JPH05289137A - 波長変換装置とその製造方法 - Google Patents

波長変換装置とその製造方法

Info

Publication number
JPH05289137A
JPH05289137A JP9127992A JP9127992A JPH05289137A JP H05289137 A JPH05289137 A JP H05289137A JP 9127992 A JP9127992 A JP 9127992A JP 9127992 A JP9127992 A JP 9127992A JP H05289137 A JPH05289137 A JP H05289137A
Authority
JP
Japan
Prior art keywords
domain
optical crystal
plate
nonlinear optical
inverted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9127992A
Other languages
English (en)
Inventor
Shuichi Matsumoto
秀一 松本
Masahiro Yamada
正裕 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP9127992A priority Critical patent/JPH05289137A/ja
Publication of JPH05289137A publication Critical patent/JPH05289137A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Lasers (AREA)

Abstract

(57)【要約】 【目的】 変換効率の向上をはかる。 【構成】 全厚さに渡る分極反転領域が形成された周期
分極反転構造1を有する板上非線型光学結晶2を含む共
振器構成とする。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は波長変換装置、特に光第
2高調波発生装置(以下SHGという)とその製造方法
に係わる。
【0002】
【従来の技術】非線型光学結晶の一部に光導波路を形成
した導波路型SHGは、光の閉じ込めができることか
ら、波長変換効率を高めることができる。
【0003】即ち波長変換効率は、基本波パワー、基本
波と第2高調波との相互作用長の各2乗に比例すること
から、導波路型としたことで、主として相互作用長を長
くすることの効果によって波長変換効率を高められると
考えられている。
【0004】しかしながら、非線型光学結晶板によるい
わゆるバルク型SHGは、例えば、いわゆるQないしは
フィネスの高い外部共振器を構成し易く、この場合、基
本波パワーを充分高めることができ波長変換効率の高い
SHGを得る可能性を有している。
【0005】従来、バルク型SHGにおいて800nm
オーダの波長を、400nmオーダの波長に変換するこ
とができるものとしては、KN(KNbO3 )が存在す
るこに過ぎない。
【0006】この、バルク結晶の非線型光学効果の応用
に際しての位相整合法は、従来、非線型光学結晶自身の
もつ複屈折と、異常屈折率と常屈折率の結晶温度に対す
る変化率の差を組合せて2次高調波の異常屈折率と、基
本波波長での常屈折率が合致するように、偏光、結晶方
位を設定し、両者の位相速度を合わせるもので、異常屈
折率と、常屈折率の温度に対する変化率が異なることを
利用する。しかしながら、KNの場合でも、室温近傍で
の位相整合波長は、870nm程度となり、結晶温度が
0℃で860nm程度が得られるにすぎない。
【0007】これに対し非線型光学定数の周期的反転に
よって基本波と2次高調波の位相整合を行うようにした
疑似位相整合法が知られている。これによれば、利用可
能な非線型光学材料の範囲が広がり、光学定数d33にす
ぐれた結晶の利用が可能となる。
【0008】このような非線型光学定数の周期的反転を
バルク型SHGにおいて生じさせる方法としては、例え
ばその結晶育成において、チョクラルスキー法による育
成法によりその温度制御によって密度勾配から自動的に
分極反転を生じさせるものであるが、この場合本来疑似
位相整合に求められる非線型光学定数の周期的反転のみ
ならず、屈折率の変化も生じてしまう。また母材への異
種原子の拡散、本来の組成比からのずれの発生等によっ
て、基本波としてのレーザ光のような電界強度を持った
