JP3378287B2 - heating furnace - Google Patents

heating furnace

Info

Publication number
JP3378287B2
JP3378287B2 JP4589693A JP4589693A JP3378287B2 JP 3378287 B2 JP3378287 B2 JP 3378287B2 JP 4589693 A JP4589693 A JP 4589693A JP 4589693 A JP4589693 A JP 4589693A JP 3378287 B2 JP3378287 B2 JP 3378287B2
Authority
JP
Japan
Prior art keywords
core tube
heating furnace
heating
high temperature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4589693A
Other languages
Japanese (ja)
Other versions
JPH06241669A (en
Inventor
良三 山内
稔 澤田
浩一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP4589693A priority Critical patent/JP3378287B2/en
Publication of JPH06241669A publication Critical patent/JPH06241669A/en
Application granted granted Critical
Publication of JP3378287B2 publication Critical patent/JP3378287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/62Heating means for drawing
    • C03B2205/63Ohmic resistance heaters, e.g. carbon or graphite resistance heaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Furnace Details (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炉心管の周回方向(全
周方向)において温度の均一化を図った、光ファイバ製
造などに用いて有用な加熱炉に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating furnace which has a uniform temperature in the circumferential direction (entire circumferential direction) of a core tube and is useful for manufacturing optical fibers.

【0002】[0002]

【従来の技術】光ファイバの製造にあたっては、種々の
段階において、例えばガラス微粒子堆積体(スート)を
焼結して透明化したり、透明化された太径のガラス棒
(プリフォーム)を延伸して細径化したり、あるいはフ
ァイバ母材を線引きしてファイバ化したりする際に、炉
心管(マッフル)の外周に同心状に円筒型の発熱体を配
置した多重円筒構造の加熱炉を用いて、所望の加熱を行
っている。
2. Description of the Related Art In manufacturing an optical fiber, at various stages, for example, a glass particulate deposit (soot) is sintered to be transparent, or a transparent large diameter glass rod (preform) is stretched. When using a heating furnace with a multi-cylinder structure in which concentric cylindrical heating elements are concentrically arranged around the outer periphery of the core tube (muffle) when making the fiber into a fiber by drawing a fiber base material into a fiber, The desired heating is being performed.

【0003】このような従来構造の加熱炉を示すと、図
4〜図5の如くである。この加熱炉では、炉心管1は上
下の全長にわたってほぼ同一の肉厚からなり、その上下
の端面1a,1bにおいて支持部材2,3で支持され、
この炉心管1の外周に位置する円筒型の発熱体4にあっ
ては、例えばその2箇所に通電用の電極5,6が設けて
ある。そして、加熱時には、電極5,6に通電して、発
熱体4からの熱が、炉心管1を介して、当該炉心管1の
内部に供給(挿入)された上記種々の被加熱体の外周に
達して、当該被加熱体の全周を均一に加熱するようにな
っている。
The heating furnace having such a conventional structure is shown in FIGS. In this heating furnace, the furnace core tube 1 has substantially the same thickness over the entire length in the upper and lower parts, and is supported by the supporting members 2 and 3 at the upper and lower end faces 1a and 1b.
In the cylindrical heating element 4 located on the outer periphery of the core tube 1, for example, electrodes 5 and 6 for energization are provided at the two locations. Then, at the time of heating, the electrodes 5, 6 are energized, and the heat from the heating element 4 is supplied to (inserted into) the inside of the core tube 1 through the core tube 1 and the outer periphery of the various objects to be heated. And reaches the point where the entire circumference of the object to be heated is heated uniformly.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記従来構
造の加熱炉においては、光ファイバなどの最終製品を得
た場合、所期の品質が得られないことが多々あった。そ
こで、本発明者等が、この点に関して鋭意検討したとこ
ろ、次のような結論を得た。
However, in the heating furnace having the above-mentioned conventional structure, when a final product such as an optical fiber is obtained, the desired quality is often not obtained. Therefore, the inventors of the present invention have made extensive studies on this point, and have come to the following conclusions.

【0005】つまり、上記加熱炉の場合、被加熱体は、
その周回方向において均一に加熱されるべきであるにも
かかわらず、実際には、均一に加熱されず、加熱後の成
形体の断面形状が、この加熱の不均一化によって、真円
ではなく、非円形化して、製品の品質低下を招いている
ことを突き止めた。
That is, in the above heating furnace, the object to be heated is
Although it should be uniformly heated in the circumferential direction, in reality, it is not uniformly heated, and the cross-sectional shape of the molded body after heating is not a perfect circle due to the uneven heating. It was discovered that the product had a non-circular shape and was causing a deterioration in product quality.

