、実施例1と同様にして電気炉を得た。
Comparative Example 13
In the electric furnace having the same structure as the electric furnace of FIG. 7 in the first embodiment, the heating element 1 has the shape shown in FIGS. 3 (A) and 3 (B), the heating part and both ends of the heating element 1. The material of the part has the composition shown in Table 1, and the lanthanum chromite ceramic having a specific resistance at 1000 ° C. of 0.3 Ωcm is used, the inner diameter of the heating element 1 is 32 mm, the outer diameter of the heating part 3 is 36 mm, The heating element 1 is manufactured with the outer diameter of the terminal part 2 being 45 mm, the thickness of the terminal part 2 being 6.5 mm, and the heating part 3 having a thickness of 2 mm. The purity of the heating element 1 is 99.5% and the relative density is 97%. An electric furnace was obtained in the same manner as in Example 1 except that the alumina ceramic core tube 8 (outer diameter 30 mm × inner diameter 24 mm × length 400 mm) was inserted.

比較例14
実施例1における図7の電気炉と同等の構造を有する電気炉において、発熱体1として図3(A)及び図3(B)に示される形状をもち、該発熱体1における発熱部及び両端部の材料が表1に示す組成を有し、1000℃の比抵抗をいずれも0.3Ωcmとしたランタンクロマイト系セラミックスを用いて、該発熱体1の内径45mm、発熱部3の外径50mm、端子部2の外径55mm、端子部2の肉厚5mm、発熱部3の肉厚2.5mm、端子部2の長さ100mm、発熱部3の長さ160mm、折り返し端部4の長さ40mm、全長300mm、スリット5の幅5mm、長さ260mmとして発熱体1を作製し、発熱体1の中空部内に純度99.5%、相対密度97%のアルミナセラミックス炉心管8(外径40mm×内径34mm×長さ600mm)を挿入し、発熱体1の外側に、純度99.5%、相対密度97%の円筒型のアルミナセラミックス10(外径10aの大きさが66mm、外径10bの大きさが60mm、内径10が55mm、全長240mm)を装着したこと以外は、実施例1と同様にして電気炉を得た。
Comparative Example 14
In the electric furnace having the same structure as the electric furnace of FIG. 7 in the first embodiment, the heating element 1 has the shape shown in FIGS. 3 (A) and 3 (B), the heating part and both ends of the heating element 1. The material of the part has the composition shown in Table 1, and using lanthanum chromite ceramics with a specific resistance at 1000 ° C. of 0.3 Ωcm, the inner diameter of the heating element 1 is 45 mm, the outer diameter of the heating part 3 is 50 mm, The outer diameter of the terminal part 2 is 55 mm, the thickness of the terminal part 2 is 5 mm, the thickness of the heat generating part 3 is 2.5 mm, the length of the terminal part 2 is 100 mm, the length of the heat generating part 3 is 160 mm, and the length of the folded end part 4 is 40 mm. The heating element 1 is manufactured with a total length of 300 mm, a width of the slit 5 of 5 mm, and a length of 260 mm. The alumina ceramic core tube 8 (outer diameter 40 mm × inner diameter) having a purity of 99.5% and a relative density of 97% in the hollow portion of the heating element 1 34mm x length 600 mm) and a cylindrical alumina ceramic 10 having a purity of 99.5% and a relative density of 97% (the outer diameter 10a is 66 mm, the outer diameter 10b is 60 mm, and the inner diameter is outside the heating element 1). An electric furnace was obtained in the same manner as in Example 1 except that 10 was 55 mm and the total length was 240 mm.

Figure 0004927433
Figure 0004927433

Figure 0004927433
Figure 0004927433

Figure 0004927433
Figure 0004927433

試験例1
実施例1〜6及び比較例1〜13のそれぞれの電気炉を、有効炉内中央での保持温度1800℃、保持時間30min、昇降温速度300℃/hで繰り返しサイクル通電試験を実施したときの、消費電力が最大となる温度到達時の電圧、電流、消費電力、表面負荷密度及び発熱体が破損するまでのサイクル回数を求めた。その結果を表4に示す。
Test example 1
When each of the electric furnaces of Examples 1 to 6 and Comparative Examples 1 to 13 was repeatedly subjected to a cycle energization test at a holding temperature of 1800 ° C., a holding time of 30 minutes, and a temperature raising / lowering speed of 300 ° C./h in the center of the effective furnace. The voltage, current, power consumption, surface load density, and number of cycles until the heating element was damaged were obtained when the temperature reached the maximum temperature. The results are shown in Table 4.

