JPH05290325A - Production of thin-film magnetic head - Google Patents

Production of thin-film magnetic head

Info

Publication number
JPH05290325A
JPH05290325A JP8358392A JP8358392A JPH05290325A JP H05290325 A JPH05290325 A JP H05290325A JP 8358392 A JP8358392 A JP 8358392A JP 8358392 A JP8358392 A JP 8358392A JP H05290325 A JPH05290325 A JP H05290325A
Authority
JP
Japan
Prior art keywords
layer
insulating layer
coil
magnetic layer
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8358392A
Other languages
Japanese (ja)
Inventor
Toshikuni Kai
敏訓 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8358392A priority Critical patent/JPH05290325A/en
Publication of JPH05290325A publication Critical patent/JPH05290325A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To relieve the level difference at the time of forming an upper coil layer and an upper magnetic layer. CONSTITUTION:A recessed part is provided on an insulating layer 20 formed on a ceramic substrate 19 and a lower magnetic layer 23 is formed thereon. A magnetic gap layer 24 is formed by sputtering and a lower insulating layer 25 is embedded into the recessed part. Further, a lower coil layer 26 is embedded thereon in the recessed part by electroplating of copper, etc., and a middle insulating layer 28 is formed by using the same material as the material of the lower insulating layer 25. A protective material 29 is patterned and formed in the track forming part 21 and back gap part 22 of the lower magnetic layer 23 and thereafter, an inorg. insulator 30 is stuck over the entire surface of the substrate. An upper coil layer 27 is formed in the same manner as with a lower coil layer 26 on the inorg. insulator 30 subjected to flattening. The protective material 29 is removed by chemical etching and an upper insulating layer 31 is formed of the material similar to the material of the lower insulating layer 25. The upper magnetic layer 32 is then formed by the same method as for the lower magnetic layer 23.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はコンピューター等の磁気
ディスク装置用の薄膜磁気ヘッドの製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a thin film magnetic head for a magnetic disk device such as a computer.

【0002】[0002]

【従来の技術】磁気ディスク装置の高性能化に伴い薄膜
磁気ヘッドにも種々の高性能化が要求されている。磁気
ディスク装置の面記録密度向上のためには、線記録密度
及びトラック密度を高くすることが必要であり、前者に
対しては高周波動作、後者は狭トラック化が要求され
る。
2. Description of the Related Art As the performance of magnetic disk devices has become higher, thin film magnetic heads have been required to have various performances. In order to improve the areal recording density of the magnetic disk device, it is necessary to increase the linear recording density and the track density. The former requires high frequency operation and the latter requires narrower tracks.

【0003】誘導型薄膜磁気ヘッドでは狭トラック化す
るとヘッド出力が減少するため、コイル巻数を増加する
必要がある。その際、単にコイル巻数を増加すると磁路
長が増大し、磁気抵抗の増加によりヘッド効率の低下
や、インダクタンスの増加による共振周波数の低下、及
び電気抵抗の増加によりノイズの増加を生じさせ、薄膜
磁気ヘッドの特徴を損なうばかりか磁気ヘッドとしての
機能を果たさないものとなってしまう。又、狭トラック
化するにはトラック寸法を小さくすると共に、目標寸法
に制御する精度も同時に向上しなければならない。以上
のように薄膜磁気ヘッドの高性能化には、コイルやトラ
ックをより高精度に形成するパターン形成技術と、ヘッ
ド構造が非常に重要な要素になってきている。
In an inductive thin-film magnetic head, the head output decreases as the track becomes narrower, so it is necessary to increase the number of coil turns. At that time, simply increasing the number of coil turns increases the magnetic path length, which causes a decrease in head efficiency due to an increase in magnetic resistance, a decrease in resonance frequency due to an increase in inductance, and an increase in noise due to an increase in electric resistance. Not only will the characteristics of the magnetic head be impaired, but it will not function as a magnetic head. Further, in order to narrow the track, it is necessary to reduce the track size and at the same time improve the accuracy of controlling to the target size. As described above, in order to improve the performance of the thin film magnetic head, the pattern forming technique for forming the coil and the track with higher accuracy and the head structure have become very important factors.