【0006】例えば、単一モード光ファイバの場合、コ
アやクラッドが非円形化によって、断面形状が楕円化し
ていると、本来縮退しているべき2つの直交偏波モード
の縮退が解けて別々のモードとして振る舞うようにな
り、(1)伝搬定数の偏波依存性が生じ、この光ファイ
バを使用して、光ファイバ型部品を製造しても、偏波無
依存性を維持できないということが起こり、(2)ま
た、2つのモード間の伝搬速度が異なり、この光ファイ
バに光パルスを入射すると、光パルスに波形歪みが生じ
る、などの影響が見られた。
For example, in the case of a single-mode optical fiber, if the cross-sectional shape is elliptical due to the non-circular shape of the core and the clad, the degeneracy of the two orthogonal polarization modes, which should be degenerate, should be resolved, and the degeneracy should be different. As a result, it behaves as a mode, and (1) polarization dependence of the propagation constant occurs, and even if an optical fiber type component is manufactured using this optical fiber, polarization independence cannot be maintained. (2) Further, the propagation velocities between the two modes are different, and when an optical pulse is incident on this optical fiber, the waveform pulse is distorted in the optical pulse.

【0007】このような加熱不均一化の原因について、
より具体的に追求したところ、上記従来構造の加熱炉の
場合、発熱体4の電極5,6部分の近傍が熱的に他の部
分と異質となり易く、結果として、温度分布が周回方向
で不均一になり易いことが判った。特に、電極5,6部
分に冷却媒体などを供給して当該電極5,6の温度上昇
を抑える構造の加熱炉では、この傾向が顕著に現れる。
Regarding the cause of such uneven heating,
As a result of a more specific pursuit, in the case of the above-described conventional heating furnace, the vicinity of the electrodes 5 and 6 of the heating element 4 is likely to be thermally dissimilar to other parts, and as a result, the temperature distribution becomes uneven in the circumferential direction. It turns out that it tends to be uniform. In particular, in a heating furnace having a structure in which a cooling medium or the like is supplied to the electrodes 5 and 6 to suppress the temperature rise of the electrodes 5 and 6, this tendency becomes remarkable.

【0008】このような加熱温度の不均一化を、上記従
来構造の加熱炉において、実際に測定したところ、図6
の如くであった。つまり、炉心管1内の加熱処理領域で
ある高温度領域部分での周回方向の温度分布を実測する
と、図示のような楕円形状の実測温度分布ラインLt1
得られ、電極が位置する側(図中左右の両側)では温度
が低く、1600℃ラインLt2と1650℃ラインLt3
のほぼ中間ほどまで温度低下があるのに対して、電極の
ない側(図中上下の両側)では温度が高く、1700℃
ラインLt4と1650℃ラインLt3のほぼ中間ほどの温
度が維持され、電極の影響により、約50℃程度もの温
度差が生じていることが判る。
[0008] Such nonuniform heating temperature was actually measured in the heating furnace having the above-mentioned conventional structure.
It was like. That is, when the temperature distribution in the orbiting direction in the high temperature region, which is the heat treatment region in the core tube 1, is measured, an elliptical measured temperature distribution line L t1 as shown in the figure is obtained, and the side where the electrode is located ( The temperature is low on both the left and right sides in the figure, and the 1600 ° C. line L t2 and the 1650 ° C. line L t3
Although the temperature drops to about the middle of the temperature range, the temperature is high on the side without electrodes (upper and lower sides in the figure), 1700 ° C.
It can be seen that the temperature about halfway between the line L t4 and the 1650 ° C. line L t3 is maintained, and a temperature difference of about 50 ° C. occurs due to the influence of the electrodes.

【0009】本発明は、このような従来の実情に鑑みて
なされたもので、炉心管の肉厚形状などを変えることに
より、炉心管の周回方向において温度の均一化を図った
加熱炉を提供せんとするものである。
The present invention has been made in view of the above conventional circumstances, and provides a heating furnace in which the temperature is made uniform in the circumferential direction of the core tube by changing the wall thickness shape of the core tube. It is something to do.