Figure 0004927433
Figure 0004927433

試験例2
実施例1、6及び比較例14のそれぞれの電気炉を、有効炉内中央での保持温度1800℃、保持時間30min、昇降温速度800℃/hで通電試験を実施したときの、消費電力が最大となる温度到達時の電圧、電流、消費電力、表面負荷密度を求めた。その結果を表5に示す。
Test example 2
When each of the electric furnaces of Examples 1 and 6 and Comparative Example 14 was subjected to an energization test at a holding temperature of 1800 ° C. in the center of the effective furnace, a holding time of 30 minutes, and a heating / cooling rate of 800 ° C./h, the power consumption was The voltage, current, power consumption, and surface load density when reaching the maximum temperature were determined. The results are shown in Table 5.

Figure 0004927433
Figure 0004927433

試験例1の表4から明らかなように、実施例1〜6の電気炉は高い耐久性を示した。また比較例1〜13の結果から明らかなように、本発明の要件を満足しないランタンクロマイト系発熱体を用いた電気炉は充分な有効加熱領域が得られず、また耐久性に優れた電気炉とならない。また、試験例2の結果、本発明の電気炉は昇温速度800℃/hでの急速加熱が可能であった。   As apparent from Table 4 of Test Example 1, the electric furnaces of Examples 1 to 6 showed high durability. Further, as is apparent from the results of Comparative Examples 1 to 13, an electric furnace using a lanthanum chromite heating element that does not satisfy the requirements of the present invention cannot provide a sufficient effective heating region, and has an excellent durability. Not. Further, as a result of Test Example 2, the electric furnace of the present invention was capable of rapid heating at a heating rate of 800 ° C./h.

図1(A)は従来の複数の発熱体を使用した管状型電気炉の縦断面図、図1(B)は従来の管状型電気炉の横断面図である。FIG. 1A is a longitudinal sectional view of a conventional tubular electric furnace using a plurality of heating elements, and FIG. 1B is a transverse sectional view of a conventional tubular electric furnace. 図2(A)は従来の一本の発熱体を使用した一体型の管状型電気炉の縦断面図、図2(B)は従来の一本の発熱体を使用した一体型の管状型電気炉の横断面図である。FIG. 2A is a longitudinal sectional view of an integrated tubular electric furnace using a conventional heating element, and FIG. 2B is an integrated tubular electric furnace using a conventional heating element. It is a cross-sectional view of a furnace. 図3(A)は特許文献1の電気炉の発熱体を正面から見た図、図3(B)は発熱体を側面から見た図である。3A is a view of the heating element of the electric furnace of Patent Document 1 as viewed from the front, and FIG. 3B is a view of the heating element as viewed from the side. 図4は特許文献1の電気炉の一例を示す図である。FIG. 4 is a diagram illustrating an example of an electric furnace disclosed in Patent Document 1. In FIG. 図5は本発明電気炉の発熱体を正面から見た図である。FIG. 5 is a front view of the heating element of the electric furnace of the present invention. 図6(A)は本発明電気炉の発熱体を側面から見た図、図6(B)は図6(A)のA−A′断面図である。6A is a side view of the heating element of the electric furnace of the present invention, and FIG. 6B is a cross-sectional view taken along the line AA ′ of FIG. 6A. 図7は本発明電気炉の一例を示す縦断面図である。FIG. 7 is a longitudinal sectional view showing an example of the electric furnace of the present invention.

符号の説明Explanation of symbols

1 発熱体
2 端子部
3 発熱部
4 折り返し端部
5 スリット
6 電極
7 金属リード部品
8 セラミックス炉心管
9 断熱材
10 セラミックス層
10a セラミックス層
10b セラミックス層
11 金属缶体
12 棒状発熱体
13 断熱材
14 炉心管
15 発熱体
16 発熱部
17 端子部
18 電極
19 リード線
20 断熱材
21 炉心管
22 断熱材
23 炉心管
DESCRIPTION OF SYMBOLS 1 Heat generating body 2 Terminal part 3 Heat generating part 4 Folding end part 5 Slit 6 Electrode 7 Metal lead part 8 Ceramic furnace core tube 9 Heat insulating material 10 Ceramic layer 10a Ceramic layer 10b Ceramic layer 11 Metal can body 12 Rod-shaped heating element 13 Heat insulating material 14 Core Tube 15 Heating element 16 Heating portion 17 Terminal portion 18 Electrode 19 Lead wire 20 Heat insulating material 21 Core tube 22 Heat insulating material 23 Core tube

Claims (1)

