JPH0529140A - Ferromagnetic thin film and method of manufacturing same - Google Patents

Ferromagnetic thin film and method of manufacturing same

Info

Publication number
JPH0529140A
JPH0529140A JP18084291A JP18084291A JPH0529140A JP H0529140 A JPH0529140 A JP H0529140A JP 18084291 A JP18084291 A JP 18084291A JP 18084291 A JP18084291 A JP 18084291A JP H0529140 A JPH0529140 A JP H0529140A
Authority
JP
Japan
Prior art keywords
thin film
ferromagnetic thin
film
coercive force
main component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18084291A
Other languages
Japanese (ja)
Other versions
JP3279591B2 (en
Inventor
Toshiyuki Katsuki
俊幸 香月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18084291A priority Critical patent/JP3279591B2/en
Publication of JPH0529140A publication Critical patent/JPH0529140A/en
Application granted granted Critical
Publication of JP3279591B2 publication Critical patent/JP3279591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/131Amorphous metallic alloys, e.g. glassy metals containing iron or nickel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To provide a ferromagnetic thin film showing a high saturation flux density and an initial magnetic permeability and excellent corrosion-proof and heat resistance characteristics. CONSTITUTION:A main component metal element consisting of Fe+Ni or Fe+ Ni+co, at one or more kinds of elements of B, C, A, Si and at least one or more kinds of transition metal elements except for Au, Ag, Ru, Pd, Os, Ir and Pt are comprised.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気テープ、磁気ディス
ク等の高密度記録用に使用される磁気ヘッド等に好適な
強磁性薄膜及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferromagnetic thin film suitable for a magnetic head used for high density recording of magnetic tapes, magnetic disks and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、磁気テープ及び磁気ディスク等の
高密度記録化の向上に伴い、記録媒体の保磁力(Hc)
も上昇の一途をたどり金属薄膜媒体では保磁力(Hc)
1000Oe以上のものが実用化されるようになった。
一方、このような高保磁力を有する磁気記録媒体の特性
を十分に活かして良好な記録特性を得るためには、磁気
ヘッドとして高飽和磁束密度を有するとともに同一の磁
気ヘッドで再生を行う場合においても高透磁率、低保磁
力を合わせて有することが要求され、更に、耐蝕性、耐
熱性等も重要な要素となる。また、磁気記録媒体の長手
方向ではなく、厚さ方向に磁化して記録する垂直磁気記
録方式も実用化されようとしているが、この場合、磁気
ヘッドの主磁極の先端部の厚さを0.5μm以下にしな
ければならないので、比較的保磁力の低い磁気記録媒体
に記録するためにも高飽和磁束密度を持つ磁気ヘッドが
必要とされている。このような要請に応えるため、最
近、1パーマロイ(Ni−Fe合金)やセンダスト(F
eAlSi合金)や、非晶質、FeRuGaSi系合金
等が提案されている(特開昭64−8604号公報)。
また、高飽和磁束密度の高い材料としてFe−Si系合
金(特開昭59−78503号公報)やFe−C系合金
(応用磁気学会1990、vol.2, No.14)、Fe−
Pt−C系合金(特開平1−144603号公報)が開
示されている。
2. Description of the Related Art In recent years, the coercive force (Hc) of recording media has increased with the improvement of high density recording of magnetic tapes and magnetic disks.
Also continues to rise, and coercive force (Hc) in metal thin film media
Those of 1000 Oe or more have come into practical use.
On the other hand, in order to obtain good recording characteristics by fully utilizing the characteristics of the magnetic recording medium having such a high coercive force, even when reproducing with the same magnetic head while having a high saturation magnetic flux density as a magnetic head. It is required to have high magnetic permeability and low coercive force together, and corrosion resistance and heat resistance are also important factors. Further, a perpendicular magnetic recording method in which recording is performed by magnetizing in the thickness direction of the magnetic recording medium rather than in the longitudinal direction is about to be put to practical use. In this case, the thickness of the tip of the main magnetic pole of the magnetic head is set to 0. Since it must be 5 μm or less, a magnetic head having a high saturation magnetic flux density is required for recording on a magnetic recording medium having a relatively low coercive force. In order to meet such demands, recently, 1 permalloy (Ni-Fe alloy) and sendust (F
(eAlSi alloy), amorphous, FeRuGaSi-based alloy, and the like have been proposed (JP-A-64-8604).
Further, as a material having a high saturation magnetic flux density, an Fe-Si alloy (Japanese Patent Laid-Open No. 59-78503), an Fe-C alloy (Applied Magnetics Society 1990, vol. 2, No. 14), Fe-
A Pt-C based alloy (JP-A-1-144603) is disclosed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、パーマロイやセンダスト、非晶質、FeR
uGaSi系合金では、飽和磁束密度Msが低いという
問題があり、又、Fe−Si合金やFe−C系合金は耐
蝕性に難点が認められ、更にFe−Pt−C系合金は耐
熱性が低いという問題点を有していた。
However, in the above conventional structure, permalloy, sendust, amorphous, FeR
The uGaSi-based alloy has a problem that the saturation magnetic flux density Ms is low, and the Fe-Si alloy and the Fe-C-based alloy have a difficulty in corrosion resistance, and the Fe-Pt-C-based alloy has low heat resistance. Had the problem.

【0004】本発明は上記従来の問題点を解決するもの
で、高い飽和磁束密度・初期透磁率等を有し、耐蝕性と
耐熱性に優れた強磁性薄膜及びその強磁性薄膜を高品質
で、かつ低原価で量産できる製造方法を提供することを
目的とする。
The present invention solves the above-mentioned problems of the prior art by providing a ferromagnetic thin film having a high saturation magnetic flux density, an initial magnetic permeability, etc., excellent in corrosion resistance and heat resistance, and a ferromagnetic thin film of high quality. It is also an object of the present invention to provide a manufacturing method that can be mass-produced at low cost.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に本発明の強磁性薄膜は、Fe+Ni又はFe+Ni+
Coからなる主成分金属元素と、B,C,Al,Siの
少なくとも1種以上の元素と、Au,Ag,Ru,P
d,Os,Ir,Ptの貴金属を除く少なくとも1種以
上の遷移金属元素とを含有した構成を有している。本発
明の強磁性薄膜の製造方法は、Fe+Ni又はFe+N
i+Coからなる主成分金属元素と、B,C,Al,S
iの少なくとも1種以上の元素と、Au,Ag,Ru,
Pd,Os,Ir,Ptの貴金属を除く少なくとも1種
以上の遷移金属元素とを含有する強磁性薄膜の製造に際
し、ArとN2の混合ガス雰囲気下で成膜した後、20
0℃〜800℃の温度範囲でアニーリング処理等の熱処
理を行うようにした構成を有している。
In order to achieve this object, the ferromagnetic thin film of the present invention comprises Fe + Ni or Fe + Ni +.
Main component metal element consisting of Co, at least one element of B, C, Al, Si, Au, Ag, Ru, P
It has a structure containing at least one or more transition metal elements excluding noble metals such as d, Os, Ir and Pt. The method for manufacturing a ferromagnetic thin film according to the present invention comprises Fe + Ni or Fe + N.
Main component metal element consisting of i + Co and B, C, Al, S
at least one element of i, and Au, Ag, Ru,
In producing a ferromagnetic thin film containing at least one transition metal element other than Pd, Os, Ir and Pt noble metals, after forming a film in a mixed gas atmosphere of Ar and N 2 ,
It has a configuration in which a heat treatment such as an annealing treatment is performed in a temperature range of 0 ° C to 800 ° C.

【0006】ここで、強磁性薄膜の組成は、B,C,A
l,Siの少なくとも1種以上の元素の含有量が1〜2
0at%であり、かつ、B,C,Al,Siの1種以上の
元素とAu,Ag,Ru,Pd,Os,Ir,Ptの貴
金属を除く1種以上の遷移金属元素との含有量が2〜3
8at%の範囲であることが好ましい。また、合金中のF
eの含有量が96〜60at%であり、Niの含有量が
0.5〜10at%、又はNi+Coの含有量が2〜17
at%の範囲であるのが好ましい。次に、製造方法として
は、Fe+Ni又はFe+Ni+Coからなる主成分金
属元素にB,C,Al,Siの1種以上の元素と貴金属
を除く1種以上の遷移金属元素を組み合わせ、真空蒸着
法、高周波スパッタリング法、マグネトロンスパッタリ
ング法、イオンビームスパッタリング法、エレクトロン
サイクロンリソナンス法(ECR法)等の方法が用いら
れる。
Here, the composition of the ferromagnetic thin film is B, C, A
The content of at least one element of l and Si is 1 to 2
0 at% and the content of one or more elements of B, C, Al and Si and one or more transition metal elements excluding the noble metals of Au, Ag, Ru, Pd, Os, Ir and Pt. 2-3
It is preferably in the range of 8 at%. In addition, F in alloy
The content of e is 96 to 60 at%, the content of Ni is 0.5 to 10 at%, or the content of Ni + Co is 2 to 17
It is preferably in the range of at%. Next, as a manufacturing method, a vacuum deposition method, a high-frequency wave method, in which one or more elements of B, C, Al, and Si and one or more transition metal elements other than a noble metal are combined with a main component metal element composed of Fe + Ni or Fe + Ni + Co A method such as a sputtering method, a magnetron sputtering method, an ion beam sputtering method, an electron cyclone resonance method (ECR method) or the like is used.