【0010】[0010]

【課題を解決するための手段】かゝる本発明は、炉心管
の外周に同心状に円筒型の発熱体を配置した多重円筒構
造をなす加熱炉であって、前記炉心管の肉厚を当該炉心
管の高温度領域で厚くすると共に、少なくともその一端
側を薄くした加熱炉にある。
According to the present invention, there is provided a heating furnace having a multi-cylinder structure in which cylindrical heating elements are concentrically arranged on the outer periphery of the core tube, and the wall thickness of the core tube is reduced. In the heating furnace, the core tube is thickened in the high temperature region and at least one end thereof is thinned.

【0011】[0011]

【作用】炉心管の高温度領域部分を肉厚にしてあるた
め、当該肉厚部分の蓄熱作用と良好な熱伝導作用によ
り、炉心管内の均一な加熱が確保できると共に、薄くし
た炉心管の肉薄部分で当該炉心管を支持することによ
り、熱の伝導散逸を効果的に防止することができる。ま
た、この部分の存在により、炉心管の上下方向における
理想的な温度分布が得られる。
[Function] Since the high temperature region of the core tube is thickened, the heat accumulation effect and the good heat conduction effect of the thickened part can ensure uniform heating in the core tube and the thinned thickness of the core tube. By supporting the core tube in part, heat dissipation can be effectively prevented. Moreover, the presence of this portion provides an ideal temperature distribution in the vertical direction of the core tube.

【0012】[0012]

【実施例】図1は、本発明に係る光ファイバ製造用の加
熱炉の一実施例を示したものである。同図において、1
1は炉心管、12,13は炉心管11の上下の端面1
a,1bに当接して当該炉心管11を支持するための支
持部材、14は炉心管11の外周に位置する円筒型の発
熱体、15,16は発熱体14の2箇所に設置された通
電用の電極であって、基本的な構造は、上述した図4の
加熱炉とほぼ同様であるが、当該図1のように、炉心管
11において、光ファイバ母材などの被加熱体を加熱す
る際の本来の加熱温度が維持される領域(加熱処理領
域)である高温度領域11cの部分は肉厚に形成し、こ
の上下の両端部分11d,11eは薄めに形成してあ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of a heating furnace for producing an optical fiber according to the present invention. In the figure, 1
1 is a core tube, 12 and 13 are upper and lower end surfaces 1 of the core tube 11.
A support member for supporting the core tube 11 by contacting a and 1b, 14 is a cylindrical heating element located on the outer periphery of the core tube 11, and 15 and 16 are energizations installed at two locations of the heating element 14. The basic structure of the electrode is substantially the same as that of the heating furnace of FIG. 4 described above, but as shown in FIG. 1, in the core tube 11, a heated object such as an optical fiber preform is heated. The high temperature region 11c, which is a region (heat treatment region) where the original heating temperature is maintained, is formed thick, and the upper and lower end portions 11d and 11e are formed thin.

【0013】上記炉心管11は、カーボンなどで形成
し、肉厚を厚くした部位である高温度領域11cの具体
的な厚さは、炉心管11の外径の10%以上、好ましく
は20%以上とするとよい。この値は、例えば図2に示
したグラフから求められる。つまり、外径が72mm程
度の炉心管11において、当該炉心管11の内径を変え
ることにより、高温度領域11cの肉厚を横軸のように
変えたところ(5〜20mmまで)、炉心管11内の周
回方向における温度差は、縦軸の如くで、高温度領域1
1cの肉厚が炉心管11の外径のほぼ10%(約7m
m)程度の厚さの部分から次第に小さくなり、20%
(約15mm)程度の厚さの部分において相当小さくな
ることが判るからである。
The core tube 11 is made of carbon or the like, and the high temperature region 11c, which is a thickened portion, has a specific thickness of 10% or more, preferably 20% of the outer diameter of the core tube 11. The above is recommended. This value is obtained, for example, from the graph shown in FIG. That is, in the core tube 11 having an outer diameter of about 72 mm, the wall thickness of the high temperature region 11c was changed like the horizontal axis by changing the inner diameter of the core tube 11 (up to 5 to 20 mm). The temperature difference in the orbiting direction inside is as shown on the vertical axis.
The wall thickness of 1c is about 10% of the outer diameter of the core tube 11 (about 7 m
m) gradually decreases from the thickness of about 20%
This is because it can be seen that it becomes considerably small in a portion having a thickness of about (about 15 mm).

【0014】このような温度差の小さくなる理由として
は、高温度領域11cの肉厚が厚いと、当該肉厚部分の
蓄熱量が増して、発熱体14側の多少の熱変動(当該発
熱体14自体もカーボンなど成形した場合、その円筒型
の厚さなどを上下や周回方向において均一に製造するこ
とが難しく、多少の熱変動は避けられない。)に影響さ
れ難くなると同時に、発熱体14からの熱が効果的に取
り込まれ、その際、電極15,16側の温度が若干低
く、不均一に加熱されても、電極のない高温部分から取
り込まれた熱が素材中の良好な熱伝導を通じて電極側に
対応する温度の低い部分にスムーズに回り込れるため、
炉心管11内の周回方向において、より一層の均一な加
熱が確保されるようになるからと、考えられる。
The reason why such a temperature difference becomes small is that when the wall thickness of the high temperature region 11c is large, the amount of heat stored in the wall thickness portion increases, and a slight heat fluctuation on the side of the heating element 14 (the heating element concerned). When 14 itself is also formed of carbon or the like, it is difficult to uniformly manufacture the thickness of the cylindrical shape in the up-down direction and the circumferential direction, and some heat fluctuation is unavoidable. The heat from is effectively taken in, and at that time, the temperature on the electrodes 15 and 16 side is slightly low, and even if it is heated non-uniformly, the heat taken in from the high temperature part without electrodes has good thermal conductivity in the material. Since it can smoothly go around to the low temperature part corresponding to the electrode side,
It is considered that more uniform heating can be secured in the circulating direction in the core tube 11.

【0015】また、炉心管11の上下の両端薄肉部分1
1d,11eの厚さは、基本的には、当該炉心管11が
保持できる強度の厚さであればよく、1.5〜3mm程
度が望ましい。この部分を薄くすると、その端面11
a,11bで炉心管11を支持した場合、接触面積が小
さくて済み、支持部材12,13を通じての熱の伝導散
逸(逃げ)が効果的に防止できるようになる。また、こ
の薄肉部分11d,11eの存在により、熱の不要な部
分では熱量を少なく、上記したように本来の加熱処理を
行う部分である高温度領域11cにより多くの熱を蓄熱
させるという上下方向の理想的な炉心管温度分布も得ら
れる。
Further, thin-walled portions 1 at both upper and lower ends of the core tube 11
Basically, the thicknesses of 1d and 11e may be such that the core tube 11 can be retained, and a thickness of about 1.5 to 3 mm is desirable. If this part is thinned, its end face 11
When the core tube 11 is supported by a and 11b, the contact area is small, and it is possible to effectively prevent conduction (escape) of heat through the support members 12 and 13. Further, due to the existence of the thin portions 11d and 11e, the heat amount is small in the unnecessary heat portion, and as described above, a large amount of heat is stored in the high temperature region 11c which is the portion where the original heat treatment is performed. An ideal core tube temperature distribution can also be obtained.

【0016】因に、上記図1の如き構造の加熱炉であっ
て、各部の寸法が、発熱体内径80mm、発熱体長さ
(高さ)90mm、炉心管外径72mm、炉心管の高温
度領域肉厚15mm(当該高温度領域部分の炉心管内径
57mm=72mm−15mm)であるものを用いて、
光ファイバ母材を加熱して線引きしたところ、母材外径
の非円形化が2%程度であっものが、0.3%程度以下
まで低減した光ファイバを得ることができた。
In the heating furnace having the structure as shown in FIG. 1, the dimensions of each part are as follows: inner diameter of heating element 80 mm, length (height) of heating element 90 mm, outer diameter of core tube 72 mm, high temperature region of core tube. Using a wall thickness of 15 mm (core tube inner diameter of the high temperature region part 57 mm = 72 mm-15 mm),
When the optical fiber preform was heated and drawn, it was possible to obtain an optical fiber in which the non-circular outer diameter of the preform was about 2%, but was reduced to about 0.3% or less.

【0017】図3は、本発明に係る光ファイバ製造用の
加熱炉の他の実施例になる、炉心管を示したもので、こ
の炉心管11′では、高温度領域11′cの部分と、こ
の上下の薄肉部分11′d,11′eをそれぞれ別体と
して形成して組み付けたもので、図1の場合と全く同様
の作用、効果が得られる。
FIG. 3 shows a furnace core tube which is another embodiment of the heating furnace for producing an optical fiber according to the present invention. In this furnace core tube 11 ', a high temperature region 11'c and The upper and lower thin portions 11'd and 11'e are separately formed and assembled, and the same operation and effect as in the case of FIG. 1 can be obtained.

【0018】なお、上記各実施例では、炉心管11、1
1′の上下部分に薄肉部分11d,11e,11′d,
11′eを設けた構成であったが、炉心管11、11′
自体を下端のみで支持する場合や上端のみで吊設する場
合には、一方のみに薄肉部分を設ける構成とすることも
可能である。また、支持部材12,13との接触にあっ
ても、端面の全周面で接する他、部分的に接するように
してもよい。さらには、外周から管側面になるべく接触
面積の少ない、点や線状に接触させて支持するようにし
てもよい。
In each of the above embodiments, the core tubes 11, 1 are used.
The thin portions 11d, 11e, 11'd, and
11'e was provided, but the core tubes 11, 11 '
When supporting itself only at the lower end or suspending only at the upper end, it is possible to provide a thin portion only on one side. Further, even when the supporting members 12 and 13 are in contact with each other, they may be in contact with the entire peripheral surface of the end face or may be in partial contact. Further, it may be supported by contacting in a dot or line shape with a contact area as small as possible from the outer circumference to the side surface of the tube.

【0019】[0019]

【発明の効果】以上の説明から明らかなように本発明に
係る加熱炉によると、炉心管の外周に同心状に円筒型の
発熱体を配置した多重円筒構造をなす加熱炉であって、
前記炉心管の肉厚を当該炉心管の高温度領域で厚くする
と共に、少なくともその一端側を薄くしてあるため、こ
の高温度領域の肉厚部分の蓄熱作用と良好な熱伝導作用
により、炉心管内の均一な加熱が確保できると共に、薄
くした炉心管の一端により、熱の伝導散逸を効果的に防
止した炉心管自体の支持と炉心管の上下方向(軸方向)
における理想的な温度分布を得ることができる。
As is apparent from the above description, according to the heating furnace of the present invention, a heating furnace having a multi-cylinder structure in which cylindrical heating elements are concentrically arranged on the outer periphery of the core tube,
Since the wall thickness of the core tube is increased in the high temperature region of the core tube and at least one end side thereof is thinned, the core has a heat storage action and a good heat conduction action in the wall portion of the high temperature region. The uniform heating inside the tube can be ensured, and one end of the thinned core tube effectively prevents the dissipation of heat conduction and supports the core tube itself and the vertical direction (axial direction) of the core tube.
It is possible to obtain an ideal temperature distribution at.

【0020】このような加熱炉の提供によって、光ファ
イバ製造時などにおける透明化や延伸、線引きにおい
て、高精度での加熱処理が可能となり、所期の品質特性
をもった最終製品を得ることができる。
By providing such a heating furnace, it becomes possible to perform heat treatment with high accuracy in transparency, drawing, and drawing in the production of optical fibers, etc., and it is possible to obtain a final product having desired quality characteristics. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る加熱炉の一実施例を示した概略縦
断面図である。
FIG. 1 is a schematic vertical sectional view showing an embodiment of a heating furnace according to the present invention.

【図2】本発明に係る加熱炉の炉心管における、高温度
領域部分の肉厚の厚さと炉心管内の周回方向における温
度差との関係を示したグラフである。
FIG. 2 is a graph showing the relationship between the wall thickness of the high temperature region and the temperature difference in the circulating direction in the furnace core tube of the heating furnace according to the present invention.

【図3】本発明に係る加熱炉の別の実施例になる炉心管
を示した縦断面図である。
FIG. 3 is a vertical cross-sectional view showing a core tube which is another embodiment of the heating furnace according to the present invention.

【図4】従来の加熱炉を示した概略縦断面図である。FIG. 4 is a schematic vertical sectional view showing a conventional heating furnace.

【図5】図4のV−V線になる横断面図である。5 is a cross-sectional view taken along the line VV of FIG.

【図6】従来の加熱炉における炉心管内の実測温度分布
ラインを示した説明図である。
FIG. 6 is an explanatory diagram showing measured temperature distribution lines in a core tube of a conventional heating furnace.

