JPH0528744B2 - - Google Patents

Info

Publication number
JPH0528744B2
JPH0528744B2 JP62221668A JP22166887A JPH0528744B2 JP H0528744 B2 JPH0528744 B2 JP H0528744B2 JP 62221668 A JP62221668 A JP 62221668A JP 22166887 A JP22166887 A JP 22166887A JP H0528744 B2 JPH0528744 B2 JP H0528744B2
Authority
JP
Japan
Prior art keywords
silica
less
particles
filler
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62221668A
Other languages
Japanese (ja)
Other versions
JPS6462362A (en
Inventor
Teijiro Matsumoto
Ryusuke Araki
Masamichi Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP22166887A priority Critical patent/JPS6462362A/en
Publication of JPS6462362A publication Critical patent/JPS6462362A/en
Publication of JPH0528744B2 publication Critical patent/JPH0528744B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Silicon Compounds (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は半導体等の電子部品封止用合成樹脂組
成物に関する。更に詳しくは該組成物の充填剤に
適した角の丸まつたシリカ微粉末粒子、及びそれ
と熱硬化性樹脂を主成分とする合成樹脂組成物に
関する。 (従来の技術) (発明が解決しようとする問題点) 半導体及び電子部品はそれを外部環境から保護
するためにセラミツクパツケージまたは樹脂など
で封止されているが、この封止材料についてはコ
スト、生産性等の面から無機質充填剤を含有させ
た合成樹脂組成物によるものが普及している。 この合成樹脂組成物は、エポキシ樹脂などの熱
硬化性樹脂とシリカなどの無機質充填剤とから構
成されているが、これらの組成物は熱膨張係数が
小さく、良熱伝導性、低透湿性で機械的特性等に
すぐれ、しかも低コストのものが望ましいことか
ら、この無機質充填剤をその成形性の許す限り、
できるだけ多量に配合する必要がある。 しかしながら、充填剤として用いる無機質粉末
は主としてその塊状物を、適度の大きさと分布を
持つた粉末に粉砕するため、その形状は一般に角
をもつており、これとエポキシ樹脂等の熱硬化性
樹脂を混合して封止材料とする場合その流動性が
十分ではなく、充填性や作業性が悪いうえ、成型
加工工程の装置類を著しく摩耗するという欠点を
持つていた。また充填剤粒子の鋭くとがつた角が
半導体素子表面を傷つけ、そのことがソフトエラ
ーを引き起こす原因となるとの報告も出されてい
る。 一般に熱硬化性樹脂が硬化する際に収縮するこ
とにより応力が生じるが、この応力のほか半導体
から発生する熱により、半導体素子と封止樹脂組
成物の熱膨張係数の差が大きいために生ずる応力
が存在する。これらの内部応力のうち、後者の応
力を緩和するために、通常熱膨張率の小さい無機
質充填剤を、出来るだけ多量に充填することが望
ましい。しかしながらこの面においても粉砕によ
つて製造される、角ばつた充填剤では充填量を増
やすと、極端に流動性が低下するため、量的に制
約を受けざるを得ず、内部応力の緩和には役立た
ない。 このような問題点を解決するため、例えば、特
開昭58−145613号公報または、特開昭61−118131
号公報によれば、結晶微粉末シリカをガス流と共
にノズルから噴出させ、粒子の分散、溶融、冷却
等を適当な条件に制御して、球状の溶融微粉末シ
リカをつくる方法が提案されている。しかしなが
ら、この方法はコストが高くなる欠点を有する。 一方、結晶タイプの球状シリカの製造例は、現
在まで提案されていない。 このような状況に鑑みて、本発明者らは丸味を
帯びたシリカ微粉末粒子の製造法について検討
し、特願昭62−117612(シリカ微粉末粒子の製造
方法)として昭和62年5月13日に出願した。特願
昭62−117612の方法によつて得られるシリカ微粉
末は、最大粒子径が300μm以下の丸味を帯びた
粒子で、半導体素子封止用合成樹脂組成物の充填
剤としてすぐれたものである。 その後本発明者らが鋭意、検討を続けたとこ
ろ、最大粒子径が200μm以下で、平均粒子径が
7μm以上35μm以下、かつ、微粒子シリカの含有
量が3μm以下のものを12重量%(以下重量%で
ある。)以上、1μm以下のものを2%以上含有す
るシリカ微粉末が充填剤としてよりすぐれた特性
を持つことを知り、本発明に到達した。 さらに本発明は、前述のようにして得られた充
填剤を熱硬化性樹脂に配合し、充填性や作業性が
良く、成形加工工程での装置の摩耗も少なくて、
かつ内部応力の小さいトランスフアー成形に適し
た熱硬化性樹脂組成物を提供しようとするもので
ある。 (問題点を解決するための手段) すなわち本発明の第1は、破砕状シリカに外部
から押圧力を加えながら水系媒体存在下で粒子同
志を摩砕することにより、シリカ粒子の角をとつ
て丸味をおびさせたシリカ微粉末であつて、最大
粒子径が200μm以下で平均粒子径が7μm以上35μ
m以下であり、かつ、3μm以下の微粒子シリカ
を12%以上、1μm以下の微粒子シリカを2%以
上含有することを特徴とするシリカ充填剤であ
り、本発明のシリカ充填剤は熱硬化性樹脂に配合
すると、良好な流動性を付与するとともに高配合
をも可能にするものである。 第2は熱硬化性樹脂100重部部と、第1発明の
シリカ充填剤60〜600重量部を含有する樹脂組成
物である。 本発明に用いる破砕状シリカは、結晶シリカ、
溶融シリカのいずれでも構わず、結晶シリカとし
ては一般に天然の高純度の珪石、珪砂、水晶等が
用いられ、溶融シリカは、これら結晶シリカを高
温で溶融してインゴツトにしたものである。通常
これらをジヨークラツシヤー、ロールクラツシヤ
ー等で粗砕し、これら粗砕品をさらにボールミル
等で微粉砕し、破砕状シリカとして本発明に用い
る。 ここで得られる破砕状微粉砕シリカの平均粒子
径は、最終製品の角をとつて丸味をおびたシリカ
充填剤のそれよりもやや大きくしておく必要があ
る。 本発明のシリカ充填剤は、熱硬化性樹脂と配合
すると流動性が著しく良くなるのであるが、その
作用機構は明確ではない。しかし、粒子の角がと
れ丸くなることのほかに、生成するサブミクロン
粒子を含む微粒子が、最適な粒度分布を形成する
ために大いに貢献しているものと考えられる。 本発明においては、破砕シリカに外部から押圧
力を加えながら、水系媒体存在下で粒子同志を摩
砕するが、水系媒体が存在しないと押圧力が粉体
に円滑に伝達されず、摩砕の効率は極めて低くな
る。通常破砕状シリカに対して0.5〜18%、好ま
しくは3〜13%の水系媒体の存在が、摩砕に対し
て有効に作用する。 使用する水系媒体としてはシリカ微粒子同志が
相互に作用しあい、外部から粉体への圧力が伝達
し易い液体であればよく、水、アルコール類、鉱
油等の液状物質が有利に使用できるが、媒体のコ
スト、操作時の取扱い易さ、操作後の分離し易さ
などから、水単独、または水にエタノール、メタ
ノール等のアルコール類を溶かした媒体が工業的
に最も有利に使用できる。 また、外部からローラーに加える押圧力である
が、機械により押圧の仕方が異なるので数値的に
限定できないが、押圧力が余り強い場合、角とり
のみならず粒子の体積破壊がおき、粉砕が進行し
角とりが阻害される。また、余り弱い場合、角と
りの効率が低下してくるので、機器、原料、品種
(結晶質、非結晶)等に応じて、適切に決めれば
よい。また、数mm以下の粗砕品を直接この角とり
工程に送つて、所望粒度への粉砕と同時に角とり
操作をおこなうこともできる。 このように外部から押圧力を加えながら粒子ど
うしを摩砕する手段には種々の方法があるが、エ
ネルギーなどのコストあるいは効率性の面からみ
てローラーミルが最も有効に使用できる。 本発明のシリカ充填剤は最大粒子径が200μm
以下、好ましくは100μm以下であり、200μm以
上であると、半導体の樹脂封止の工程でつまりを
生ずるため使用できない。更に平均粒子は7μm
以上35μm以下、好ましくは12μm以上20μm以下
であり、7μm以下であつても35μm以上であつて
も、いずれも樹脂組成物の良好な流動性が損なわ
れる。 次に微粒子シリカの存在量であるが、3μm以
下のものが12%以上好ましくは14%以上、1μm
以下のものが2%以上好ましくは3%以上存在す
ると、良好な流動性が得られる。但し、3μm以
下の微粒子は必ずしも角をとつて丸味をおびる必
要はなく、破砕状微粒子でも良い。いずれの場合
もこれ以下であると、樹脂組成物の流動性は低下
してくる。上記、7〜35μmの平均粒子径及び、
所望の割合で微粒子が存在するシリカ充填剤は、
押圧力あるいは、回転数、水系媒体の量等を適宜
調節することにより得ることができるし、また、
3μm以下の破砕状シリカを本処理前又は途中ま
たは処理後に加えても得ることができる。 第2の発明の樹脂組成物は、第1の発明のシリ
カ充填剤を熱硬化性樹脂に配合させたものであ
る。熱硬化性樹脂としては、エポキシ樹脂、フエ
ノール樹脂、ポリエステル樹脂、シリコーン樹脂
等のいずれの樹脂も使用できるが、この中でエポ
キシ樹脂が工業的に有利に用いることが出来る。
これらの熱硬化性樹脂100重量部に、本発明のシ
リカ充填剤を60〜600重量部の範囲で配合すると
所望の樹脂組成物が得られる。60重量部以下で
は、内部応力低下の効果がみられず、600重量部
をこえると、樹脂の流動性が著しく低下するので
好ましくない。熱硬化性樹脂に充填剤を混練する
方法としては、通常ニーダー、ロールミル、ミキ
サー等を用いればよい。 (実施例) 次に本発明を実施例により、詳細に説明する。 〔充填剤の製造〕 実施例 1 粗砕結晶シリカをボールミルにより微粉砕し、
平均粒子径23.2μmの破砕状結晶シリカ500gを得
た。これをローラーミル(MPV−0.5型松本鋳造
鉄工所製)に仕込み、同時に水60mlを添加した。
ローラーの押圧力40Kg/cm(線圧)、ローラーと
底板とのクリアランス3mm、底板の回転数を
42rpmに設定して、1時間処理した。得られた処
理物を乾燥、解砕した結果、平均粒子径は19.4μ
mで、微粒子の存在量は3μm以下22.1%、1μm以
下4.4%であつた。なお粒度分布の測定はレーザ
ー回折式粒度分布測定装置(CILAS、モデル
715)を用いて行つた。 このようにして製造されたシリカ充填剤の電子
顕微鏡写真を第1図に示した。 実施例 2 実施例1で用いた破砕状結晶シリカの粒子径及
びローラーミル処理条件を変えて、第1表のA、
B、C、D、Eに示すシリカ充填剤を製造した。
(Industrial Application Field) The present invention relates to a synthetic resin composition for encapsulating electronic components such as semiconductors. More specifically, the present invention relates to rounded silica fine powder particles suitable as a filler in the composition, and to a synthetic resin composition containing the same and a thermosetting resin as main components. (Prior Art) (Problems to be Solved by the Invention) Semiconductors and electronic components are encapsulated with ceramic packages or resin to protect them from the external environment, but these encapsulation materials are expensive and expensive. From the viewpoint of productivity, etc., synthetic resin compositions containing inorganic fillers have become popular. This synthetic resin composition is composed of a thermosetting resin such as an epoxy resin and an inorganic filler such as silica, but these compositions have a small coefficient of thermal expansion, good thermal conductivity, and low moisture permeability. Since it is desirable to have excellent mechanical properties and low cost, we use this inorganic filler as long as its moldability allows.
It is necessary to mix as much as possible. However, since the inorganic powder used as a filler is mainly ground into powder with appropriate size and distribution, its shape generally has corners, and thermosetting resins such as epoxy resins are used as fillers. When mixed to form a sealing material, the fluidity is insufficient, the filling and workability are poor, and the equipment in the molding process is significantly worn out. It has also been reported that the sharp edges of filler particles can damage the surface of semiconductor devices, causing soft errors. Generally, stress is generated by shrinkage of thermosetting resin when it cures, but in addition to this stress, stress is generated due to the large difference in thermal expansion coefficient between the semiconductor element and the encapsulating resin composition due to the heat generated from the semiconductor. exists. In order to alleviate the latter of these internal stresses, it is generally desirable to fill in as much inorganic filler as possible, which has a small coefficient of thermal expansion. However, in this aspect as well, with square fillers produced by pulverization, increasing the filling amount causes an extreme decrease in fluidity, so there is no choice but to be limited in quantity, and it is difficult to alleviate internal stress. is of no use. In order to solve such problems, for example, Japanese Patent Application Laid-Open No. 58-145613 or Japanese Patent Application Laid-Open No. 61-118131
According to the publication, a method is proposed in which spherical fused silica powder is produced by jetting crystalline fine powder silica from a nozzle together with a gas flow and controlling particle dispersion, melting, cooling, etc. under appropriate conditions. . However, this method has the disadvantage of high cost. On the other hand, no example of producing crystalline type spherical silica has been proposed to date. In view of this situation, the present inventors studied a method for manufacturing rounded silica fine powder particles, and filed a patent application on May 13, 1988 as Japanese Patent Application No. 62-117612 (Method for manufacturing silica fine powder particles). I applied on the day. The fine silica powder obtained by the method of Japanese Patent Application No. 117612/1987 has rounded particles with a maximum particle diameter of 300 μm or less, and is excellent as a filler for synthetic resin compositions for encapsulating semiconductor devices. . After that, the inventors continued their studies and found that the maximum particle size was 200 μm or less, and the average particle size was
Fine silica powder containing 12% by weight or more (hereinafter referred to as weight%) of silica particles with a particle diameter of 7 μm or more and 35 μm or less and a content of 3 μm or less and 2% or more of silica particles with a particle diameter of 1 μm or less is better as a filler. The present invention was developed based on the knowledge that the present invention has certain characteristics. Furthermore, in the present invention, the filler obtained as described above is blended into a thermosetting resin, which has good filling properties and workability, and reduces wear on equipment during the molding process.
Another object of the present invention is to provide a thermosetting resin composition that has low internal stress and is suitable for transfer molding. (Means for Solving the Problems) That is, the first aspect of the present invention is to grind the particles together in the presence of an aqueous medium while applying external pressure to the crushed silica, thereby removing the corners of the silica particles. A fine rounded silica powder with a maximum particle size of 200μm or less and an average particle size of 7μm or more and 35μm.
m or less, and contains 12% or more of fine silica particles of 3 μm or less, and 2% or more of fine silica particles of 1 μm or less, and the silica filler of the present invention is a thermosetting resin. When blended with the above, it not only provides good fluidity but also enables high blending. The second is a resin composition containing 100 parts by weight of a thermosetting resin and 60 to 600 parts by weight of the silica filler of the first invention. The crushed silica used in the present invention includes crystalline silica,
Any type of fused silica may be used, but natural high-purity silica stone, silica sand, crystal, etc. are generally used as the crystalline silica, and the fused silica is obtained by melting these crystalline silicas at a high temperature to form an ingot. Usually, these are coarsely crushed using a dior crusher, roll crusher, etc., and these coarsely crushed products are further finely crushed using a ball mill, etc., and used as crushed silica in the present invention. The average particle diameter of the crushed finely ground silica obtained here must be slightly larger than that of the rounded silica filler of the final product. The silica filler of the present invention significantly improves fluidity when mixed with a thermosetting resin, but its mechanism of action is not clear. However, in addition to the rounded corners of the particles, it is thought that the generated fine particles, including submicron particles, greatly contribute to the formation of an optimal particle size distribution. In the present invention, the particles are ground together in the presence of an aqueous medium while applying a pressing force to the crushed silica from the outside. However, in the absence of an aqueous medium, the pressing force is not smoothly transmitted to the powder, and the grinding process is interrupted. Efficiency will be extremely low. Usually, the presence of an aqueous medium of 0.5 to 18%, preferably 3 to 13%, based on the crushed silica, has an effective effect on the grinding. The aqueous medium to be used may be any liquid that allows fine silica particles to interact with each other and easily transmits pressure from the outside to the powder, and liquid substances such as water, alcohols, and mineral oil can be advantageously used. From the viewpoint of cost, ease of handling during operation, ease of separation after operation, etc., water alone or a medium prepared by dissolving an alcohol such as ethanol or methanol in water is most advantageously used industrially. In addition, the pressure applied to the roller from the outside cannot be numerically limited because the method of pressure differs depending on the machine, but if the pressure is too strong, not only the corners will be removed, but the volume of the particles will also be destroyed, and pulverization will progress. Cornering is inhibited. Furthermore, if it is too weak, the efficiency of cornering will decrease, so it should be determined appropriately depending on the equipment, raw materials, type (crystalline, amorphous), etc. Furthermore, it is also possible to send coarsely crushed products of several mm or less directly to this squaring process, and perform the squaring operation at the same time as crushing to a desired particle size. Although there are various methods for grinding particles together while applying pressure from the outside, a roller mill is the most effective method in terms of energy cost and efficiency. The silica filler of the present invention has a maximum particle size of 200 μm.
The thickness is preferably 100 .mu.m or less; if it is 200 .mu.m or more, it cannot be used because it will cause clogging during the process of resin encapsulation of semiconductors. Furthermore, the average particle is 7μm
It is 35 μm or more, preferably 12 μm or more and 20 μm or less, and whether it is 7 μm or less or 35 μm or more, the good fluidity of the resin composition is impaired. Next, regarding the amount of fine silica particles present, 12% or more, preferably 14% or more, of 3 μm or less, and 1 μm or less
Good fluidity can be obtained when the following is present in an amount of 2% or more, preferably 3% or more. However, the fine particles of 3 μm or less do not necessarily have to have rounded corners, and may be crushed fine particles. In either case, if it is less than this, the fluidity of the resin composition will decrease. Above, an average particle diameter of 7 to 35 μm, and
A silica filler with fine particles present in a desired proportion is
It can be obtained by appropriately adjusting the pressing force, rotation speed, amount of aqueous medium, etc.
It can also be obtained by adding crushed silica of 3 μm or less before, during, or after this treatment. The resin composition of the second invention is one in which the silica filler of the first invention is blended with a thermosetting resin. As the thermosetting resin, any resin such as epoxy resin, phenol resin, polyester resin, silicone resin, etc. can be used, and among these resins, epoxy resin can be used industrially advantageously.
A desired resin composition can be obtained by blending 60 to 600 parts by weight of the silica filler of the present invention with 100 parts by weight of these thermosetting resins. If it is less than 60 parts by weight, no effect of reducing internal stress will be observed, and if it exceeds 600 parts by weight, the fluidity of the resin will be significantly reduced, which is not preferable. As a method for kneading the filler into the thermosetting resin, a kneader, roll mill, mixer, etc. may generally be used. (Example) Next, the present invention will be described in detail with reference to Examples. [Manufacture of filler] Example 1 Coarsely crushed crystalline silica was finely pulverized using a ball mill,
500 g of crushed crystalline silica having an average particle size of 23.2 μm was obtained. This was placed in a roller mill (MPV-0.5 model manufactured by Matsumoto Cast Iron Works), and 60 ml of water was added at the same time.
The pressing force of the roller is 40Kg/cm (linear pressure), the clearance between the roller and the bottom plate is 3mm, and the number of rotations of the bottom plate is
It was set at 42 rpm and processed for 1 hour. As a result of drying and crushing the obtained processed material, the average particle size was 19.4μ
m, the amount of fine particles present was 22.1% below 3 μm and 4.4% below 1 μm. The particle size distribution was measured using a laser diffraction particle size distribution analyzer (CILAS, model
715). An electron micrograph of the silica filler thus produced is shown in FIG. Example 2 By changing the particle size of the crushed crystalline silica used in Example 1 and the roller mill treatment conditions, A,
Silica fillers shown in B, C, D, and E were produced.

〔樹脂組成物の製造〕[Manufacture of resin composition]

実施例 6〜10 実施例1〜2で製造した充填剤(破砕状結晶シ
リカをローラーミルで処理して得たもの。)をエ
ポキシ樹脂100重量部に対し、第2表に示す重量
部を配合し、ニーダーにて15分混練後冷却、粉砕
し、エポキシ樹脂組成物を得た。これらの組成物
の流動性を見るため、EMMI規格1−66に基い
てスパイラルフローを測定した。
Examples 6-10 The filler produced in Examples 1-2 (obtained by processing crushed crystalline silica with a roller mill) was mixed with 100 parts by weight of epoxy resin in the parts by weight shown in Table 2. After kneading in a kneader for 15 minutes, the mixture was cooled and pulverized to obtain an epoxy resin composition. In order to examine the fluidity of these compositions, spiral flow was measured based on EMMI standard 1-66.

【表】 比較例 1〜4 実施例1及び実施例2D、2E及び実施例3で得
た結晶シリカ微粒子を充填剤に用いて、実施例6
〜10と同様にしてエポキシ樹脂組成物を得た。
(第3表)充填剤の配合量が600部を越えたり、平
均粒子径が小さ過ぎたり、なるいは1μm以下の
シリカ微粉末が2%以下などの条件では流動性が
悪くなることが明らかとなつた。
[Table] Comparative Examples 1 to 4 Using the crystalline silica fine particles obtained in Example 1, Examples 2D, 2E, and Example 3 as a filler, Example 6
An epoxy resin composition was obtained in the same manner as in 10.
(Table 3) It is clear that fluidity deteriorates when the amount of filler blended exceeds 600 parts, the average particle size is too small, or the content of silica fine powder of 1 μm or less is less than 2%. It became.

【表】【table】

【表】 実施例 11、12 破砕状溶融シリカをローラーミルで処理する実
施例4の方法で得た溶融シリカ微粒子を充填剤と
して用い、以後実施例6〜10と同様にしてエポキ
シ樹脂と配合し、第4表に示すエポキシ樹脂組成
物を得た。 比較例 5、6 比較例5は実施例4で得た溶融シリカ微粒子を
エポキシ樹脂100重量部に対し610部配合したも
の、比較例6は破砕状溶融シリカをローラーミル
で処理しないままのものを充填剤として用いた場
合である。結晶シリカ微粒子における比較例1〜
4の場合と同じように、溶融シリカ微粒子を用い
た場合も、第4表に示すように流動性の低下が見
られた。
[Table] Examples 11 and 12 Fused silica fine particles obtained by the method of Example 4 in which crushed fused silica was processed with a roller mill were used as a filler, and thereafter mixed with an epoxy resin in the same manner as in Examples 6 to 10. , an epoxy resin composition shown in Table 4 was obtained. Comparative Examples 5 and 6 Comparative Example 5 is one in which 610 parts of the fused silica fine particles obtained in Example 4 are blended with 100 parts by weight of epoxy resin, and Comparative Example 6 is one in which crushed fused silica is not treated with a roller mill. This is the case when it is used as a filler. Comparative example 1 for crystalline silica fine particles
As in the case of No. 4, when fused silica fine particles were used, a decrease in fluidity was observed as shown in Table 4.

【表】 実施例 13 実施例1、実施例3、実施例4、実施例5で得
られた充填剤を各々70重量%の割合で含有するエ
ポキシ樹脂組成物を製造し、これらを50mmφの金
型に充填して加圧成型し、外径50mm、高さ10mmの
タブレツトを作製した。これを用いて摩耗試験を
実施した。結果を第3図、第4図に示した。本発
明の角をとり、丸味をおびたシリカ微粒子を充填
剤に用いた場合、明らかに摩耗性が改善されてい
た。 (発明の効果) 本発明のシリカ充填剤を含有する熱硬化性樹脂
組成物を、半導体等の電子部品の封止に用いるこ
とにより、トランスフアー成型工程における流動
性、摩耗性が改善されるうえ、封止物の内部応力
の低下にも役立ち、作業性、性能の両面で改善を
はかることができる。
[Table] Example 13 An epoxy resin composition containing 70% by weight of the fillers obtained in Examples 1, 3, 4, and 5 was produced, and these were mixed into a 50 mmφ gold plate. The mixture was filled into a mold and molded under pressure to produce a tablet with an outer diameter of 50 mm and a height of 10 mm. A wear test was conducted using this. The results are shown in Figures 3 and 4. When the rounded silica particles of the present invention were used as a filler, the abrasion properties were clearly improved. (Effects of the Invention) By using the thermosetting resin composition containing the silica filler of the present invention for sealing electronic components such as semiconductors, fluidity and abrasion resistance in the transfer molding process are improved, and This also helps reduce the internal stress of the sealed product, and can improve both workability and performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法により角をとり、丸味を
帯びた破砕状結晶シリカ微粒子の結晶の構造を示
す電子顕微鏡写真、第2図は本発明の方法を実施
する前の破砕状結晶シリカ微粒子の結晶の構造を
示す電子顕微鏡写真である。第3図、第4図は本
発明の方法を用いて製造した充填剤を配合して得
られたエポキシ樹脂組成物のTaber摩耗試験の結
果を示す。
FIG. 1 is an electron micrograph showing the crystal structure of crushed crystalline silica fine particles with rounded corners obtained by the method of the present invention, and FIG. 2 is an electron micrograph showing the crystal structure of crushed crystalline silica fine particles before carrying out the method of the present invention. This is an electron micrograph showing the crystal structure of . Figures 3 and 4 show the results of Taber abrasion tests of epoxy resin compositions prepared by incorporating fillers produced using the method of the present invention.

Claims (1)

【特許請求の範囲】 1 破砕状シリカに外部から押圧力を加えながら
水系媒体存在下で粒子同志を摩砕することによつ
てシリカ粒子の角をとり、丸味をおびさせたシリ
カ微粉末であつて、最大粒子径が200μm以下で
平均粒子径が7μm以上35μm以下であり、かつ、
3μm以下の微粒子シリカを12重量%以上、1μm
以下の微粒子シリカを2重量%以上含有するシリ
カ充填剤と熱硬化性樹脂を主たる成分とし、熱硬
化性樹脂100重量部と該シリカ充填剤60〜600重量
部を含有する樹脂組成物。 2 熱硬化性樹脂がエポキシ樹脂である特許請求
範囲1記載の組成物。
[Scope of Claims] 1. A fine silica powder obtained by grinding the particles together in the presence of an aqueous medium while applying an external pressing force to crushed silica, thereby rounding the corners of the silica particles and giving them a rounded appearance. The maximum particle size is 200 μm or less, the average particle size is 7 μm or more and 35 μm or less, and
12% by weight or more of fine silica particles of 3 μm or less, 1 μm
A resin composition containing 100 parts by weight of the thermosetting resin and 60 to 600 parts by weight of the silica filler, the main components of which are a silica filler containing 2% by weight or more of the following particulate silica and a thermosetting resin. 2. The composition according to claim 1, wherein the thermosetting resin is an epoxy resin.
JP22166887A 1987-09-03 1987-09-03 Filler and polymer composition containing same Granted JPS6462362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22166887A JPS6462362A (en) 1987-09-03 1987-09-03 Filler and polymer composition containing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22166887A JPS6462362A (en) 1987-09-03 1987-09-03 Filler and polymer composition containing same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2416152A Division JPH062569B2 (en) 1990-12-31 1990-12-31 Silica fine powder

Publications (2)

Publication Number Publication Date
JPS6462362A JPS6462362A (en) 1989-03-08
JPH0528744B2 true JPH0528744B2 (en) 1993-04-27

Family

ID=16770394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22166887A Granted JPS6462362A (en) 1987-09-03 1987-09-03 Filler and polymer composition containing same

Country Status (1)

Country Link
JP (1) JPS6462362A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294765A (en) * 1988-05-20 1989-11-28 Nippon Retsuku Kk Epoxy resin composition
JP2513529B2 (en) * 1990-09-19 1996-07-03 東芝セラミックス株式会社 Method of manufacturing filler for sealing electronic parts
JPH062569B2 (en) * 1990-12-31 1994-01-12 住友精化株式会社 Silica fine powder
CA2087911C (en) * 1992-01-24 1999-06-29 Kiyoshi Abe Spherical granules of porous silica or silicate, process for the production thereof, and applications thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829858A (en) * 1981-08-13 1983-02-22 Nitto Electric Ind Co Ltd Resin composition for sealing electronic component
JPS58138740A (en) * 1982-02-15 1983-08-17 Denki Kagaku Kogyo Kk Resin composition
JPS5922955A (en) * 1982-07-29 1984-02-06 Toshiba Chem Corp Resin composition for sealing semiconductor
JPS6274924A (en) * 1985-09-30 1987-04-06 Toshiba Corp Epoxy resin composition for sealing semiconductor device
JPS6296567A (en) * 1985-10-24 1987-05-06 Denki Kagaku Kogyo Kk Semiconductor sealing resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829858A (en) * 1981-08-13 1983-02-22 Nitto Electric Ind Co Ltd Resin composition for sealing electronic component
JPS58138740A (en) * 1982-02-15 1983-08-17 Denki Kagaku Kogyo Kk Resin composition
JPS5922955A (en) * 1982-07-29 1984-02-06 Toshiba Chem Corp Resin composition for sealing semiconductor
JPS6274924A (en) * 1985-09-30 1987-04-06 Toshiba Corp Epoxy resin composition for sealing semiconductor device
JPS6296567A (en) * 1985-10-24 1987-05-06 Denki Kagaku Kogyo Kk Semiconductor sealing resin composition

Also Published As

Publication number Publication date
JPS6462362A (en) 1989-03-08

Similar Documents

Publication Publication Date Title
JPS6157347B2 (en)
CN103937294A (en) Preparation method of silicon micropowder for high-density integrated circuit packaging
JPS644540B2 (en)
JPH0528744B2 (en)
MY121140A (en) Method of producing epoxy for molding semiconductor device, molding material and semiconductor device
JPH07206983A (en) Epoxy resin composition, its production and semiconductor apparatus obtained by using the composition
JPH03247635A (en) Silica filler
JPS6296567A (en) Semiconductor sealing resin composition
JP3445707B2 (en) Siliceous filler and its production method
JPS635429B2 (en)
JP4634083B2 (en) Manufacturing method of tablets for semiconductor encapsulation
JPH0368067B2 (en)
JPH0460053B2 (en)
JP2000001602A (en) Resin composition for sealing, and semiconductor device
JP2958402B2 (en) Silica filler for semiconductor resin encapsulation and method for producing the same
JP2000001601A (en) Resin composition for sealing and semiconductor device
JPS6296569A (en) Semiconductor sealing resin composition
JPH02158637A (en) Silica filler and sealing resin composition using the same
EP4317058A1 (en) Aluminum nitride granular powder and resin composition
JPH11349790A (en) Sealing resin composition and semiconductor device
CN111892058B (en) Superfine silicon powder for surface mount discrete device and preparation method thereof
JPH11323096A (en) Resin composition for sealing use
EP1498244B1 (en) Method for producing a semiconductor-molding tablet
JPH07103263B2 (en) Silica for filling sealing resin
JPS6065041A (en) Inorganic sphere and composition thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080427

Year of fee payment: 15