発熱部と両端部からなる円筒型のランタンクロマイト系発熱体において、発熱部の材料の1000℃の比抵抗が0.1〜3.5Ωcmの範囲にあり、両端部の材料の1000℃の比抵抗が0.02〜0.5Ωcmの範囲にあり、発熱部の材料の1000℃の比抵抗と両端部の材料の1000℃の比抵抗の比率([発熱部の比抵抗]/[両端部の比抵抗])が1.5〜100の範囲にあり、該発熱体の発熱部の長さと内径との比率([発熱部の長さ]/[内径])が0.6〜10の範囲にあり、該発熱体の内径と肉厚との比率([内径]/[肉厚])が6〜50の範囲にあり、該発熱体の一方の端面を基端とし、該基端面を2等分割する位置から垂直方向に2ケ所のスリットを設けることによって端子部を一方に集中し、該スリットの長さと発熱体の全長との比率([スリットの長さ]/[全長])が0.5〜0.95の範囲にあり、該端子部に高温用金属電極膜を取り付けた発熱体と、該発熱体の外側に装着した断熱材と、該発熱体の中空部内に装着したセラミックス炉心管とを備え、該炉心管の中空部内を有効加熱室としたことを特徴とする電気炉。
In a cylindrical lanthanum chromite heating element composed of a heating part and both ends, the specific resistance at 1000 ° C. of the material of the heating part is in the range of 0.1 to 3.5 Ωcm, and the specific resistance of 1000 ° C. of the material at both ends Is in the range of 0.02 to 0.5 Ωcm, and the ratio of the specific resistance at 1000 ° C. of the material of the heat generating part to the specific resistance of 1000 ° C. of the material at both end parts ([specific resistance of the heat generating part] / [ratio of both end parts] Resistance]) is in the range of 1.5 to 100, and the ratio of the length of the heat generating portion to the inner diameter ([length of the heat generating portion] / [inner diameter]) of the heating element is in the range of 0.6 to 10 The ratio between the inner diameter and the thickness of the heating element ([inner diameter] / [thickness]) is in the range of 6 to 50, one end face of the heating element is the base end, and the base end face is divided into two equal parts. By providing two slits in the vertical direction from the position where the contact is made, the terminal part is concentrated on one side, the length of the slit and heat generation A heating element having a ratio ([slit length] / [full length]) to a total length of the body in a range of 0.5 to 0.95, and a high-temperature metal electrode film attached to the terminal portion, and the heating element An electric furnace comprising a heat insulating material mounted on the outside of the ceramic core and a ceramic core tube mounted in a hollow portion of the heating element, wherein the hollow portion of the core tube is an effective heating chamber.
JP2006115397A 2006-04-19 2006-04-19 Electric furnace Active JP4927433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006115397A JP4927433B2 (en) 2006-04-19 2006-04-19 Electric furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006115397A JP4927433B2 (en) 2006-04-19 2006-04-19 Electric furnace

Publications (2)

Publication Number Publication Date
JP2007285644A JP2007285644A (en) 2007-11-01
JP4927433B2 true JP4927433B2 (en) 2012-05-09

Family

ID=38757590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006115397A Active JP4927433B2 (en) 2006-04-19 2006-04-19 Electric furnace

Country Status (1)

Country Link
JP (1) JP4927433B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4810503Y1 (en) * 1969-01-31 1973-03-20
JPS58115792A (en) * 1981-12-28 1983-07-09 日本化学陶業株式会社 Heater electrode of lanthanum chromite series
JPS63153498A (en) * 1986-12-18 1988-06-25 株式会社東芝 Decay-heat removing system of fast breeder reactor
JP3388306B2 (en) * 1996-02-01 2003-03-17 株式会社ニッカトー Electric furnace
JP4053277B2 (en) * 2001-11-05 2008-02-27 株式会社ニッカトー Electric furnace
JP2003314970A (en) * 2002-04-17 2003-11-06 Nitsukatoo:Kk Tubular electric furnace
JP4560328B2 (en) * 2004-04-26 2010-10-13 株式会社ニッカトー Lanthanum chromite heating element having heating part and terminal part and method for manufacturing the same

Also Published As

Publication number Publication date
JP2007285644A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP3388306B2 (en) Electric furnace
CN105165113B (en) Ceramic heater
US8471179B2 (en) Ceramic heater
CN108476558B (en) Heating device
WO2017115599A1 (en) Ceramic member
CN208079427U (en) A kind of hot air type ceramic heating element component
JP2007265893A (en) Ceramic heater
JP4927433B2 (en) Electric furnace
JP4053277B2 (en) Electric furnace
JP4018998B2 (en) Ceramic heater and glow plug
JP3128325B2 (en) Small electric furnace for optical fiber processing
JP4340143B2 (en) Ceramic heater
JP2673899B2 (en) Conductive honeycomb ceramics
JP2003314970A (en) Tubular electric furnace
JP2004125202A (en) Electric resistance furnace
JP2001230060A (en) Resistance element
JPH0878142A (en) Ceramic heater
JP2019149331A (en) Immersion heater
JP4453068B2 (en) Ceramic tray
JP2649295B2 (en) Ultra high temperature electric resistance furnace
JP4563022B2 (en) Thin high-temperature electric heating furnace composed of plate-like heating elements
JP2820423B2 (en) Ceramic heater furnace
JP6282877B2 (en) heater
JPH0521146A (en) Zirconia heater with built-in pre-heating heater
JPH05157452A (en) Electric furnace using both lanthanum chromite and zirconia for heating element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4927433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250