【符号の説明】[Explanation of symbols]

11,11′ 炉心管 11a,11′a 端面 11b,11′b 端面 11c,11′c 肉厚を厚くした部位(高温度
領域) 11d,11′d 肉薄部分 11e,11′e 肉薄部分 12 支持部材 13 支持部材 14 発熱体 15 電極 16 電極
11, 11 'Reactor tube 11a, 11'a End surface 11b, 11'b End surface 11c, 11'c Thickened portion (high temperature region) 11d, 11'd Thin portion 11e, 11'e Thin portion 12 Support Member 13 Supporting member 14 Heating element 15 Electrode 16 Electrode

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−148725(JP,A) 実開 昭61−185999(JP,U) (58)調査した分野(Int.Cl.7,DB名) F27D 11/02 C03B 19/00 C03B 37/027 G02B 6/00 356 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-1-148725 (JP, A) Actual development 61-185999 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) F27D 11/02 C03B 19/00 C03B 37/027 G02B 6/00 356

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炉心管の外周に同心状に円筒型の発熱体
を配置した多重円筒構造をなす加熱炉であって、前記炉
心管の肉厚を当該炉心管の高温度領域で厚くすると共
に、少なくともその一端側を薄くしたことを特徴とする
加熱炉。
1. A heating furnace having a multi-cylinder structure in which cylindrical heating elements are concentrically arranged on the outer periphery of a core tube, wherein the wall thickness of the core tube is increased in a high temperature region of the core tube. , A heating furnace characterized by thinning at least one end side thereof.
【請求項2】 前記炉心管の肉厚を厚くした高温度領域
の厚さを当該炉心管外径の10%以上としたことを特徴
とする請求項1記載の加熱炉。
2. The heating furnace according to claim 1, wherein the thickness of the high temperature region in which the thickness of the core tube is increased is 10% or more of the outer diameter of the core tube.
JP4589693A 1993-02-10 1993-02-10 heating furnace Expired - Fee Related JP3378287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4589693A JP3378287B2 (en) 1993-02-10 1993-02-10 heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4589693A JP3378287B2 (en) 1993-02-10 1993-02-10 heating furnace

Publications (2)

Publication Number Publication Date
JPH06241669A JPH06241669A (en) 1994-09-02
JP3378287B2 true JP3378287B2 (en) 2003-02-17

Family

ID=12732012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4589693A Expired - Fee Related JP3378287B2 (en) 1993-02-10 1993-02-10 heating furnace

Country Status (1)

Country Link
JP (1) JP3378287B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1084085A1 (en) * 1998-06-13 2001-03-21 Alcatel Method and device for drawing an optical fibre from a preform
JP4609839B2 (en) * 2004-08-23 2011-01-12 古河電気工業株式会社 Optical fiber preform manufacturing method
JP6573560B2 (en) * 2016-03-03 2019-09-11 信越化学工業株式会社 Heat treatment equipment

Also Published As

Publication number Publication date
JPH06241669A (en) 1994-09-02

Similar Documents

Publication Publication Date Title
JP2556050B2 (en) Glass capillary tube and method of manufacturing the same
JP4064976B2 (en) Optical lens molding equipment
JP3378287B2 (en) heating furnace
JPS60103046A (en) Manufacture of rod in tube optical fiber
KR100563501B1 (en) Optical fiber preform-heating furnace
JPS6212626A (en) Production of optical fiber of constant polarized electromagnetic radiation
JPS6365615B2 (en)
JPH0560936A (en) Optical coupling circuit and production of the same
JP3199467B2 (en) Glass surface smoothing method
JPS6130306Y2 (en)
JPH07109143A (en) Furnace for spinning optical fiber
JPH02311801A (en) Distributed index type circular columnar lens of quartz glass system and production thereof
JPS63303827A (en) Heating furnace
JP2000128558A (en) Production of quartz glass preform for optical fiber
JP2706353B2 (en) Gas laser oscillation device
JPH0210093B2 (en)
JPS58135147A (en) Preparation of base material for optical fiber
JPS5836940A (en) Manufacture of preform rod for optical fiber
JP3309009B2 (en) Manufacturing method of optical fixed attenuator
JPH065381Y2 (en) heating furnace
JP3788503B2 (en) Manufacturing method and manufacturing apparatus for glass preform for optical fiber
JPH0426524A (en) Method for drawing optical fiber
SU716991A1 (en) Shaft of glass molding machine
JPH0143382Y2 (en)
JP2003226536A (en) Method for manufacturing optical fiber preform and device for manufacturing optical fiber used therefor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121206

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees