JPH05287340A - Iron-making method - Google Patents

Iron-making method

Info

Publication number
JPH05287340A
JPH05287340A JP9315492A JP9315492A JPH05287340A JP H05287340 A JPH05287340 A JP H05287340A JP 9315492 A JP9315492 A JP 9315492A JP 9315492 A JP9315492 A JP 9315492A JP H05287340 A JPH05287340 A JP H05287340A
Authority
JP
Japan
Prior art keywords
iron
molten
melt
reduced
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9315492A
Other languages
Japanese (ja)
Inventor
Naoki Tokumitsu
直樹 徳光
Masataka Yano
正孝 矢野
Yu Fuwa
祐 不破
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9315492A priority Critical patent/JPH05287340A/en
Publication of JPH05287340A publication Critical patent/JPH05287340A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To produce a high purity molten iron having small content of impurities by using a pre-reduced iron ore as a molten state, separating gangue content, transferring it to a reduction vessel, reducing the iron oxide and producing the molten iron. CONSTITUTION:The iron ore is pre-reduced to about 15-30% reduction ratio by exhaust gas from the reduction vessel, and from the pre-reduced iron ore, the iron content is extracted at <=1400 deg.C as the molten body containing CaO-FeO as the main component. Successively, the extracted molten body is shifted to the reduction vessel and then, the gangue content is separated from the molten body. The molten body after separating the gangue content is brought into contact with the carbon-containing molten iron or is added with the carbonaceous material, and the iron-oxide in the molten body is reduced to produce the molten iron, and the obtd. molten iron is taken out from the reduction vessel, By this method, the iron-making process is eliminated and the refining process is simplified to obtain a high purity molten iron.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉄鉱石を還元して高純
度な溶鉄を製造する方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing molten iron of high purity by reducing iron ore.

【0002】[0002]

【従来の技術】従来、鉄を得る方法として、溶鉱炉で還
元し炭素飽和の銑鉄を製造するか、鉄鉱石を固体状態で
還元してスポンジ鉄を製造する方法が行われている。前
者の高炉法では、過剰還元となるために溶銑中の炭素、
珪素、燐等の不要有害な不純物が大量に鉄に溶解するの
で、精錬が複雑かつ大がかりになる。
2. Description of the Related Art Conventionally, as a method for obtaining iron, a method of producing carbon-saturated pig iron by reduction in a blast furnace or a method of producing iron sponge by reducing iron ore in a solid state has been carried out. In the former blast furnace method, carbon in the hot metal,
Since a large amount of unnecessary and harmful impurities such as silicon and phosphorus dissolve in iron, refining becomes complicated and large-scale.

【0003】また、後者のスポンジ鉄を得る方法は、鉄
鉱石に介在する脈石等の狭雑物が分離されていないの
で、溶解製鋼時に狭雑物を分離する必要がある。狭雑物
が多い原料は、溶解製鋼が困難なため事実上使えない。
In the latter method for obtaining sponge iron, since impurities such as gangue intervening in iron ore have not been separated, it is necessary to separate impurities during molten steelmaking. Raw materials containing many impurities are practically unusable because melting steelmaking is difficult.

【0004】一方、予備還元した鉄鉱石を溶解後、還元
する方法としては米国特許3,264,096号公報の
発明がある。しかし、この方法は予備還元鉄鉱石を溶解
した時に鉄鉱石中の脈石を分離する操作を行わないの
で、CaO−FeOを主成分とする融体として低温還元
することができず、不純物が多くて、熱損失、耐火物溶
損が大きくなる欠点がある。
On the other hand, there is an invention of US Pat. No. 3,264,096 as a method of dissolving pre-reduced iron ore and then reducing it. However, since this method does not perform the operation of separating the gangue in the iron ore when the pre-reduced iron ore is melted, it cannot be reduced at a low temperature as a melt containing CaO-FeO as a main component, and many impurities are contained. As a result, there is a drawback that heat loss and melting loss of refractory material increase.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は鉄鉱石
を原料として、従来の製鉄方法がもつ前述の原理的な問
題を伴うことのない、脈石分離を施した、かつ不純物含
有量が少ない溶鉄を製造する方法を提供することにあ
る。
DISCLOSURE OF THE INVENTION An object of the present invention is to use iron ore as a raw material, to which gangue separation has been applied and which has an impurity content without causing the above-mentioned theoretical problems of the conventional iron making method. It is to provide a method for producing less molten iron.

【0006】[0006]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、鉄鉱石を還元容器からの排出ガスで予備還元する
第一工程と、第一工程で予備還元された鉄鉱石から鉄分
を1400℃以下の温度でCaO−FeOを主成分とす
る融体として抽出する第二工程と、第二工程で抽出され
た融体を還元容器に移送し、その際、融体から脈石分を
分離する第三工程と、第三工程で得られた融体を炭素含
有溶鉄に接触させまたは/かつ炭素材を添加して融体中
の酸化鉄を還元し、溶鉄を得る第四工程と、第四工程で
生成した溶鉄を還元容器から取り出す第五工程とからな
ることを特徴とする製鉄方法である。
The gist of the present invention is to provide a first step of pre-reducing iron ore with exhaust gas from a reducing container, and an iron content of 1400 from the iron ore pre-reduced in the first step. A second step of extracting as a melt containing CaO-FeO as a main component at a temperature of ℃ or less, and the melt extracted in the second step is transferred to a reducing container, at which time, gangue is separated from the melt. And a third step of bringing the melt obtained in the third step into contact with molten iron containing carbon or / and adding a carbon material to reduce iron oxide in the melt to obtain molten iron, The iron making method is characterized by comprising a fifth step of taking out the molten iron produced in the four steps from the reduction container.

【0007】[0007]

【作用】従来の方法には、脈石を分離しないで還元して
いたため、珪素、燐等の有害不純物まで過剰還元してし
まう欠点や硫黄等の不純物除去が不十分という欠点があ
る。それに対して、本発明の技術的思想は鉱石中の鉄分
のみを溶融・抽出することにより、脈石分を先に分離
し、低温、高精錬能の融体の状態で還元することによ
り、過剰還元を防止して燐、珪素等の不純物を鉄中に入
れないところにある。 第一工程は、鉄鉱石を予備還元する工程である。 鉄鉱石は粉状でも塊状でもよい。予備還元反応容器は鉄
鉱石の形態に応じて選択する。即ち、粉状鉄鉱石の場合
には流動層またはロータリーキルンを、塊状の場合には
ロータリーキルンまたはシャフト炉を採用する。
According to the conventional method, since the gangue is reduced without being separated, it has a drawback that harmful impurities such as silicon and phosphorus are excessively reduced and that impurities such as sulfur are insufficiently removed. On the other hand, the technical idea of the present invention is that by melting and extracting only the iron content in the ore, the gangue content is first separated, and reduced at a low temperature and in the state of a high refining capacity melt, It is in a place where impurities such as phosphorus and silicon are not introduced into iron by preventing reduction. The first step is a step of pre-reducing iron ore. The iron ore may be powdery or lumpy. The preliminary reduction reaction vessel is selected according to the form of the iron ore. That is, a fluidized bed or a rotary kiln is used in the case of powdery iron ore, and a rotary kiln or a shaft furnace is used in the case of lumps.

【0008】また、還元剤としては還元容器からの発生
ガスを使用する。還元率は15%以上30%以下とす
る。鉱物としてはウスタイトまでの予備還元で十分であ
り、それ以上の高還元率は必要ない。この予備還元工程
から排出されるガスは回収して燃料または発電に利用で
きる。
The gas generated from the reducing container is used as the reducing agent. The reduction rate is 15% or more and 30% or less. As minerals, pre-reduction up to wustite is sufficient and no higher reduction rate is required. The gas discharged from this preliminary reduction step can be recovered and used as fuel or power generation.

【0009】第二工程は、予備還元された鉄鉱石から
鉄分を1400℃以下の温度でCaO−FeOを主成分
とする融体として抽出する工程である。融体の組成はC
aOが15〜50%、FeOが50〜80%を主成分と
し、その他SiO2 ,Al23 ,MgO等を各10%
以下含んでいてもよい。
The second step is a step of extracting iron from the pre-reduced iron ore at a temperature of 1400 ° C. or lower as a melt containing CaO--FeO as a main component. The composition of the melt is C
aO is 15 to 50% FeO is composed mainly of 50-80%, other SiO 2, Al 2 O 3, MgO, or the like each 10%
The following may be included.

【0010】また、Na2 O分を15%以下添加すれ
ば、より反応を低温にできるので有利である。Na2
の添加は燐、硫黄の除去にも有利になる。添加はNa2
CO3を用いて行うのが便利である。本融体は従来の製
鉄スラグよりも低温で溶融し、粘度が低く取扱いが容易
な点が特徴である。しかも、極めて還元反応速度が大き
く、かつ精錬能が大きいので、次工程以後を有利に操業
できる。
It is advantageous to add Na 2 O in an amount of 15% or less because the reaction can be performed at a lower temperature. Na 2 O
The addition of is also advantageous for removing phosphorus and sulfur. Add Na 2
It is convenient to use CO 3 . This melt melts at a lower temperature than conventional iron-making slag, has a low viscosity, and is easy to handle. Moreover, since the reduction reaction rate is extremely high and the refining ability is large, the subsequent steps can be advantageously operated.

【0011】なお、本融体に使用するCaO分は後述す
るの還元工程から回収されるCaOをリサイクルして
使用する。ただし、不足分は新たに追加する。一方、鉄
鉱石中の脈石分は予備還元鉱石からCaO−FeOを主
成分とする融体を生成させるときに分離される。すなわ
ち、予備還元鉱石中のウスタイトに比較して脈石分であ
るSiO2 ,Al2 3 がCaO−FeOを主成分とす
る融体に溶解する速度が遅いために分離可能となるので
ある。
The CaO content used in this melt is obtained by recycling the CaO recovered from the reduction step described later. However, the shortfall will be newly added. On the other hand, the gangue component in the iron ore is separated when the melt containing CaO-FeO as the main component is produced from the pre-reduced ore. That is, as compared with wustite in the pre-reduced ore, the gangue component SiO 2 , Al 2 O 3 dissolves in the melt containing CaO—FeO as the main component at a slower rate, so that it can be separated.

【0012】また、本工程での温度は分離を完全にする
ために低い方がよい。1400℃より高いと脈石も同時
に溶解してしまう。従って、1400℃以下が必要であ
る。できれば、1200℃以下とすることが好ましい。
操業温度を下げるためにNa2 CO3 ,K2 CO3 等の
アルカリ金属炭酸塩、NaCl,KCl等のアルカリ金
属塩化物をフラックスとして15%以下添加すれば、さ
らに低温にすることが可能である。
The temperature in this step is preferably low in order to complete the separation. If it is higher than 1400 ° C, the gangue will be dissolved at the same time. Therefore, 1400 ° C. or lower is required. If possible, the temperature is preferably 1200 ° C. or lower.
If an alkali metal carbonate such as Na 2 CO 3 or K 2 CO 3 or an alkali metal chloride such as NaCl or KCl is added as a flux in an amount of 15% or less in order to lower the operation temperature, the temperature can be further lowered. ..

【0013】反応容器は、樋型または鍋型とし、加熱装
置、予備還元鉱石装入口、融体排出口を設ける。容器壁
は鋳鉄製、または耐火物とし、水冷等冷却可能としても
よい。本融体は耐火物に対して侵食性が大きいので、容
器壁に接した部分を凝固させたセルフライニングにして
容器壁を保護する。
The reaction vessel is a trough type or a pot type, and is provided with a heating device, a preliminary reduction ore charging port, and a melt discharge port. The container wall may be made of cast iron or a refractory material and may be cooled by water cooling or the like. Since this melt has a high erosion resistance to the refractory material, the container wall is protected by the cell lining in which the portion in contact with the container wall is solidified.

【0014】第三工程は、第二工程で抽出された融体
を還元容器に移送する工程である。その際未溶解の鉄鉱
石中脈石分を分離する。分離法の一例としては流路に堰
を設けて比重差で分離する方法がある。上に脈石分が浮
かび、堰によりせき止められる。一方、CaO−FeO
を主成分とする融体は堰の下をくぐり、還元容器に移送
される。
The third step is a step of transferring the melt extracted in the second step to the reduction container. At that time, undissolved iron ore gangue is separated. As an example of the separation method, there is a method in which a weir is provided in the flow path and the separation is performed by the difference in specific gravity. The gangue floats above and is dammed by the weir. On the other hand, CaO-FeO
The melt containing as a main component passes under the weir and is transferred to the reduction container.

【0015】なお、本発明を効率よく実施するために、
予備還元鉱石の溶解を行う第二工程から本工程の移送分
離までをできるだけ速やかに行うことが肝要であり、溶
解から分離までの所要時間は1分以内であることが好ま
しい。また、第二工程のFeO分抽出及び本工程の融体
移送は連続的に行う。装置は樋型とし、の第二工程と
同じくセルフライニングとする。
In order to carry out the present invention efficiently,
It is important to perform the process from the second step of dissolving the pre-reduced ore to the transfer separation of this step as quickly as possible, and the time required from dissolution to separation is preferably within 1 minute. Further, the FeO content extraction in the second step and the melt transfer in this step are continuously performed. The device is gutter type, and cell-lining is used as in the second step.

【0016】第四工程は、第三工程で得られた融体を炭
素含有溶鉄に接触させかつ炭素材を添加して融体中の酸
化鉄を還元する工程である。温度は還元剤となる炭素を
含んだ溶鉄が溶融する温度の1150℃以上、1400
℃以下とする。1400℃を超えた高温になると珪素、
燐等の有害不要不純物まで過剰還元し、また耐火物消耗
や熱的損失が大きくなるのでよくない。
The fourth step is a step of bringing the melt obtained in the third step into contact with molten iron containing carbon and adding a carbon material to reduce the iron oxide in the melt. The temperature is 1150 ° C. or higher, which is the temperature at which molten iron containing carbon serving as a reducing agent melts, 1400 ° C.
℃ or less. At high temperatures above 1400 ° C, silicon,
It is not good because excessive reduction of harmful unnecessary impurities such as phosphorus is caused, and refractory consumption and thermal loss increase.

【0017】本融体の還元容器装入は移送容器から容器
に設けた装入口を通じて自然流入させる。熱源として
は、化石燃料を使用する形式と電気を使用する形式があ
る。上底吹き転炉型容器を用いた前者の実施例1を図1
に、自焼性電極(ゼーダーベルグ電極)アーク炉を用い
た後者の実施例2を図2に示す。
The reducing container is charged with the melt from the transfer container through the charging port provided in the container. As a heat source, there are a type using fossil fuel and a type using electricity. FIG. 1 shows the former Example 1 using an upper-bottom blown converter type container.
2 shows Example 2 of the latter using a self-burning electrode (Zederberg electrode) arc furnace.

【0018】前者の燃料としては石炭、コークス等の炭
素系、石油、天然ガス等の炭化水素系、あるいは水素系
が使用される。助燃剤は酸素または酸素富化空気であ
る。後者の電気加熱はアーク、プラズマ、誘導加熱、直
接通電加熱等既存の加熱技術が適用可能である。図2の
実施例2は自焼成電極を採用した3相交流アーク加熱の
場合を示している。
As the former fuel, carbon type such as coal and coke, hydrocarbon type such as petroleum and natural gas, or hydrogen type is used. The combustion improver is oxygen or oxygen enriched air. For the latter electric heating, existing heating techniques such as arc, plasma, induction heating, and direct current heating can be applied. Example 2 in FIG. 2 shows the case of three-phase AC arc heating employing a self-baking electrode.

【0019】本発明はCaO−FeOを主成分とする融
体の精錬能が高く、かつ低温で還元するため、極めて高
純度の溶鉄が得られるという著しい特徴がある。即ち脱
燐、脱硫が極度に進み、珪素が殆ど無い溶鉄が得られ
る。
Since the present invention has a high refining ability of a melt containing CaO-FeO as a main component and is reduced at a low temperature, it has a remarkable feature that molten iron of extremely high purity can be obtained. That is, dephosphorization and desulfurization proceed extremely, and molten iron containing almost no silicon can be obtained.

【0020】一例として実施例1の方法で得られた溶鉄
の組成はC3.5%、Si0.01%以下、Mn0.0
2%、P0.003%以下、S0.003%以下であっ
た。溶鉄中の炭素は還元速度が大きく、生産性が十分大
きいことのために一定濃度以上が必要で、少なくとも2
%以上必要である。一方、上限は飽和濃度であっても良
い。この炭素範囲で後工程の製鋼工程において温度調整
や添加合金溶解のための熱源として必要とされる炭素濃
度に調整する。
As an example, the composition of the molten iron obtained by the method of Example 1 is C3.5%, Si0.01% or less, Mn0.0.
2%, P 0.003% or less, and S 0.003% or less. Since carbon in molten iron has a high reduction rate and a sufficiently high productivity, a certain concentration or more is required, and at least 2
% Or more is required. On the other hand, the upper limit may be the saturation concentration. Within this carbon range, the carbon concentration is adjusted to a temperature required for the temperature control and the heat source for melting the additional alloy in the subsequent steel making process.

【0021】また、発生ガスは、予備還元工程及び溶解
工程の還元剤、燃料として利用する。さらに、余剰のガ
スは系外へ供給して加熱や発電に利用する。容器の耐火
物は、他の工程に用いる容器と同じくセルフライニング
とする。1400℃以下の低温操業なので熱損失も小さ
く、また、材質は鋳鉄でも耐火物でも可能である。本工
程は低温操業であるが、液相還元なので生産性が高い。
そのため鉄鉱石の塊成化等の前処理が不要となってい
る。一方、還元の進行に伴い析出するCaOは回収して
前記のFeO溶解工程に戻す。
The generated gas is used as a reducing agent and fuel in the preliminary reduction process and the dissolution process. Furthermore, the surplus gas is supplied to the outside of the system for heating and power generation. The refractory material of the container shall be cell lining, like the containers used for other processes. Since it is operated at a low temperature of 1400 ° C or less, heat loss is small, and the material can be cast iron or refractory. This process is a low temperature operation, but since it is liquid phase reduction, it has high productivity.
Therefore, pretreatment such as agglomeration of iron ore is unnecessary. On the other hand, CaO that precipitates with the progress of reduction is recovered and returned to the FeO melting step.

【0022】第五工程は、第四工程で生成した溶鉄を
還元容器から取り出す工程である。この場合、通常の製
鋼炉と同じ方式を採用したバッチプロセスが容易であ
る。転炉のように傾動してもよいし、電気炉のように炉
底から出しても良い。なお、連続式として、高炉のよう
に容器壁に設けた開閉可能な孔を通じてもよい。
The fifth step is a step of taking out the molten iron produced in the fourth step from the reduction container. In this case, a batch process employing the same method as a normal steelmaking furnace is easy. It may be tilted like a converter or may be taken out from the bottom like an electric furnace. In addition, as a continuous type, an openable / closable hole provided in the vessel wall like a blast furnace may be used.

【0023】[0023]

【発明の効果】本発明により製鉄工程の工程省略が図
れ、精錬工程の簡便化が図れる利点がある。その結果、
省エネルギーが実現可能となる。
According to the present invention, there is an advantage that the iron making process can be omitted and the refining process can be simplified. as a result,
Energy saving can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第四工程で上底吹き転炉型容器を用い
た場合の本発明全体の実施態様を示す説明図である。
FIG. 1 is an explanatory view showing an embodiment of the whole of the present invention when an upper bottom blowing converter type container is used in the fourth step of the present invention.

【図2】同じく本発明の第四工程で自焼性電極アーク炉
型容器を用いた場合の本発明全体の実施態様を示す説明
図である。
FIG. 2 is an explanatory view showing an embodiment of the entire present invention when a self-burning electrode arc furnace type container is used in the fourth step of the present invention.

【符号の説明】[Explanation of symbols]

1 上底吹き転炉型容器 2 ランス 3,23 出銑口 4 底吹き羽口 5,25 スラグ 6,26 溶銑 21 自焼性電極アーク炉型容器 22 自焼性電極 1 Top-bottom blow converter type container 2 Lance 3,23 Taphole 4 Bottom blow tuyer 5,25 Slag 6,26 Hot metal 21 Self-burning electrode Arc furnace type container 22 Self-burning electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鉄鉱石を還元容器からの排出ガスで予備
還元する第一工程と、 第一工程で予備還元された鉄鉱石から鉄分を1400℃
以下の温度でCaO−FeOを主成分とする融体として
抽出する第二工程と、 第二工程で抽出された融体を還元容器に移送し、その
際、融体から脈石分を分離する第三工程と、 第三工程で得られた融体を炭素含有溶鉄に接触させまた
は/かつ炭素材を添加して融体中の酸化鉄を還元し、溶
鉄を得る第四工程と、 第四工程で生成した溶鉄を還元容器から取り出す第五工
程とからなることを特徴とする製鉄方法。
1. A first step of pre-reducing iron ore with exhaust gas from a reduction vessel, and iron content of the iron ore pre-reduced in the first step at 1400 ° C.
Second step of extracting as a melt containing CaO-FeO as a main component at the following temperature, and transferring the melt extracted in the second step to a reducing container, at which time, gangue is separated from the melt. A third step, a fourth step of bringing the melt obtained in the third step into contact with molten iron containing carbon and / or adding a carbon material to reduce iron oxide in the melt to obtain molten iron, And a fifth step of taking out the molten iron produced in the step from the reduction container.
JP9315492A 1992-04-13 1992-04-13 Iron-making method Withdrawn JPH05287340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9315492A JPH05287340A (en) 1992-04-13 1992-04-13 Iron-making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9315492A JPH05287340A (en) 1992-04-13 1992-04-13 Iron-making method

Publications (1)

Publication Number Publication Date
JPH05287340A true JPH05287340A (en) 1993-11-02

Family

ID=14074630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9315492A Withdrawn JPH05287340A (en) 1992-04-13 1992-04-13 Iron-making method

Country Status (1)

Country Link
JP (1) JPH05287340A (en)

Similar Documents

Publication Publication Date Title
US4089677A (en) Metal refining method and apparatus
JPH10195513A (en) Production of metallic iron
ZA200506454B (en) An improved smelting process for the production ofiron
US3004846A (en) Treatment of nickel-containing silicate ores
US3030201A (en) Method of producing ferro-nickel from nickel-containing silicate ores
US3022157A (en) Method for continuous hearth refining of steel and beneficiation of ores of ferro alloys
JP7364899B2 (en) Melting method of cold iron source with slag reduction
JPH05287340A (en) Iron-making method
US3091524A (en) Metallurgical process
Steenkamp et al. Introduction to the production of clean steel
JP3233304B2 (en) Production of low Si, low S, and high Mn hot metal with smelting reduction of Mn ore
JP2730183B2 (en) Hot metal production method for recovery of rare metals
JPH02200713A (en) Device and method for producing molten iron
JP3393668B2 (en) Production of low Si, low P, and high Mn hot metal with smelting reduction of Mn ore
CN113430317A (en) Method for preparing pig iron, vanadium slag and titanium slag by using submerged arc furnace and smelting furnace
JP4767611B2 (en) Reduction method of iron oxide
JPS61279608A (en) Production of high-chromium alloy by melt reduction
JPH09263811A (en) Method for melting tinned steel plate scrap
JPH0867907A (en) Operation of vertical iron scrap melting furnace
RU2037543C1 (en) Method to produce metals and alloys
JPH06228623A (en) Steelmaking method having small energy consumption
CN118048516A (en) Chromite smelting method and equipment
Whiteway Research and development in the steel industry in Nova Scotia
JPH09272908A (en) Operation of smelting reduction plant
JPS60155640A (en) Reducing method of chromium ore

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706