【0004】従来の薄膜磁気ヘッドを図2に示す。図に
おいて、1はセラミック基板上に素子を形成したスライ
ダーで、磁気ディスク装置に搭載するには2の浮上レー
ルに対して裏面側に平行にジンバルを接着して磁気ヘッ
ドアセンブリ状態とする。薄膜磁気ヘッド素子はスライ
ダー1の手前側に形成されており、3が上部絶縁層、4
が上部磁性層、5が端子を示す。図3は図2のA部の拡
大図を示すもので、図において6は上部磁性層4と下部
磁性層とを接着するバックギャップ部、TWはトラック
幅を示す。図4は図3のB−B断面図を示し、セラミッ
ク基板7にスパッタ等によりアルミナ等の絶縁物8で被
覆し、その上に下部磁性層9を電気メッキあるいはスパ
ッタ等により形成し、その一部に非磁性の磁気ギャップ
層10を積層し、更にノボラック系あるいはポリイミド
系等の樹脂からなる下部絶縁層11、電気メッキ等によ
り下部コイル層12を順次積層し、その上に下部絶縁層
11と同質の樹脂で中部絶縁層13、上部コイル層1
4、上部絶縁層3、上部磁性層4を順次積層し最終的に
アルミナ等の絶縁物15で保護する。
A conventional thin film magnetic head is shown in FIG. In the figure, reference numeral 1 denotes a slider in which elements are formed on a ceramic substrate, and a gimbal is adhered to the levitation rail 2 in parallel to the back surface side to be mounted on a magnetic disk device to form a magnetic head assembly state. The thin film magnetic head element is formed on the front side of the slider 1, and 3 is an upper insulating layer and 4 is an upper insulating layer.
Indicates an upper magnetic layer, and 5 indicates a terminal. FIG. 3 is an enlarged view of a portion A in FIG. 2, in which 6 is a back gap portion for adhering the upper magnetic layer 4 and the lower magnetic layer, and TW is a track width. 4 is a sectional view taken along line BB in FIG. 3, in which the ceramic substrate 7 is covered with an insulator 8 such as alumina by sputtering or the like, and the lower magnetic layer 9 is formed thereon by electroplating or sputtering. A non-magnetic magnetic gap layer 10 is laminated on the lower part, a lower insulating layer 11 made of a resin such as a novolac resin or a polyimide resin, and a lower coil layer 12 are sequentially laminated by electroplating or the like, and a lower insulating layer 11 is formed thereon. Middle insulating layer 13 and upper coil layer 1 made of the same resin
4, the upper insulating layer 3 and the upper magnetic layer 4 are sequentially laminated and finally protected by an insulator 15 such as alumina.

【0005】以下従来の薄膜磁気ヘッドの問題点を図5
に示すコイルについて説明する。図において、セラミッ
ク基板7に絶縁層8を付着した後下部磁性層9及び磁気
ギャップ層10を形成し、下部磁性層9によって発生し
た段差を解消し下部コイル層12との絶縁のため、ノボ
ラック系あるいはポリイミド系等の樹脂からなる下部絶
縁層11を形成する。その平坦面上に電気メッキにより
下部コイル層12を形成し、更に、下部コイル層12と
上部コイル層14との絶縁を得ると共に、平坦面にする
ため下部絶縁層11と同じ組成の樹脂で中部絶縁層13
を設ける。次に上部コイル層14の形成は、電気メッキ
の電極とするための金属膜16を基板全面にスパッタあ
るいは蒸着で付着させ、その上にコイルパターン形成用
のフォトレジスト17を全面に塗布、乾燥し、フォトマ
スク18を介して光学的に透過可能な領域にのみ紫外線
を照射し、現像により溶解、除去してコイルパターンを
形成する。コイルパターンのフォトレジスト17を除去
し金属膜16が露出している部分に銅の電気メッキによ
り上部コイル層14を付着させ、不要になったフォトレ
ジスト17及び金属膜16を除去して上部コイル層14
が形成できる。
The problems of the conventional thin film magnetic head will be described below with reference to FIG.
The coil shown in will be described. In the figure, a lower magnetic layer 9 and a magnetic gap layer 10 are formed after an insulating layer 8 is attached to a ceramic substrate 7 to eliminate a step generated by the lower magnetic layer 9 and to insulate the lower coil layer 12 from a novolac system. Alternatively, the lower insulating layer 11 made of a resin such as polyimide is formed. A lower coil layer 12 is formed on the flat surface by electroplating, and further, insulation between the lower coil layer 12 and the upper coil layer 14 is obtained, and a middle portion is made of a resin having the same composition as that of the lower insulating layer 11 in order to obtain a flat surface. Insulating layer 13
To provide. Next, to form the upper coil layer 14, a metal film 16 for use as an electrode for electroplating is deposited on the entire surface of the substrate by sputtering or vapor deposition, and a photoresist 17 for forming a coil pattern is applied on the entire surface and dried. The coil pattern is formed by irradiating only the optically transparent region through the photomask 18 with ultraviolet rays, and dissolving and removing the ultraviolet rays by development. The photoresist 17 of the coil pattern is removed, and the upper coil layer 14 is attached to the exposed portion of the metal film 16 by copper electroplating. The photoresist 17 and the metal film 16 that are no longer needed are removed to remove the upper coil layer. 14
Can be formed.

【0006】ここで上部コイル層14は下部磁性層9が
5μm前後、下部絶縁層11が3μm前後、下部コイル
層12が4μm前後、及び中部絶縁層13が2μm前後
の全体として14μm程度の積層膜によって構成された
段差Tを持った位置にある。この位置で上部コイル層1
4のコイルパターンを作成するためのフォトレジスト1
7は、このような高段差上に塗布しなければならないが
フォトレジスト17は、塗布時は粘性流体であるためそ
の塗布膜厚は段差の上は薄く、段差の下は厚くなる。こ
の膜厚変化は段差の立ち上がり近傍で最も顕著となり、
同じ段差上でも段差の立ち上がり部の膜厚t1と段差の
中央部の膜厚t2が異なり前者の方が常に薄い状態とな
る。ここで重要なパラメータは露光エネルギー、現像液
の濃度及び現像時間であり、それらを最適条件に制御す
ると共に均一化することがパターンをより高精度化する
ための重要なポイントである。
Here, the upper coil layer 14 is a laminated film of about 5 μm in the lower magnetic layer 9, about 3 μm in the lower insulating layer 11, about 4 μm in the lower coil layer 12, and about 2 μm in the middle insulating layer 13 so as to have a total thickness of about 14 μm. Is located at a position having a step T formed by. Upper coil layer 1 at this position
Photoresist 1 for making 4 coil patterns
7 must be applied on such a high step, but since the photoresist 17 is a viscous fluid at the time of application, the applied film thickness is thin above the step and thick below the step. This change in film thickness is most noticeable near the rise of the step,
Even on the same step, the film thickness t1 at the rising portion of the step and the film thickness t2 at the central portion of the step are different, and the former is always thinner. The important parameters here are the exposure energy, the concentration of the developing solution and the developing time, and controlling them to be optimum and making them uniform are important points for making the pattern more accurate.

【0007】しかし、フォトレジスト17の膜厚にばら
つきがあるため、最適なパターン形成条件は各々膜厚が
異なる位置毎に異なってきてしまう。従ってこのような
フォトレジスト17の膜厚の異なった領域が同時に存在
する場合は、膜厚が薄いところに条件を合わせると膜厚
が厚いところは露光不足、現像不足となってレジスト残
りが発生するため、膜厚が厚いところにパターン形成条
件を合わせる必要が生じる。そうすると膜厚が薄いとこ
ろは最適条件に対して露光オーバー、現像オーバーとな
ってしまいフォトレジスト17の残り幅が狭くなって、
パターン幅の変動が生じフォトマスク18の寸法に対す
るパターン寸法の忠実度が低下する。極端な場合、フォ
トレジスト17の減膜が生じ結果としてコイルのショー
トを発生させ歩留まりを低下させてしまう。上記の理由
からコイルピッチを短縮することが困難な状況となって
いる。
However, since the thickness of the photoresist 17 varies, the optimum pattern forming conditions are different for each position where the thickness is different. Therefore, when such regions of the photoresist 17 having different film thicknesses are present at the same time, if the conditions are adjusted to the places where the film thickness is thin, the region where the film thickness is thick is underexposed and underdeveloped, and a resist residue occurs. Therefore, it is necessary to match the pattern forming conditions with the thick film. Then, the thin film portion is overexposed and overdeveloped with respect to the optimum conditions, and the remaining width of the photoresist 17 is narrowed,
The pattern width fluctuates, and the fidelity of the pattern dimension with respect to the dimension of the photomask 18 decreases. In an extreme case, the photoresist 17 is reduced in film thickness, resulting in a short circuit of the coil and a reduction in yield. Due to the above reasons, it is difficult to reduce the coil pitch.

【0008】又、コイル巻数を増加していくと、コイル
の電気抵抗が増加するためコイルの膜厚を通常の4μm
より厚くしなければならないが、従来の段差構造を持つ
薄膜磁気ヘッドではフォトレジスト17をより厚く塗布
することが困難であり、段差上の膜厚の変動やフォトレ
ジスト17のうねりの現象がより顕著となってくる。以
上のことがコイルを作成する際の技術的限界を生じさせ
ているが、磁路長の増大なしにコイルピッチを従来のま
まで単にコイル巻数を増加させるだけであれば、コイル
の層数を2層より多くすればよいが、これでは工数が複
雑であり3層目以上のコイルパターンは上記に示した問
題がより顕著となるだけで、より作成が難しくコストも
上昇してしまうためよい解決策にはならない。
Further, as the number of turns of the coil is increased, the electric resistance of the coil is increased.
Although it must be made thicker, it is difficult to apply a thicker photoresist 17 with a conventional thin film magnetic head having a step structure, and the phenomenon of fluctuation of the film thickness on the step and waviness of the photoresist 17 is more remarkable. Will be. Although the above causes a technical limit when creating a coil, if the coil pitch remains unchanged and the number of coil turns is simply increased without increasing the magnetic path length, the number of layers of the coil can be reduced. The number of layers is more than two, but this is a complicated solution, and the coil patterns of the third layer and above only make the above problems more conspicuous, and it is more difficult to make and the cost increases, which is a good solution. It doesn't help.

【0009】次に他の問題点として上部磁性層4のパタ
ーン形成について図6で説明する。図において、セラミ
ック基板7に絶縁層8を形成し、下部磁性層9、磁気ギ
ャップ層10、下部絶縁層11、下部コイル層12、中
部絶縁層13、上部コイル層14、上部絶縁層3を順次
積層し、上部磁性層4を電気メッキで作成する。この場
合、電気メッキ用の電極用金属膜16をスパッタ、又は
蒸着により基板全面に付着形成する。次に上部磁性層4
の形成用のフォトレジスト17を塗布し、乾燥し、フォ
トマスク18を介して紫外線を基板に照射した後現像に
より上部磁性層4のパターンを形成する。この際、上部
磁性層4は上部コイル層14を形成するときの段差Tの
14μm程度よりも、上部コイル層14の4μm前後、
及び上部絶縁層3の2μm前後を加えた段差Hの20μ
m程度の段差がある状態で作成しなければならない。
Next, as another problem, pattern formation of the upper magnetic layer 4 will be described with reference to FIG. In the figure, an insulating layer 8 is formed on a ceramic substrate 7, and a lower magnetic layer 9, a magnetic gap layer 10, a lower insulating layer 11, a lower coil layer 12, a middle insulating layer 13, an upper coil layer 14, and an upper insulating layer 3 are sequentially formed. The layers are laminated and the upper magnetic layer 4 is formed by electroplating. In this case, the electrode metal film 16 for electroplating is deposited and formed on the entire surface of the substrate by sputtering or vapor deposition. Next, the upper magnetic layer 4
A photoresist 17 for forming the above is applied, dried, and the substrate is irradiated with ultraviolet rays through a photomask 18 and then developed to form a pattern of the upper magnetic layer 4. At this time, the upper magnetic layer 4 is about 4 μm thicker than the step T of about 14 μm when the upper coil layer 14 is formed,
And the step height H of about 2 μm of the upper insulating layer 3 is 20 μm
It must be created with a level difference of about m.

【0010】上部コイル層14における重要な寸法は段
差上に形成するが、上部磁性層4における重要な寸法は
段差の立ち上がり部に形成することになる。上部磁性層
4の形成用のフォトレジスト17は段差Hの影響で最も
膜厚が厚くなるところが上下磁性層が接触するバックギ
ャップ部6(図3参照)、次に厚くなるところがトラッ
クを形成する部分で各々平坦部に塗布される膜厚よりか
なり厚いh2、h1の膜厚となる。磁気ヘッドにおける
重要な寸法であるトラック幅TW(図3参照)は段差の
立ち上がり部の膜厚h1の位置に形成しなければならな
いが、この部分は膜厚が急激に変化するところであるた
めパターン幅を厳密にコントロールすることが難しく、
基板内の膜厚分布まで考慮すると±1μm程度のばらつ
きが発生する。このようなばらつきはトラック幅が狭く
なるに従って特性のばらつきを大きくし、高性能なドラ
イブ装置の目的に沿わないものとなってしまう。
Although the important dimension of the upper coil layer 14 is formed on the step, the important dimension of the upper magnetic layer 4 is formed on the rising portion of the step. The photoresist 17 for forming the upper magnetic layer 4 has a back gap portion 6 (see FIG. 3) where the upper and lower magnetic layers come into contact with each other at a portion where the thickness is thickest due to the influence of the step H, and a portion where a thicker portion is next to form a track. Then, the film thicknesses h2 and h1 are considerably thicker than the film thicknesses applied to the flat portions. The track width TW (see FIG. 3), which is an important dimension in the magnetic head, must be formed at the position of the film thickness h1 at the rising part of the step, but this part is where the film thickness changes abruptly, so the pattern width Is difficult to control strictly,
Considering the film thickness distribution in the substrate, a variation of about ± 1 μm occurs. Such a variation increases the variation in the characteristics as the track width becomes narrower, which is beyond the purpose of a high-performance drive device.

【0011】又、バックギャップ部6は最も厚くなるた
め、高精度な寸法を要求されるトラック部と同一のパタ
ーン形成条件ではフォトレジスト17を完全に除去する
ことができなくなる。そのため再度バックギャップ部6
の領域のみ再度露光、現像する多重露光をする必要があ
る。この多重露光はパターン形成工程が煩雑になるのみ
でなく、薄膜プロセス工程の中でも最も高価な部類に入
る装置のパターン形成用の露光装置の稼動効率を低下さ
せる要因になる。このような問題はコイル巻数を増加さ
せることによる電気抵抗の増大を押さえるためコイル薄
膜を増加させると益々顕著となり、又、コイル層数を3
層以上にする場合段差Hがより高くなるため更に大きな
問題となる。
Further, since the back gap portion 6 becomes thickest, the photoresist 17 cannot be completely removed under the same pattern forming conditions as the track portion, which requires a highly accurate dimension. Therefore, again the back gap part 6
It is necessary to perform multiple exposure for re-exposure and development only in the area. This multiple exposure not only complicates the pattern forming process, but also causes a decrease in the operating efficiency of the pattern forming exposure device of the device which is one of the most expensive of thin film process steps. Such a problem becomes more and more remarkable when the coil thin film is increased in order to suppress the increase in the electric resistance due to the increase in the number of coil turns, and the number of coil layers is set to three.
If the number of layers is greater than or equal to the number of layers, the level difference H becomes higher, which becomes a greater problem.

【0012】[0012]

【発明が解決しようとする課題】このように上部コイル
層14形成の際、下部層で形成された段差の影響で上部
コイル層14形成用のフォトレジスト17の膜厚分布が
発生し、コイルパターン幅の変動を生じさせる。又、上
部磁性層4の形成も下部層で形成された段差の影響でト
ラック幅のばらつきが生じる問題を有している。
As described above, when the upper coil layer 14 is formed, the film thickness distribution of the photoresist 17 for forming the upper coil layer 14 is generated due to the influence of the step formed in the lower layer, and the coil pattern is formed. Causes width variation. Also, the formation of the upper magnetic layer 4 has a problem that the track width varies due to the influence of the step formed in the lower layer.

【0013】[0013]

【課題を解決するための手段】この目的を達成するため
に本発明の薄膜磁気ヘッドは、基板上に形成したアルミ
ナ等よりなる絶縁層のコイル形成領域に対応する位置に
凹部を設け、トラック形成部及びバックギャップ部を除
く下部磁性層の一部と、下部絶縁層、下部コイル層、及
び中部絶縁層をその凹部に埋設し、下部磁性層のトラッ
ク形成領域及び上部磁性層と接触するバックギャップ部
が後の化学エッチングにおいて、下部磁性層が選択的に
エッチングされる保護材料でパターン形成し、基板全面
に下部磁性層より厚く無機絶縁物を付着させた後平坦加
工し、その上に上部コイル層、上部絶縁層及び上部磁性
層を形成した構成とする。
In order to achieve this object, a thin film magnetic head of the present invention is provided with a recess at a position corresponding to a coil forming region of an insulating layer made of alumina or the like formed on a substrate to form a track. Part of the lower magnetic layer excluding the lower part and the back gap part, the lower insulating layer, the lower coil layer, and the middle insulating layer are buried in the recess, and the back gap is in contact with the track forming region of the lower magnetic layer and the upper magnetic layer. In the later chemical etching, the lower magnetic layer is patterned with a protective material that is selectively etched, and an inorganic insulator is deposited over the entire surface of the substrate to a thickness greater than that of the lower magnetic layer, followed by flattening and then the upper coil. A layer, an upper insulating layer, and an upper magnetic layer are formed.

【0014】[0014]

【作用】下部磁性層の一部と、下部絶縁層、下部コイル
層、及び中部絶縁層を凹部に埋設することにより、上部
コイル層及び上部磁性層を形成する際の段差を低減でき
る。
By embedding a part of the lower magnetic layer, the lower insulating layer, the lower coil layer, and the middle insulating layer in the recess, it is possible to reduce the step difference when forming the upper coil layer and the upper magnetic layer.

【0015】[0015]

【実施例】以下本発明の実施例について図1(a)〜
(f)を参照しながら説明する。図において、19はセ
ラミック基板で、20はアルミナ等からなる絶縁層でエ
ッチングするL1より厚くセラミック基板19にスパッ
タで付着形成し、トラック形成部21及びバックギャッ
プ部22を除く下部磁性層23の形成領域の一部と下部
コイル層24の形成領域に当たる絶縁層20をエッチン
グにより深さL1だけ除去する。このエッチングにはフ
ォトレジスト等をマスクを用いてケミカルエッチングや
イオンビームエッチングを行い必要な段差分だけ除去す
る。次に下部磁性層23をトラック形成部21とバック
ギャップ部22を除く凹部に、パーマロイ等の磁性膜を
電気メッキやスパッタで埋設する形に形成する。{図1
(a)参照} 次に磁気ギャップ層24をスパッタにより形成し、下部
絶縁層25をノボラック系あるいはポリイミド系の樹脂
により下部磁性層23の一部と同様に凹部に埋設する。
更にその上に下部コイル層26を銅等の電気メッキによ
り凹部に埋設し、下部コイル層26の凹凸を緩和した後
の上部コイル層27を形成しやすくするために中部絶縁
層28を下部絶縁層25と同じ材料を用いて形成する。
{図1(b)参照} 下部磁性層23のトラック形成部21とバックギャップ
部22に後の化学エッチングにおいて下部磁性層23及
びギャップ層24に対して選択的にエッチングされる保
護材料29をパターン形成した後に、基板全面に下部磁
性層23及び保護材料29より厚くアルミナ等の無機絶
縁物30を付着する。保護材料29には下部磁性層23
がパーマロイ、鉄系あるいはコバルト系材料及びアモル
ファス等の場合は銅、金、チタン等を用いる。この保護
材料29の膜厚は少なくとも下部磁性層23の最大膜厚
より厚くなるように設定する。次に上部コイル層27の
パターンをより高精度化するためには無機絶縁物30で
形成された面が平坦であることが望ましい。それは上部
コイル層27の形成面が平坦であれば上部コイル層27
形成用のフォトレジストの膜厚がほぼ均一になりその結
果パターン形成の精度が向上する。{図1(c)参照} そのため、基板全体を保護材料29が出現するまで平坦
加工を行うと、下部磁性層23や、磁気ギャップ層24
にダメージを与えることはない。平坦化した無機絶縁物
30の上に上部コイル層27を下部コイル層26と同様
に銅等の電気メッキで形成する。{図1(d)参照} 保護材料29を化学エッチングにより除去して、ダメー
ジのないトラック形成部21とバックギャップ部22を
出現させた後、上部絶縁層31を下部絶縁層25と同様
な材料で形成する。{図1(e)参照} 次に上部磁性層32を下部磁性層23と同様な方法で形
成するが、下部層の膜厚は全体で従来と同等の段差Hに
なっているが絶縁層20で設けた凹部がL1の段差を減
少させているため残っている段差はL2のみとなってい
る。上部磁性層32を形成するためのフォトレジストは
このL2の段差によって生じる膜厚変動しかないため、
従来より大幅に膜厚変動が改善され、上部磁性層32の
トラック幅精度が大幅に改善され、更にバックギャップ
部22は絶縁層20のエッチングの際に結果的にかさ上
げされていることになっているため、バックギャップ部
22のフォトレジストが異常に厚くなることがなく、露
光装置の稼動効率を低下させるような多重露光を行う必
要がなくなる。次に素子全体を保護する形にアルミナ等
の絶縁物33をスパッタにより付着することで薄膜磁気
ヘッドの作成が終了する。{図1(f)参照} 以上本実施例では下部磁性層23、下部絶縁層25及び
下部コイル層26を絶縁層20に形成した凹部を基本と
しているが、これはヘッドの断面構造が上下対称になり
薄膜磁気ヘッドの特性を向上するためであり、単に段差
の緩和の目的だけであればこの限りでなく本実施例を用
いれば、下部磁性層23のみの段差緩和から上部絶縁層
31までの段差緩和まで幅広く適用することができる。
又、本実施例は巻数増加に伴う電気抵抗の増加を防止す
るためコイル膜厚を厚くする場合や、コイル層数が2層
より多くなったときによりその効果が大きくなる。
EXAMPLE An example of the present invention will be described below with reference to FIGS.
This will be described with reference to (f). In the figure, 19 is a ceramic substrate, 20 is thicker than L1 to be etched with an insulating layer made of alumina or the like, and is attached to the ceramic substrate 19 by sputtering to form a lower magnetic layer 23 excluding the track forming portion 21 and the back gap portion 22. The insulating layer 20 corresponding to a part of the region and the formation region of the lower coil layer 24 is removed by etching to a depth L1. For this etching, a photoresist or the like is used as a mask to perform chemical etching or ion beam etching to remove a necessary step. Next, the lower magnetic layer 23 is formed in a recess other than the track forming portion 21 and the back gap portion 22 so that a magnetic film such as permalloy is embedded by electroplating or sputtering. {Fig. 1
(See (a)) Next, the magnetic gap layer 24 is formed by sputtering, and the lower insulating layer 25 is filled with a novolac-based or polyimide-based resin in the recess like a part of the lower magnetic layer 23.
Further, the lower coil layer 26 is embedded in the recess by electroplating of copper or the like, and the middle insulating layer 28 is formed on the lower insulating layer 28 to facilitate formation of the upper coil layer 27 after alleviating the unevenness of the lower coil layer 26. It is formed by using the same material as 25.
{Refer to FIG. 1B} The track forming portion 21 and the back gap portion 22 of the lower magnetic layer 23 are patterned with a protective material 29 which is selectively etched with respect to the lower magnetic layer 23 and the gap layer 24 in a later chemical etching. After the formation, an inorganic insulator 30 such as alumina having a thickness greater than that of the lower magnetic layer 23 and the protective material 29 is attached to the entire surface of the substrate. The lower magnetic layer 23 is used as the protective material 29.
When is a permalloy, iron-based or cobalt-based material, amorphous, or the like, copper, gold, titanium, or the like is used. The thickness of the protective material 29 is set to be at least larger than the maximum thickness of the lower magnetic layer 23. Next, in order to make the pattern of the upper coil layer 27 more precise, it is desirable that the surface formed of the inorganic insulator 30 be flat. If the formation surface of the upper coil layer 27 is flat, the upper coil layer 27
The film thickness of the photoresist for formation is substantially uniform, and as a result, the accuracy of pattern formation is improved. {Refer to FIG. 1C} Therefore, when the entire substrate is flattened until the protective material 29 appears, the lower magnetic layer 23 and the magnetic gap layer 24 are formed.
It doesn't damage. Like the lower coil layer 26, the upper coil layer 27 is formed on the flattened inorganic insulator 30 by electroplating with copper or the like. {Refer to FIG. 1D} The protective material 29 is removed by chemical etching to expose the undamaged track forming portion 21 and the back gap portion 22, and then the upper insulating layer 31 is made of the same material as the lower insulating layer 25. To form. {Refer to FIG. 1E} Next, the upper magnetic layer 32 is formed by the same method as the lower magnetic layer 23, but the thickness of the lower layer is the same as the conventional step H, but the insulating layer 20 is formed. Since the concave portion provided in 1 reduces the step difference of L1, the remaining step difference is only L2. Since the photoresist for forming the upper magnetic layer 32 has only the film thickness variation caused by the step of L2,
The film thickness variation is greatly improved, the track width accuracy of the upper magnetic layer 32 is greatly improved, and the back gap portion 22 is consequently raised when the insulating layer 20 is etched. Therefore, the photoresist in the back gap portion 22 does not become abnormally thick, and there is no need to perform multiple exposure that reduces the operating efficiency of the exposure apparatus. Next, an insulator 33 such as alumina is attached by sputtering so as to protect the entire element, thereby completing the fabrication of the thin film magnetic head. {Refer to FIG. 1 (f)} As described above, in the present embodiment, the lower magnetic layer 23, the lower insulating layer 25, and the lower coil layer 26 are basically formed as the recesses in the insulating layer 20, but the cross-sectional structure of the head is vertically symmetrical. In order to improve the characteristics of the thin-film magnetic head, and this purpose is not limited to this for the purpose of merely mitigating the step difference, the present embodiment can be used to reduce the step difference from only the lower magnetic layer 23 to the upper insulating layer 31. It can be widely applied to alleviate steps.
Further, in the present embodiment, the effect becomes greater when the coil film thickness is increased in order to prevent an increase in electric resistance due to an increase in the number of turns, or when the number of coil layers is more than two.

【0016】なお、本発明は以上に示した具体例のみに
限定されるものではなく、例えば、下部磁性層23のバ
ックギャップ部22の膜厚はトラック形成部21の膜厚
程精度は要求されないため、トラック形成部21の下の
絶縁層20あるいは下部絶縁層25そのものを他より厚
くし、平坦化加工の際にバックギャップ部22の下部磁
性層23が出現するようにしてもよい。
The present invention is not limited to the specific examples shown above, and for example, the back gap portion 22 of the lower magnetic layer 23 is not required to be as accurate as the track forming portion 21. Therefore, the insulating layer 20 below the track forming portion 21 or the lower insulating layer 25 itself may be made thicker than the others so that the lower magnetic layer 23 of the back gap portion 22 appears during the flattening process.

【0017】[0017]

【発明の効果】以上のように本発明は基板上に形成した
絶縁層に凹部を設けその中に埋する形に下部磁性層の一
部や、下部絶縁層、下部コイル層を形成することによ
り、上部コイル層や上部磁性層を形成する際の段差をな
くし、あるいは小さくすることによって上部コイル層、
及び上部磁性層形成用のフォトレジストの膜厚分布や変
動を小さくすることができ、上部コイル層及び上部磁性
層を高精度な寸法にすることで、薄膜磁気ヘッドの性能
を向上することができる。又、トラック部及びバックギ
ャップ部以外の上下磁性層の不要な接近を抑えることが
できるため、薄膜磁気ヘッドの磁気的効率を向上させ
る。
As described above, according to the present invention, a part of the lower magnetic layer, the lower insulating layer, and the lower coil layer are formed so that the insulating layer formed on the substrate is provided with the concave portion and buried in the concave portion. , By eliminating or reducing the step when forming the upper coil layer or the upper magnetic layer,
Also, the film thickness distribution and fluctuation of the photoresist for forming the upper magnetic layer can be reduced, and the performance of the thin film magnetic head can be improved by making the upper coil layer and the upper magnetic layer highly accurate. .. Further, since it is possible to suppress unnecessary approach of the upper and lower magnetic layers other than the track portion and the back gap portion, the magnetic efficiency of the thin film magnetic head is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の薄膜磁気ヘッドの製造工程の
模式図 (b)は本発明の薄膜磁気ヘッドの製造工程の模式図 (c)は本発明の薄膜磁気ヘッドの製造工程の模式図 (d)は本発明の薄膜磁気ヘッドの製造工程の模式図 (e)は本発明の薄膜磁気ヘッドの製造工程の模式図 (f)は本発明の薄膜磁気ヘッドの製造工程の模式図
1A is a schematic diagram of a manufacturing process of a thin film magnetic head of the invention, FIG. 1B is a schematic diagram of a manufacturing process of a thin film magnetic head of the invention, and FIG. 1C is a manufacturing process of a thin film magnetic head of the invention. Schematic diagram (d) is a schematic diagram of the manufacturing process of the thin film magnetic head of the present invention (e) is a schematic diagram of the manufacturing process of the thin film magnetic head of the present invention (f) is a schematic diagram of the manufacturing process of the thin film magnetic head of the present invention

【図2】従来の薄膜磁気ヘッドの模式図FIG. 2 is a schematic diagram of a conventional thin film magnetic head.

【図3】図2のA部の拡大図3 is an enlarged view of part A of FIG.

【図4】図3のB−B断面図FIG. 4 is a sectional view taken along line BB of FIG.

【図5】従来の薄膜磁気ヘッドの模式図FIG. 5 is a schematic diagram of a conventional thin film magnetic head.

【図6】従来の薄膜磁気ヘッドの上部磁性層のパターン
形成の模式図
FIG. 6 is a schematic diagram of pattern formation of an upper magnetic layer of a conventional thin film magnetic head.

【符号の説明】[Explanation of symbols]

1 スライダー 2 浮上レール 3 上部絶縁層 4 上部磁性層 5 端子 6 バックギャップ部 7 セラミック基板 8 絶縁物 9 下部磁性層 10 磁気ギャップ層 11 下部絶縁層 12 下部コイル層 13 中部絶縁層 14 上部コイル層 15 絶縁物 16 金属膜 17 フォトレジスト 18 フォトマスク 19 セラミック基板 20 絶縁層 21 トラック形成部 22 バックギャップ部 23 下部磁性層 24 磁気ギャップ層 25 下部絶縁層 26 下部コイル層 27 上部コイル層 28 中部絶縁層 29 保護材料 30 無機絶縁物 31 上部絶縁層 32 上部磁性層 33 絶縁物 1 slider 2 levitation rail 3 upper insulating layer 4 upper magnetic layer 5 terminal 6 back gap part 7 ceramic substrate 8 insulator 9 lower magnetic layer 10 magnetic gap layer 11 lower insulating layer 12 lower coil layer 13 middle insulating layer 14 upper coil layer 15 Insulator 16 Metal film 17 Photoresist 18 Photomask 19 Ceramic substrate 20 Insulating layer 21 Track forming part 22 Back gap part 23 Lower magnetic layer 24 Magnetic gap layer 25 Lower insulating layer 26 Lower coil layer 27 Upper coil layer 28 Middle insulating layer 29 Protective material 30 Inorganic insulator 31 Upper insulating layer 32 Upper magnetic layer 33 Insulator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基板上に形成した絶縁層のコイル層形成領
域に凹部を設け、下部磁性層の一部と下部絶縁層、下部
コイル層及び中部絶縁層を前記凹部に埋設し、ギャップ
層を付着し、前記下部磁性層のトラック形成領域、及び
下部磁性層と上部磁性層とが後で接触し、前記下部磁性
層上のバックギャップ領域に、保護材料を前記下部磁性
層の膜厚より厚くパターンを形成し、絶縁材料を前記下
部磁性層の膜厚より厚く基板全体に付着した後、平坦化
加工し、その上に上部コイル層、上部絶縁層、上部磁性
層等を順次積層して構成することを特徴とする薄膜磁気
ヘッドの製造方法。
1. A recess is provided in a coil layer forming region of an insulating layer formed on a substrate, and a part of a lower magnetic layer, a lower insulating layer, a lower coil layer and a middle insulating layer are buried in the recess, and a gap layer is formed. The protective material is deposited on the track forming region of the lower magnetic layer and the lower magnetic layer and the upper magnetic layer in contact with each other, and the back gap region on the lower magnetic layer is thicker than the film thickness of the lower magnetic layer. A pattern is formed, an insulating material having a thickness larger than that of the lower magnetic layer is deposited on the entire substrate, and then flattening is performed, and an upper coil layer, an upper insulating layer, an upper magnetic layer, and the like are sequentially laminated on the pattern. A method of manufacturing a thin film magnetic head, comprising:
JP8358392A 1992-04-06 1992-04-06 Production of thin-film magnetic head Pending JPH05290325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8358392A JPH05290325A (en) 1992-04-06 1992-04-06 Production of thin-film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8358392A JPH05290325A (en) 1992-04-06 1992-04-06 Production of thin-film magnetic head

Publications (1)

Publication Number Publication Date
JPH05290325A true JPH05290325A (en) 1993-11-05

Family

ID=13806519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8358392A Pending JPH05290325A (en) 1992-04-06 1992-04-06 Production of thin-film magnetic head

Country Status (1)

Country Link
JP (1) JPH05290325A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0709828A1 (en) * 1994-05-09 1996-05-01 Sony Corporation Magnetic head and its manufacture
US6008969A (en) * 1997-12-18 1999-12-28 Read-Rite Corporation Planar recording head having formed yokes
US6025977A (en) * 1994-12-30 2000-02-15 International Business Machines Corporation Combined magnetoresistive (MR) read and inductive write head with sunken write coil
US7477127B2 (en) 2004-09-30 2009-01-13 Tdk Corporation Electronic device having organic material based insulating layer and method for fabricating the same
US8379346B1 (en) 2011-07-29 2013-02-19 Tdk Corporation Method of forming metal to a concave portion of a substrate, method of manufacturing a magnetic head and a magnetic head

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0709828A1 (en) * 1994-05-09 1996-05-01 Sony Corporation Magnetic head and its manufacture
EP0709828A4 (en) * 1994-05-09 1996-11-13 Sony Corp Magnetic head and its manufacture
US6025977A (en) * 1994-12-30 2000-02-15 International Business Machines Corporation Combined magnetoresistive (MR) read and inductive write head with sunken write coil
US6156375A (en) * 1994-12-30 2000-12-05 International Business Machines Corporation Method of making read/write magnetoresistive (MR) head with sunken components
US6008969A (en) * 1997-12-18 1999-12-28 Read-Rite Corporation Planar recording head having formed yokes
US7477127B2 (en) 2004-09-30 2009-01-13 Tdk Corporation Electronic device having organic material based insulating layer and method for fabricating the same
US8379346B1 (en) 2011-07-29 2013-02-19 Tdk Corporation Method of forming metal to a concave portion of a substrate, method of manufacturing a magnetic head and a magnetic head

Similar Documents

Publication Publication Date Title
JP5412415B2 (en) Magnetic recording head, manufacturing method thereof, and magnetic disk apparatus
KR100264700B1 (en) A thin film magnetic transducer with self aligned magnetic poles using sacrificial mask and a method of manufacturing this transducer
EP0874355B1 (en) Magnetic head and method for production thereof
JPH05290325A (en) Production of thin-film magnetic head
JPH09180127A (en) Production of thin-film magnetic head
JPH0520640A (en) Production of thin-film magnetic head
JPH02230505A (en) Thin film magnetic head and its manufacture
JP3428905B2 (en) Metal film forming method and pole forming method for thin film magnetic head
JP3854035B2 (en) Thin film magnetic head and manufacturing method thereof
JP2567221B2 (en) Thin film magnetic head and method of manufacturing the same
JPH064829A (en) Thin-film magnetic head and its production
JP2649209B2 (en) Method for manufacturing thin-film magnetic head
JP3936085B2 (en) Manufacturing method of magnetic head
JP2000048317A (en) Thin film magnetic head
JPH08129715A (en) Production of combined thin-film magnetic head
JPH0582649B2 (en)
JPH05258243A (en) Thin film magnetic head and manufacture therefor
JPH08329418A (en) Production of thin film magnetic head
JP2000207709A (en) Manufacture of thin film magnetic head
JPH02247808A (en) Thin film magnetic head and its production
JPH01137419A (en) Thin film magnetic head
JP2004006016A (en) Magnetic head
JPH05151528A (en) Thin-film magnetic head
JPH01267812A (en) Manufacture of thin film magnetic head
JPH04285711A (en) Production of thin-film head