光に対する耐性に劣化を生じる。
【0009】また、電圧印加等によって周期分極反転構
造を形成する方法の提案もなされているが、通常の場
合、充分深く、形状制御性にすぐれた分極反転領域の形
成が困難で、バルク型SHGへの適用に問題があった。
【0010】このため、上述した疑似位相整合法を用い
たバルク型SHGはその実現化が遅れている。
【0011】
【発明が解決しようとする課題】本発明は、先に本出願
人が提供した特願平3−46859号「周期ドメイン判
定構造を有する光デバイス装置とその製法」、特願平3
−107392号「分極反転制御方法」において、深
く、かつ形状制御性すぐれた周期分極反転構造を作るこ
とができたことに鑑み、バルク型SHGにおいて、この
疑似位相整合法を利用し、更に、より変換効率の向上を
はかる。
【0012】また、本発明は、基本波光源として用いる
例えば半導体レーザにおける波長のばらつきを強制的に
特定の波長にロックして、より高い変換効率を有する波
長変換装置をできるようにする。
【0013】
【課題を解決するための手段】本発明においては、図1
に一例の側面図を示し、図2にその上面図を示すよう
に、分極反転領域が全厚さに渡って形成された周期分極
反転構造1を有する板状非線型光学結晶2を有して成
り、板状非線型光学結晶2を含む共振器を構成して成
る。
【0014】また、本発明の他の1は、全厚さに渡る分
極反転領域が形成された周期分極反転構造1を有し、両
主面が平行平面性にすぐれた板状非線型光学結晶2を有
して成り、この板状非線型光学結晶2の両主面2a及び
2bで全反射させるか薄膜コーティングによって反射率
を高め、これら両主面での繰返し反射によって周期分極
反射構造1による疑似位相整合条件を満足させながら基
本波と光第2高調波の相互作用長を大にする。
【0015】更にまた、本発明の他の1は、例えば図5
に示すように、全厚さに渡る分極反転領域が形成された
周期分極反転構造1を有する板状非線型光学結晶2を有
し、この板状非線型光学結晶2の周期分極反転構造1の
形成部における光路を挟んで対向する第1の対向電極1
1を設ける。
【0016】また本発明の他の1は、全厚さに渡る分極
反転領域が形成された周期分極反射構造1を有する板状
非線型光学結晶2と、基本波光源のレーザ4とを有し、
板状非線型光学結晶2の周期分極反転構造1の形成部に
おける光路を挟んで対向する第1の対向電極11を設
け、板状非線型光学結晶2を含むリング外部共振器を構
成し、第1の対向電極11への印加電圧を調整して周期
分極反転構造1によるブラッグ反射条件を上記共振器の
共鳴波長と一致させて上記基本波光源のレーザ3をイン
ジェクションロッキングさせる。
【0017】更に本発明の他の1は、全厚さに渡る分極
反転領域が形成された周期分極反転構造1を有する板状
非線型光学結晶2と基本波光源のレーザ3とを有し、板
状非線型光学結晶2の周期分極反転構造1の形成部にお
ける光路を挟んで対向する第1の対向電極11を設ける
と共に、上記光路を挟んで他部に第2の対向電極12を
設け、板状非線型光学結晶2を含む共振器が構成する。
また、本発明の他の1は、図8及び図9に示すように、
全厚さに渡る分極反転領域が形成された周期分極反転構
造1を有する板状非線型光学結晶2を有して成り、板状
非線型光学結晶2の相対向する両端面2c及び2dが所
要の曲面とすると共に反射面として共振器を構成し、上
記周期分極反転構造1の分域壁が共振器の1の主たる光
路と直交するようにする。
【0018】更に、本発明方法においては、単分域化さ
れた非線型光学結晶基体に、これを挟んで少くとも一方
が最終的に得る周期分極反転構造の周期パターンに対応
するパターンとされた対向電極を設け、この対向電極間
に300℃以下望ましくは150℃未満の温度下で1k
V/mm〜100kV/mmの電界を印加して周期分極
反転構造を形成し、上記非線型光学結晶基体から全厚さ
に渡る分極反転領域が形成された周期電極反転構造を有
する板状非線型光学結晶を得る。
【0019】
【作用】上述の本発明方法によって分極反転構造を形成
するときは、ミリメータオーダの厚さの板状非線型光学
結晶基板に対してその全厚さに渡って分極反転領域を形
成できることから位相整合を確実に行うことができ高変
換効率のいわゆるバルク型SHGを構成できる。
【0020】そして、本発明においては、その光導波を
行う非線型光学結晶2の両主面2a及び2bに平行平面
性を持たせ、全反射が生じるようにするか、もしくは反
射面を形成して導波光を例えば図1に破線aをもって模
式的に示したように、周期的分極反射構造1による疑似
位相整合条件を満足しながら基本波を比較的長い距離に
渡って伝搬させることができるので、非線型相互作用長
を大とすることができ、2次高調波の変換効率を大とす
ることができる。
【0021】そして、この周期分極反転構造1を有する
非線型光学結晶2を含む例えば外部共振器を構成したの
で、基本波パワーを大とすることができ、変換効率を更
に高めることができる。
【0022】また、第1の対向電極11を周期分極反転
構造部に設けたことにより、この第1の対向電極11間
に電圧印加を行うことによって、直流電界を用いて対向
電極間の板状非線型光学結晶中に分極反転の周期と同じ
周期の屈折率のグレーティングを形成し、かつその印加
電圧を変化させることで、屈折率のグレーティングのブ
ラッグ反射率を調整できる。したがって、これを、リン
グ外部共振器構成において用いることによって励起光源
側に、ある光量の光を戻すことが可能となり、共振器の
共振波長と、ブラッグ反射条件が合致するとき、励起光
源のレーザに対して、インジェクションロッキングが可
能となる。このため外部共振器の共振条件と、励起光源
の発振波長を容易に合致させることが可能となる。つま
り、外部共振器の共振条件と、例えば、非線型光学効果
のための位相整合条件が同時に満たされる場合、波長選
択性に厳しい外部共振器型非線型光学効果デバイスの欠
点を克服し、かつ、高効率の非線型光学効果を生じさせ
ることができる。
【0023】また、板状非線型光学結晶2に第2の対向
電極12を設けることにより、この電極を通じて、直流
電界を与え、電気光学効果を用いて対向電極間の強誘電
体の屈折率を変化させることができ、これによって共振
器の共振条件を調整することができるので、共振器の設
計、製造が容易となり、更に確実に共振を発生できるこ
とから、更に変換効率の向上がはかられる。
【0024】
【実施例】本発明による波長変換装置の実施例を説明す
る。図1及び図2を参照して本発明装置の一例を説明す
る。図1はその略線的側面図で、図2はその上面図を示
す。
【0025】単分域化されたLN(LiNbO3 )、K
TP(KTiOPO4 )等、例えばz板のLNより成
り、c軸方向(z方向)に単分域化された板状非線型光
学結晶2、この例では、ミリミーダの厚さの板状非線型
光学結晶2を用い、両主面2a及び2bを光学的精度の
平行平面とし、両主面2a及び2bで、全反射が生じる
ように、或いは例えば反射膜コーティングを行って反射
面とする。板状非線型光学結晶(以下結晶板という)2
の一部には、その全厚さに渡って形成された分極反転領
域が周期的に導波方向に(板面方向)にストライプ状に
形成した周期的分極反射構造1を形成する。そして、結
晶板1の両主面2a及び2bに、周期的分極反射構造1
の形成部とこの形成部外において、伝搬する光束LB
幅WL を超える幅をもって結晶板2を挟んでそれぞれ対
向する第1及び第2の対向電極11及び12を被着形成
する。
【0026】そして、結晶板2の一端面2cから入射さ
せた基本波を図1中破線aで模式的に示すように、繰返
し反射させて比較的長い距離に渡って周期的分極反射構
造1の領域を疑似位相整合条件を満足させながら、他方
の端面2dへと伝搬させることにより、長い相互作用長
を生じさせてこれに比例する非線型相互作用効率によっ
て2次高調波を発生させこれを端面2dから導出する。
【0027】一方、結晶板2の両端面2a及び2bに
は、対の反射鏡M1 及びM2 が対向して配置され、結晶
板2を含む共振器が構成される。反射鏡M1 及びM2
凹面鏡とされて、基本波光が結晶板2内に効率よく、閉
じ込められるようにする。一方の基本波を入力する側の
反射鏡M1 は、基本波光に所要の透過率を示すが2次高
調波を反射させ、他方の反射鏡は、2次高調波に透過性
を示し、基本波を反射させるダイクロックミラーとす
る。
【0028】結晶板2の両端面2c及び2dは、所要の
傾斜面とされ、無反射コートがなされて入射基本波が効
率良く両主面2a及び2bで繰返し反射し、かつ両反射
鏡M 1 及びM2 間において結晶板2を含む共振器が構成
されるようにする。
【0029】結晶板2中の非線型光学相互作用長は、結
晶外に設けられた反射鏡M1 及びM 2 の曲率半径、結晶
板2の厚さによって、また、反射鏡の反射率、結晶板端
面2c,2d等のコーティング等は通常の共振器設計の
手法によって設計される。また、分極反転周期は結晶板
2の両面2a,2bの反射角、結晶の複屈折性を考慮し
て導出される。そして、このとき、結晶板2中の分極構
造と、ポンプ波、シグナル波、アイドラー波(もしくは
基本波と第2高調波)の偏光の関係は、上述の図1で示
す場合のほか、図3に側面図を示し、図4にその上面図
を示すように、x板による結晶板2によって構成し、そ
の板面方向に単分域化され、分極反転領域を形成した分
極反転周期構造とすることができる。
【0030】図1及び2の例では、LNの場合、ブリュ
ースター結合が可能となる一方、光波の電界が分極軸に
対して斜め入射するため非線型光学定数を充分には利用
できないものであるのに比し図3及び図4の例ではこれ
の改善がはかられる。
【0031】また、図5に示すように結晶板2外に、更
に反射鏡M3 を設けてリング共振器とし得る。
【0032】図6は、この系を単純化して示したもので
簡単化のために結晶板2中のジグザグ光路を主たる光路
として直線的に示したが、以下に、述べるチューニング
機構の一般性は失われてない。この構成において、第1
の対向電極11間に直流電界を印加すると、各分域にお
いて屈折率が±Δn変化することから周期的な屈折率の
グレーディングを誘起することになってここにDBRが
形成される。
【0033】そして、今、リング共振器のキャビティー
長を15mmとすると、FSR(フリースペクトラルレ
ンジ)として、0.046nmが得られる。
【0034】また、今、基本波が830nm近傍の波長
とするものとして、LNを用いた場合のSHGを構成す
べく疑似位相整合のための周期的反射構造を形成した場
合において、上述したように第1の対向電極11間に直
流電界を印加してDBRを形成した状態についてみる。
疑似位相整合のための分極反転周期、DBR周期を導く
ために、ネルソン等によって与えられたセルマイヤー式
(Journal of AppliedPhysics vol.45, no.8,(1974)Nel
son, D.F.参照)を用いた。疑似位相整合条件とDBR
条件を同時に満足する条件を図7から図式的に求めると
次数29〜37に相当するDBR条件を与える曲線71
〜75と、疑似位相整合条件を与える曲線76の交点の
周期が2つの条件を満足することになる。
【0035】今、分極反転周期として2.95μmを選
び相互作用長を3mmと仮定すると屈折率の分散特性か
ら波長トレランス幅(FWHM)約0.2nmが計算さ
れ、この範囲に外部共振器の共鳴が4本(0.2/0.
046=4.35)程度たつことがわかる。したがっ
て、この構造を外部共振器型SHGとして用い、第2高
調波発生を効率的に実行するためには外部共振器の共鳴
条件を疑似位相条件に合致させねばならない。ところ
で、図6において結晶板2の単分域に外部電界を第2の
対向電極12によって印加すると、電気光学効果によっ
て外部共振器のキャビティ長を制御することができるの
で疑似位相整合の中心波長に外部共振器の共鳴波長を合
わせることができる。
【0036】実際の数値例として第2の対向電極長を5
mm、結晶板2の厚さを1mmとすると、1波長分の光
路変化を与える屈折率の変化量として1.25×10-4
が必要となる。今、LNの光学定数r33を用いた場合、
約500Vの電圧印加に相当し、少くともこの半分の電
圧印加でこの疑似位相整合条件と、外部共振器の共振条
件を合致できることがわかる。したがって、図6のキャ
ビティ構成で、上述の諸条件を満足し励起光源の波長が
外部共振器の共振波長と合致したとき、高効率の疑似位
相整合による第2次高調波発生が可能となる。
【0037】一方、第1の対向電極11によって周期的
分極反転領域に外部直流電界を印加して得られる電気光
学効果によって誘起される周期的な屈折率のグレーティ
ングからの反射率を見積もると、相互作用長3mm、分
極反転周期0.832μmより、グレーティングペア数
約1000を得、300Vの電圧印加によってLNのr
33から得られる屈折率変化5×10-5を考慮して光強度
反射率2×10-3すなわち0.2%程度が得られること
がわかる。したがって、前述の共鳴諸条件が満足され電
極11による電圧印加によってDBRが機能した場合、
励起光源側に外部共振器の共鳴周波数の光を戻すことが
可能となり、適当な励起光源すなわち基本波光源を選択
することで、その光源としてのレーザ例えば半導体レー
ザ3の発振波長をこの共鳴周波数にインジェクションロ
ックすることができる。すなわち、励起光源(基本波光
源)として半導体レーザを用いた場合において、問題と
なる発振波長のばらつき、特性劣化によるばらつき、温
度変化によるばらつき等を解消でき安定した2次高調波
の発生を可能にする。
【0038】図8及び図9にその側面図及び上面図を示
す例においては、結晶基板2の両端面2c及び2dを適
当な曲率の光学的研磨と薄膜コーティングなどによる反
射率を付加して共振器構造を形成していわゆる固体モノ
リシックリング共振器を構成した場合で、この場合閉じ
た光路の内の1つの光路と分極反転領域による分域壁が
直交するように周期分極反転構造1を配置する。この場
合においても前述したと同様に第1及び第2の対向電極
11及び12を設けることによって外部共振器の高いフ
ィネスを利用して、周期分極反転構造を有する領域での
疑似位相整合条件を満足しながら基本波の光強度を高め
た状態で、高効率の非成型相互作用を生じさせることが
できる。
【0039】尚、図8及び図9において図1及び図2と
対応する部分には同一符号を付して重複説明を省略す
る。
【0040】そして、上述の各例における周期分極反転
領域の形成は、図10に示すように、厚さ例えば1mm
オーダの結晶板2を用意し単分域化する。
【0041】この単分域化は、例えばそのキュリー温度
直下の例えば1200℃程度まで昇温して一定の方向に
外部直流電圧を全面的に印加することによって全面的に
c軸方向に揃えて行った。
【0042】そしてその分極の正側の主面2S(2a)
上にA1等よりなる例えば櫛歯状パターンにパターニン
グされた第1の電極61を被着形成し、分極の負側の裏
面2R(2b)にも同様にA1等よりなる櫛歯状パター
ンの第2の電極62を被着形成する。これら電極61及
び62のそれぞれの櫛歯パターンは、互いに正対するよ
うに被着形成する。
【0043】第1及び第2の電極61,62の一方例え
ば電極62は、全面的に形成することもできる。
【0044】そして、300℃以下望ましくは150℃
未満の例えば室温において第1及び第2の電極61及び
62間に強誘電体12の自発分極の正側の第1の電極2
1が正電位、負側の第2の電極が負電位となるように、
電源25によって2kV/mm〜100kV/mmの例
えば10kV/mmの電圧を印加する。このようにする
と、第1の電極61の櫛歯先端部から延長する分極反転
領域26が生じる。すなわち第1の電極61の櫛歯のパ
ターンに対応するパターンの周期的な分極反転領域が結
晶破壊をほとんど生じることなく強誘電体2の全厚さを
渡って形成することができた。
【0045】尚、図において自発分極の方向を矢印d
(先端が正)で示し、分極反転領域の分極方向を矢印h
で示す。分極反転領域の形成後は電極61及び62を除
去する。
【0046】
【発明の効果】上述の本発明方法によって分極反転構造
を形成するときは、ミリメータオーダの厚さの板状非線
型光学結晶基板に対してその全厚さに渡って分極反転領
域を形成できることから位相整合を確実に行うことがで
き高変換効率のいわゆるバルク型SHGを構成できる。
【0047】そして、本発明においては、その光導波を
行う非線型光学結晶2の両主面2a及び2bに平行平面
を持たせ、全反射が生じるようにするかもしくは反射面
を形成して基本波を比較的長い距離に渡って伝搬させ、
非線型相互作用長を大とするので、2次高調波の変換効
率を大とすることができる。
【0048】また、この周期分極反転構造1を有する非
線型光学結晶2を含む例えば外部共振器を構成したの
で、基本波パワーを大とすることができ、変換効率を更
に高めることができる。
【0049】また、第1及び第2の対向電極11及び1
2を設けたことによって共振器の共振条件の調整と、共
鳴周波数の光を励起光源に戻し、光源励磁のインジェク
ションロックによる基本波周波数の固定を行うことがで
きることから、安定して変換効率を高めることができ
る。
【図面の簡単な説明】
【図1】本発明装置の一例の側面図である。
【図2】本発明装置の一例の上面図である。
【図3】本発明装置の他の例の側面図である。
【図4】本発明装置の他の例の上面図である。
【図5】本発明装置のさらに他の例の構成図である。
【図6】図5の例の模式的構成図である。
【図7】疑似位相条件とDBR条件の図式解である。
【図8】本発明装置のさらに他の例の側面図である。
【図9】本発明装置のさらに他の例の上面図である。
【図10】本発明方法の説明図である。
【符号の説明】
1 周期分極反転構造 2 板状非線型光学結晶 11 第1の対向電極 12 第2の対向電極
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01S 3/09 3/109 8934−4M

Claims (7)

    【特許請求の範囲】
  1. 【請求項1】 全厚さに渡る分極反転領域が形成された
    周期分極反転構造を有する板状非線型光学結晶を有して
    成り、 該板状非線型光学結晶を含む共振器が構成されて成るこ
    とを特徴とする波長変換装置。
  2. 【請求項2】 全厚さに渡る分極反転領域が形成された
    周期分極反転構造を有し、両主面が平行平面性に優れた
    板状非線型光学結晶を有して成り、 該板状非線型光学結晶の両主面で全反射させるか薄膜コ
    ーティングによって反射率を高め、これら両主面での繰
    返し反射によって上記周期分極反転構造による疑似位相
    整合条件を満足させながら基本波と光第2高周波の相互
    作用長を大にしたことを特徴とする波長変換装置。
  3. 【請求項3】 全厚さに渡る分極反転領域が形成された
    周期分極反転構造を有する板状非線型光学結晶を有し、 該板状非線型光学結晶の上記周期分極反転構造の形成部
    における光路を挟んで対向する第1の対向電極が設けら
    れて成ることを特徴とする波長変換装置。
  4. 【請求項4】 全厚さに渡る分極反転領域が形成された
    周期分極反転構造を有する板状非線型光学結晶と、基本
    波光源のレーザとを有し、 該板状非線型光学結晶の上記周期分極反転構造の形成部
    における光路を挟んで対向する第1の対向電極が設けら
    れ、 上記板状非線型光学結晶を含むリング外部共振器が構成
    され、上記第1の対向電極への印加電圧を調整して上記
    周期分極反転構造によるブラッグ反射条件を上記共振器
    の共鳴波長と一致させて上記基本波光源のレーザをイン
    ジェクションロッキングさせることを特徴とする波長変
    換装置。
  5. 【請求項5】 全厚さに渡る分極反転領域が形成された
    周期分極反転構造を有する板状非線型光学結晶と、基本
    波光源のレーザとを有し、 該板状非線型光学結晶の上記周期分極反転構造の形成部
    における光路を挟んで対向する第1の対向電極が設けら
    れ、 上記光路を挟んで他部に第2の対向電極が設けられ、上
    記板状非線型光学結晶を含む共振器が構成されて成るこ
    とを特徴とする波長変換装置。
  6. 【請求項6】 全厚さに渡る分極反転領域が形成された
    周期分極反転構造を有する板状非線型光学結晶を有して
    成り、 該板状非線型光学結晶の相対向する両端面が所要の曲面
    とされると共に反射面に形成されて共振器が構成され、 上記周期分極反転構造の分域壁が上記共振器の1の主た
    る光路と直交するようにしたことを特徴とする波長変換
    装置。
  7. 【請求項7】 単分域化された非線型光学結晶基体に、
    これを挟んで少なくとも一方が最終的に得る周期分極反
    転構造の周期パターンに対応するパターンとされた対向
    電極を設け、該対向電極間に300℃以下の温度下で1
    kV/mm〜100kV/mmの電界を印加して周期分
    極反射構造を形成し、 上記非線型光学結晶基体から全厚さに渡る分極反転領域
    が形成された周期分極反転構造を有する板状非線型光学
    結晶を得ることを特徴とする請求項1,2,3,4,5
    または6に記載の波長変換装置の製造方法。
JP9127992A 1992-04-10 1992-04-10 波長変換装置とその製造方法 Pending JPH05289137A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9127992A JPH05289137A (ja) 1992-04-10 1992-04-10 波長変換装置とその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9127992A JPH05289137A (ja) 1992-04-10 1992-04-10 波長変換装置とその製造方法

Publications (1)

Publication Number Publication Date
JPH05289137A true JPH05289137A (ja) 1993-11-05

Family

ID=14022025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9127992A Pending JPH05289137A (ja) 1992-04-10 1992-04-10 波長変換装置とその製造方法

Country Status (1)

Country Link
JP (1) JPH05289137A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127567A (ja) * 1995-10-26 1997-05-16 Hiromasa Ito 光デバイス
KR100284759B1 (ko) * 1993-09-28 2001-03-15 윤종용 제2고조파 발생장치
JP2006251086A (ja) * 2005-03-08 2006-09-21 Nippon Telegr & Teleph Corp <Ntt> 電磁波発生素子
WO2008114512A1 (ja) * 2007-03-22 2008-09-25 Panasonic Corporation レーザ波長変換装置及びこれを備えた画像表示装置
WO2011132414A1 (ja) * 2010-04-23 2011-10-27 パナソニック株式会社 波長変換レーザ光源及び画像表示装置
CN108319092A (zh) * 2018-03-30 2018-07-24 上海交通大学 利用周期性全反射实现准相位匹配的方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100284759B1 (ko) * 1993-09-28 2001-03-15 윤종용 제2고조파 발생장치
JPH09127567A (ja) * 1995-10-26 1997-05-16 Hiromasa Ito 光デバイス
JP2006251086A (ja) * 2005-03-08 2006-09-21 Nippon Telegr & Teleph Corp <Ntt> 電磁波発生素子
WO2008114512A1 (ja) * 2007-03-22 2008-09-25 Panasonic Corporation レーザ波長変換装置及びこれを備えた画像表示装置
US8125703B2 (en) 2007-03-22 2012-02-28 Panasonic Corporation Wavelength converter and image display with wavelength converter
WO2011132414A1 (ja) * 2010-04-23 2011-10-27 パナソニック株式会社 波長変換レーザ光源及び画像表示装置
US8456734B2 (en) 2010-04-23 2013-06-04 Panasonic Corporation Wavelength conversion laser light source and image display device
CN108319092A (zh) * 2018-03-30 2018-07-24 上海交通大学 利用周期性全反射实现准相位匹配的方法

Similar Documents

Publication Publication Date Title
US5289491A (en) Intracavity harmonic sub-resonator with extended phase matching range
EP0485187A2 (en) Second harmonic generator using a laser as a fundamental wave source
JP5395930B2 (ja) 広帯域光源装置
CA2324392C (en) In line periodically poled linbo3 (ppln), optical parametric oscillator (opo-dfg-opo) with common doubly resonant cavity
US7339722B2 (en) Hybrid nonlinear optical conversion and optical parametric oscillation
JP3616181B2 (ja) 光デバイス
EP0644636A2 (en) Wavelength conversion device
US20080044147A1 (en) Nonlinear optical device and method of forming
US6647033B1 (en) Optical parametric osicllators with improved beam quality
JPH05289137A (ja) 波長変換装置とその製造方法
US6647034B1 (en) Method to improve optical parametric oscillator beam quality
US6147793A (en) Backconversion-limited optical parametric oscillators
JPH06110095A (ja) ミリ波・サブミリ波発生方法ならびにその装置
JPH08304864A (ja) レーザの周波数倍増に基づくポンプの減損による自己安定化コンパクト光源
US5235456A (en) Tunable pulsed single longitudinal mode optical parametric oscillator
JP3300429B2 (ja) 第2次高調波光発生装置
Kato Parametric oscillation in LiB/sub 3/O/sub 5/pumped at 0.532 mu m
JPH06194708A (ja) Shg素子、shg装置およびshg素子の実効屈折率決定方法
JPH0651359A (ja) 波長変換素子、短波長レーザ装置および波長可変レーザ装置
JPH0566440A (ja) レーザ光源
US20090028195A1 (en) System and method for frequency conversion of coherent light
JPH0593931A (ja) 波長変換素子および短波長レーザ光源
JPH06194703A (ja) 波長変換素子
JPH03261924A (ja) 光導波路型第2高調波発生素子およびそれを用いたレーザ発振器
Holtom et al. Femtosecond optical parametric oscillators (OPOs) at 3 micrometersand beyond: design and performance issues related to crystal properties of KTP and similar materials