【0007】[0007]

【作用】この構成によって、飽和磁束密度(Ms)が
1.5T(テスラ)以上、初透磁率1000以上、保磁
力1.0Oe以下の強磁性薄膜が得られ、更に種々の熱
処理をともなう製造条件下においても耐蝕性、耐熱性に
優れた強磁性薄膜を低原価で量産性よく製造することが
できる。
With this structure, a ferromagnetic thin film having a saturation magnetic flux density (Ms) of 1.5 T (tesla) or more, an initial magnetic permeability of 1000 or more, and a coercive force of 1.0 Oe or less can be obtained, and further, manufacturing conditions accompanied by various heat treatments. Even under the conditions, it is possible to manufacture a ferromagnetic thin film having excellent corrosion resistance and heat resistance at low cost and with good mass productivity.

【0008】[0008]

【実施例】(実施例1)以下本発明の一実施例につい
て、図面を参照しながら説明する。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings.

【0009】図1は強磁性薄膜の製造方法に好適な高周
波スパッタリング装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of a high frequency sputtering apparatus suitable for a method of manufacturing a ferromagnetic thin film.

【0010】1は高周波電源、2はArガス供給管、3
はN2ガス供給管、4は流量計、5は排気口、6は冷却
水、7はチャンバー、8は基板、9はシャッター、10
はFe円板、11は磁石、12は電極間距離、13は所
定の合金組成を得るための添加物元素ペレットである。
1 is a high frequency power source, 2 is an Ar gas supply pipe, 3
Is an N 2 gas supply pipe, 4 is a flow meter, 5 is an exhaust port, 6 is cooling water, 7 is a chamber, 8 is a substrate, 9 is a shutter, 10
Is an Fe disk, 11 is a magnet, 12 is a distance between electrodes, and 13 is an additive element pellet for obtaining a predetermined alloy composition.

【0011】成膜条件は次の条件で行った。高周波電力
密度は0.36w/cm2 、Ar流量は1.5SCCM、
2流量は0.08SCCM、基板温度は20℃以下と
し、電極間距離は86mmとした。基板はコーニング社製
のFC105基板を用い、膜厚は2.0μmと一定にし
た。
The film forming conditions were as follows. High frequency power density is 0.36w / cm 2 , Ar flow rate is 1.5SCCM,
The N 2 flow rate was 0.08 SCCM, the substrate temperature was 20 ° C. or lower, and the distance between the electrodes was 86 mm. An FC105 substrate manufactured by Corning was used as the substrate, and the film thickness was kept constant at 2.0 μm.

【0012】成膜後のアニーリング条件は、200℃〜
800℃で行った。初期透磁率は、1MHzの値とし、保
磁力は、B−Hループトレーサーを用いて測定した。ま
た、腐蝕率は耐蝕試験前の飽和磁束密度をMs、耐蝕試
験後の飽和磁束密度をM1とし式(Ms−M1)×10
0/Msを計算して求めた。耐蝕試験の条件は温度65
℃、耐蝕相対湿度95%の雰囲気中に240時間放置し
て行った。
The annealing conditions after the film formation are 200 ° C.
It was carried out at 800 ° C. The initial magnetic permeability was a value of 1 MHz, and the coercive force was measured using a BH loop tracer. Further, the corrosion rate is represented by the formula (Ms-M1) × 10, where Ms is the saturation magnetic flux density before the corrosion resistance test and M1 is the saturation magnetic flux density after the corrosion resistance test.
The value was calculated by calculating 0 / Ms. The condition for the corrosion resistance test is a temperature of 65.
It was left for 240 hours in an atmosphere of ℃ and corrosion resistance 95% relative humidity.

【0013】上記製造条件下で、Fe+Niを主成分と
し、Hf,Ta,Cの各ペレット13を用いて複合ター
ゲットを作成し、Ar+N2混合ガスをチャンバー7内
に供給し、種々の組成を有する強磁性薄膜を成膜した。
次に、得られた強磁性薄膜の飽和磁束密度(Ms)、保
磁力(Hc)、腐蝕率(Ms−M1)×100/Msを
測定した。その結果を(表1)に示す。
Under the above-mentioned manufacturing conditions, a composite target is prepared using Fe + Ni as a main component and Hf, Ta, and C pellets 13, and an Ar + N 2 mixed gas is supplied into the chamber 7 to have various compositions. A ferromagnetic thin film was formed.
Next, the saturation magnetic flux density (Ms), coercive force (Hc), and corrosion rate (Ms-M1) * 100 / Ms of the obtained ferromagnetic thin film were measured. The results are shown in (Table 1).

【0014】[0014]

【表1】 [Table 1]

【0015】この(表1)から明らかなように、添加物
の量が略39at%を越えると、飽和磁束密度(Ms)が
0.6Tとなり、従来の実用材料であるパーマロイ(N
i−19wt%Fe)合金膜の0.8Tを下まわることか
ら、添加物の添加量は39at%以下にする必要があるこ
とがわかった。
As is clear from this (Table 1), when the amount of the additive exceeds approximately 39 at%, the saturation magnetic flux density (Ms) becomes 0.6 T, which is Permalloy (N) which is a conventional practical material.
Since it is less than 0.8T of the i-19 wt% Fe) alloy film, it was found that the addition amount of the additive needs to be 39 at% or less.

【0016】次に腐蝕率について検討をする。パーマロ
イ(Ni−19wt%Fe)合金の諸特性は、(表2)に
示すとおりである。
Next, the corrosion rate will be examined. Properties of the permalloy (Ni-19 wt% Fe) alloy are as shown in (Table 2).

【0017】[0017]

【表2】 [Table 2]

【0018】腐蝕率の限界は、実用材料であるセンダス
ト(Fe73.2−Al10.8−Si16at%)合金
を基準として検討した。センダスト合金の腐蝕率は、
(表2)に示すように10%であることから、本発明に
よる腐蝕率は、(表1)からもわかるように、添加物の
添加量が略2at%のとき、腐蝕率が0.625%である
ので、本発明によるFe+Niを主成分とした強磁性薄
膜の添加物の添加量は、2から39at%にする必要があ
る。さらに初期透磁率μiについて検討する。(表2)
により従来材料であるFe94.5−Si5.5at%、
Fe99−Clat%が800であるのを考慮すると、1
000以上あれば磁気ヘッド用強磁性薄膜として問題な
く使用できることがわかる。よって、図2から明らかな
ように、C量を2から20at%の範囲にする必要があ
る。
The limit of the corrosion rate was examined on the basis of Sendust (Fe73.2-Al10.8-Si16at%) alloy which is a practical material. The corrosion rate of Sendust alloy is
Since it is 10% as shown in (Table 2), as can be seen from (Table 1), the corrosion rate according to the present invention is 0.625 when the additive amount is approximately 2 at%. %, The additive amount of the ferromagnetic thin film containing Fe + Ni as the main component according to the present invention must be 2 to 39 at%. Further, the initial magnetic permeability μi will be examined. (Table 2)
Fe94.5-Si5.5at%, which is the conventional material,
Considering that Fe99-Clat% is 800, 1
It can be seen that if it is 000 or more, it can be used as a ferromagnetic thin film for a magnetic head without problems. Therefore, as is clear from FIG. 2, it is necessary to set the amount of C in the range of 2 to 20 at%.

【0019】(実施例2)Fe+Ni+Coを主成分と
し、実施例1と同一条件下で、実施例1と同様にHf,
Ta,Cの各ペレットを用い、種々の組成を有する強磁
性薄膜を成膜した。
(Embodiment 2) Fe + Ni + Co is the main component, and under the same conditions as in Embodiment 1, Hf,
Using each of Ta and C pellets, ferromagnetic thin films having various compositions were formed.

【0020】次に、得られた強磁性薄膜の飽和磁束密度
(Ms)、保磁力(Hc)、腐蝕率(Ms−M1)×1
00/Msを測定した。その結果を(表3)に示す。
Next, the saturation magnetic flux density (Ms), coercive force (Hc), and corrosion rate (Ms-M1) × 1 of the obtained ferromagnetic thin film.
00 / Ms was measured. The results are shown in (Table 3).

【0021】[0021]

【表3】 [Table 3]

【0022】この(表3)から明らかなように、本実施
例による添加物の量が略38at%を越えると、飽和磁束
密度(Ms)が0.6Tとなり、従来の実用材料である
パーマロイ(Ni−19wt%Fe)合金膜の0.8Tを
下まわることから、添加物の添加量は37at%以下にす
る必要があることがわかった。
As is clear from this (Table 3), when the amount of the additive according to this embodiment exceeds approximately 38 at%, the saturation magnetic flux density (Ms) becomes 0.6 T, which is a permalloy (a conventional practical material). Since it was less than 0.8 T of the Ni-19 wt% Fe) alloy film, it was found that the addition amount of the additive needs to be 37 at% or less.

【0023】次に腐蝕率について検討する。パーマロイ
(Ni−19wt%Fe)合金の諸特性は、先の(表2)
に示すとおりである。センダスト合金の腐蝕率は、(表
2)に示すように10%なので、本発明による腐蝕率
は、(表3)からもわかるように、添加物の添加量が2
at%のとき、腐蝕率が0.625%であるので、本発明
によるFeCoNiを主成分とした強磁性薄膜の添加物
の添加量は、2から38at%にする必要がある。さらに
初期透磁率μiについて検討する。先の(表2)により
従来材料であるFe94.5−Si5.5at%、Fe9
9−C1at%が800であるのを考慮すると、1000
以上あれば磁気ヘッド用強磁性薄膜として問題なく使用
できることから、図3から明らかなように、C量を2か
ら20at%の範囲にする必要がある。
Next, the corrosion rate will be examined. The characteristics of the permalloy (Ni-19 wt% Fe) alloy are shown in Table 2 above.
As shown in. Since the corrosion rate of the sendust alloy is 10% as shown in (Table 2), the corrosion rate according to the present invention is 2% as shown in (Table 3).
Since the corrosion rate is 0.625% at at%, the additive amount of the ferromagnetic thin film containing FeCoNi as the main component according to the present invention needs to be 2 to 38 at%. Further, the initial magnetic permeability μi will be examined. According to the above (Table 2), Fe94.5-Si5.5at% and Fe9 which are conventional materials
Considering that 9-C1at% is 800, 1000
If it is above, it can be used as a ferromagnetic thin film for a magnetic head without any problem. Therefore, as is clear from FIG.

【0024】(実施例3)スパッタリングガス(成膜ガ
ス)として、Arガスのみを用いた場合とAr+N2混
合ガスを用いた場合で、種々の組成を有する強磁性薄膜
を作成した。まずFe+Niを主成分とし、Zr,T
a,Rh,Cを種々の割合で含む複合ターゲットを作成
し、実施例1と同一の製造条件下で成膜し、飽和磁束、
保磁力、初期透磁率、腐蝕率、アニール温度を測定し
た。その結果を(表4)に示す。
(Example 3) Ferromagnetic thin films having various compositions were prepared using Ar gas alone and Ar + N2 mixed gas as the sputtering gas (film forming gas). First, Fe + Ni as the main component, Zr, T
A composite target containing a, Rh, and C in various ratios was prepared, and a film was formed under the same manufacturing conditions as in Example 1 to obtain a saturated magnetic flux,
The coercive force, initial magnetic permeability, corrosion rate, and annealing temperature were measured. The results are shown in (Table 4).

【0025】[0025]

【表4】 [Table 4]

【0026】この(表4)から明らかなように、成膜ガ
スにAr+N2の混合ガスを用いた場合、耐蝕性は飛躍
的に向上する。さらに、添加物の種類によって、耐蝕性
の順位は、FeNiTaRhC−N膜が最も良く、次に
FeNiZrTaC−N膜であり、FeNiZrC−N
膜は、Ar+N2の混合ガスを用いても腐蝕率が0%の
ものはなかった。しかし、(表2)による実用材料のセ
ンダスト合金を基準にするといずれも実用上問題ない範
囲であるといえる。
As is clear from this (Table 4), when a mixed gas of Ar + N 2 is used as the film forming gas, the corrosion resistance is dramatically improved. Furthermore, depending on the type of additive, the order of corrosion resistance is the highest in the FeNiTaRhC-N film, followed by the FeNiZrTaC-N film, and the FeNiZrC-N film.
No film had a corrosion rate of 0% even when a mixed gas of Ar + N 2 was used. However, it can be said that all of them are within a practically acceptable range based on the Sendust alloy as a practical material according to (Table 2).

【0027】(実施例4)Fe+Ni+Coを主成分と
したものを用いた他は、実施例3と同様にして成膜し、
飽和磁束、保磁力、初期透磁率、腐蝕率、アニール温度
を測定した。
(Example 4) A film was formed in the same manner as in Example 3 except that one containing Fe + Ni + Co as a main component was used.
The saturation magnetic flux, coercive force, initial magnetic permeability, corrosion rate, and annealing temperature were measured.

【0028】その結果を(表5)に示した。The results are shown in (Table 5).

【0029】[0029]

【表5】 [Table 5]

【0030】この(表5)から明らかなように、成膜ガ
スにAr+N2の混合ガスを用いた場合、耐蝕性は飛躍
的に向上する。さらに、添加物の種類によって、耐蝕性
の順位は、FeCoNiTaRhC−N膜が最も良く、
次にFeCoNiTaC−N膜であり、FeTaC−N
膜は、Ar+N2の混合ガスを用いても腐蝕率が0%の
ものはなかった。しかし、(表3)による実用材料のセ
ンダスト合金を基準にするといずれも実用上問題ない範
囲であるといえる。
As is clear from this (Table 5), when a mixed gas of Ar + N 2 is used as the film forming gas, the corrosion resistance is dramatically improved. Furthermore, depending on the type of additive, the order of corrosion resistance is that the FeCoNiTaRhC-N film is the best,
Next, the FeCoNiTaC-N film,
No film had a corrosion rate of 0% even when a mixed gas of Ar + N 2 was used. However, it can be said that there is practically no problem in all cases based on the Sendust alloy as a practical material according to (Table 3).

【0031】(実施例5)各種の強磁性薄膜について、
成膜後の耐熱性を比較した。
(Example 5) Regarding various ferromagnetic thin films,
The heat resistance after film formation was compared.

【0032】図4にFe+Niを主成分とした強磁性薄
膜、図5にFe+Ni+Coを主成分とした強磁性薄膜
の保磁力のアニール温度依存性を示す。
FIG. 4 shows the annealing temperature dependency of the coercive force of the ferromagnetic thin film containing Fe + Ni as the main component and FIG. 5 showing the coercive force of the ferromagnetic thin film containing Fe + Ni + Co as the main component.

【0033】この図4から明らかなように、本実施例に
よる強磁性薄膜FeNiZrTaC−Nは、200℃か
ら800℃において保磁力は低いことがわかる。しか
し、FeNiZrTaC膜は、800℃において保磁力
が1.5Oeと高く問題があることがわかった。
As is clear from FIG. 4, the ferromagnetic thin film FeNiZrTaC-N according to the present example has a low coercive force at 200 ° C. to 800 ° C. However, it was found that the FeNiZrTaC film has a high coercive force of 1.5 Oe at 800 ° C. and has a problem.

【0034】また、図5から明らかなように、本実施例
による強磁性薄膜FeCoNiTaC−Nは、200℃
から800℃において保磁力は低いことがわかる。しか
し、FeCoNiTaC膜は、800℃において保磁力
が1.5Oeと高く問題がある。また。従来材料である
FePtC,FeAlSi,FeNiは、400℃にお
いては、低保磁力を示すが、それ以外の温度では高い保
磁力を示し、FeSiは、最小値1.4Oeであり問題
がある。従って、磁気ヘッド用強磁性薄膜としては、耐
熱温度の高いFeNiZrTaC−N膜等やFeCoN
iTaC−N膜等が好ましいといえる。
Further, as is apparent from FIG. 5, the ferromagnetic thin film FeCoNiTaC-N according to the present embodiment has a temperature of 200.degree.
It can be seen that the coercive force is low at 800 ° C. However, the FeCoNiTaC film has a high coercive force of 1.5 Oe at 800 ° C., which is problematic. Also. Conventional materials FePtC, FeAlSi, and FeNi exhibit low coercive force at 400 ° C., but exhibit high coercive force at other temperatures, and FeSi has a minimum value of 1.4 Oe, which is problematic. Therefore, as a ferromagnetic thin film for a magnetic head, a FeNiZrTaC-N film or the like having a high heat resistance temperature or FeCoN is used.
It can be said that an iTaC-N film or the like is preferable.

【0035】[0035]

【発明の効果】以上のように本発明の強磁性薄膜は、F
e+Ni又はFe+Ni+Coを主成分とし、B,C,
Al,Si等の元素とAu,Ag,Ru,Pd,Os,
Ir,Ptの貴金属類を除く遷移金属を含有することに
より、高い飽和磁束密度、高い初期透磁率、低い保磁
力、さらに耐蝕性と耐熱性に優れた強磁性薄膜が実現で
き、更に、Fe+Ni又はFe+Ni+Coを主成分と
し、B,C,Al,Si等の元素とAu,Ag,Ru,
Pd,Os,Ir,Ptの貴金属類を除く遷移金属をA
rとN2の混合ガス下で成膜後、所定の温度で熱処理す
ることにより上記高性能を有する強磁性薄膜を高収率で
得る製造方法を実現できるものである。この強磁性薄膜
を使用することにより高い保磁力をもつ磁気記録媒体へ
の記録再生を良好に行える高密度記録に適した磁気ヘッ
ドを得ることができる。
As described above, the ferromagnetic thin film of the present invention is F
e + Ni or Fe + Ni + Co as the main component, B, C,
Elements such as Al and Si and Au, Ag, Ru, Pd, Os,
By containing a transition metal except Ir and Pt noble metals, a ferromagnetic thin film having high saturation magnetic flux density, high initial magnetic permeability, low coercive force, and excellent corrosion resistance and heat resistance can be realized. Fe + Ni + Co as a main component, and elements such as B, C, Al, and Si, and Au, Ag, Ru,
A transition metal except Pd, Os, Ir, Pt noble metals
After the film formation in a mixed gas of r and N2, the film is heat-treated at a predetermined temperature to realize a manufacturing method for obtaining the above-mentioned ferromagnetic thin film having high performance in a high yield. By using this ferromagnetic thin film, it is possible to obtain a magnetic head suitable for high-density recording, which can favorably perform recording and reproduction on a magnetic recording medium having a high coercive force.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における製造方法に好適な高
周波スパッタリング装置の概略構成図
FIG. 1 is a schematic configuration diagram of a high frequency sputtering apparatus suitable for a manufacturing method according to an embodiment of the present invention.

【図2】本発明の(Fe+NiTaZrC)N膜の初期
透磁率を示す状態図
FIG. 2 is a state diagram showing the initial magnetic permeability of the (Fe + NiTaZrC) N film of the present invention.

【図3】本発明の(Fe+Co+NiTaC)N膜の初
期透磁率を示す状態図
FIG. 3 is a state diagram showing the initial magnetic permeability of the (Fe + Co + NiTaC) N film of the present invention.

【図4】(Fe+NiTaZrC)N強磁性薄膜の保磁
力のアニール温度依存性を示す図
FIG. 4 is a diagram showing the annealing temperature dependence of the coercive force of a (Fe + NiTaZrC) N ferromagnetic thin film.

【図5】(Fe+Ni+CoTaC)N強磁性薄膜の保
磁力のアニール温度依存性を示す図
FIG. 5 is a diagram showing annealing temperature dependence of coercive force of a (Fe + Ni + CoTaC) N ferromagnetic thin film.

【符号の説明】[Explanation of symbols]

1 高周波電源 2,3 ガス供給管 4 流量計 5 排気口 6 冷却水 7 チャンバー 8 基板 9 シャッター 10 鉄円板 11 マグネット 12 電極間距離 13 添加物元素ペレット 1 high frequency power supply 2,3 gas supply pipe 4 flow meter 5 exhaust port 6 cooling water 7 chambers 8 substrates 9 shutters 10 iron disc 11 magnets 12 Distance between electrodes 13 Additive element pellet

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】Fe+Ni又はFe+Ni+Coからなる
主成分金属元素と、B,C,Al,Siの少なくとも1
種以上の元素と、Au,Ag,Ru,Pd,Os,I
r,Ptの貴金属を除く少なくとも1種以上の遷移金属
元素とを含有することを特徴とする強磁性薄膜。
1. A main component metal element composed of Fe + Ni or Fe + Ni + Co and at least one of B, C, Al and Si.
More than one element, Au, Ag, Ru, Pd, Os, I
A ferromagnetic thin film containing at least one transition metal element other than r and Pt noble metals.
【請求項2】B,C,Al,Siの少なくとも1種以上
の元素の含有量が1〜20at%(アトミックパーセン
ト)であり、かつ、B,C,Al,Siの1種以上の元
素とAu,Ag,Ru,Pd,Os,Ir,Ptの貴金
属を除く1種以上の遷移金属元素との含有量が2〜38
at%の範囲であることを特徴とする請求項1に記載の強
磁性薄膜。
2. The content of at least one element of B, C, Al and Si is 1 to 20 at% (atomic percent), and at least one element of B, C, Al and Si. The content of Au, Ag, Ru, Pd, Os, Ir, and one or more kinds of transition metal elements other than noble metals such as Pt is 2 to 38.
The ferromagnetic thin film according to claim 1, wherein the ferromagnetic thin film is in the range of at%.
【請求項3】合金中のFeの含有量が、96〜60at%
であり、Niの含有量が、0.5〜10at%、又はNi
+Coの含有量が2〜17at%の範囲であることを特徴
とする請求項1又は2のいずれか記載の強磁性薄膜。
3. The Fe content in the alloy is 96 to 60 at%.
And the content of Ni is 0.5 to 10 at%, or Ni
The ferromagnetic thin film according to claim 1, wherein the content of + Co is in the range of 2 to 17 at%.
【請求項4】Fe+Ni又はFe+Ni+Coからなる
主成分金属元素と、B,C,Al,Siの少なくとも1
種以上の元素と、Au,Ag,Ru,Pd,Os,I
r,Ptの貴金属を除く少なくとも1種以上の遷移金属
元素と、を含有する強磁性薄膜の製造方法であって、A
rとN2の混合ガス雰囲気下で成膜した後、200℃〜
800℃の温度範囲で熱処理を行うことを特徴とする強
磁性薄膜の製造方法。
4. A main component metal element composed of Fe + Ni or Fe + Ni + Co and at least one of B, C, Al and Si.
More than one element, Au, Ag, Ru, Pd, Os, I
A method for producing a ferromagnetic thin film containing at least one transition metal element other than noble metals such as r and Pt, comprising:
After film formation in a mixed gas atmosphere of r and N 2 ,
A method of manufacturing a ferromagnetic thin film, which comprises performing heat treatment in a temperature range of 800 ° C.
JP18084291A 1991-07-22 1991-07-22 Ferromagnetic thin film and manufacturing method thereof Expired - Fee Related JP3279591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18084291A JP3279591B2 (en) 1991-07-22 1991-07-22 Ferromagnetic thin film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18084291A JP3279591B2 (en) 1991-07-22 1991-07-22 Ferromagnetic thin film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0529140A true JPH0529140A (en) 1993-02-05
JP3279591B2 JP3279591B2 (en) 2002-04-30

Family

ID=16090312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18084291A Expired - Fee Related JP3279591B2 (en) 1991-07-22 1991-07-22 Ferromagnetic thin film and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3279591B2 (en)

Also Published As

Publication number Publication date
JP3279591B2 (en) 2002-04-30

Similar Documents

Publication Publication Date Title
US5227940A (en) Composite magnetic head
JP2963003B2 (en) Soft magnetic alloy thin film and method of manufacturing the same
US5244627A (en) Ferromagnetic thin film and method for its manufacture
JPH07116563B2 (en) Fe-based soft magnetic alloy
JPS6129105A (en) Magnetic alloy thin film
JP3279591B2 (en) Ferromagnetic thin film and manufacturing method thereof
JPH0653039A (en) Corrosion-resistant magnetic film and magnetic head using the same
JPH0827908B2 (en) Magnetic head
JP3127075B2 (en) Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film
JP2979557B2 (en) Soft magnetic film
JP2698813B2 (en) Soft magnetic thin film
JP3386270B2 (en) Magnetic head and magnetic recording device
JP2842918B2 (en) Magnetic thin film, thin film magnetic head, and magnetic storage device
JPH03132004A (en) Fe-ta-c magnetic film and magnetic head
JP2657710B2 (en) Method for manufacturing soft magnetic thin film
JPH04252006A (en) Corrosion-resistant magnetically soft film and magnetic head using the same
JP2003017354A (en) Method of manufacturing soft magnetic film
JPH0529139A (en) Corrosion-proof magnetic film and magnetic head utilizing the same
JPH0513223A (en) Magnetic head
JPH0617244A (en) Target for corrosion resistant magnetic film and magnetic head using the same
JPH08107036A (en) Soft magnetic thin film magnetic recording equipment using that film
JPH05234751A (en) Soft magnetic alloy film and magnetic head having high saturation magnetic flux density for thin film magnetic head
JPH05290330A (en) Target for corrosion resistant magnetic film and magnetic head formed by using this target
JPH03292705A (en) Ferromagnetic film and magnet head using thereof
JPH05239601A (en) Soft magnetic alloy thin film and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees