JPH05287325A - Composite porous body of activated alumina and metal - Google Patents

Composite porous body of activated alumina and metal

Info

Publication number
JPH05287325A
JPH05287325A JP4119851A JP11985192A JPH05287325A JP H05287325 A JPH05287325 A JP H05287325A JP 4119851 A JP4119851 A JP 4119851A JP 11985192 A JP11985192 A JP 11985192A JP H05287325 A JPH05287325 A JP H05287325A
Authority
JP
Japan
Prior art keywords
metal
porous body
activated alumina
porous
composite porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4119851A
Other languages
Japanese (ja)
Inventor
Tamio Noda
多美夫 野田
Takao Kanai
隆雄 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4119851A priority Critical patent/JPH05287325A/en
Publication of JPH05287325A publication Critical patent/JPH05287325A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a composite porous body of activated alumina and metal with the alumina capable of being utilized for a catalyst carrier or an adsorbent. CONSTITUTION:Fine particles of alumina are deposited on the surface of a three-dimensional reticular metallic porous body as a carrier to obtain a porous body of the activated alumina and metal. The porous body is dipped in aq. aluminum hydroxide to deposit the aluminum hydroxide on the porous body surface, and the coated porous body is dried and calcined to remove the water of crystallization. The metallic porous body has a three-dimensional reticular structure and is obtained by compacting a superfine metal powder and then calcining the compact. The compact is calcined at a temp. 100-500 deg.C lower than the m.p. of the metal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、触媒担体や吸着剤に利
用される活性アルミナを効率良く利用する為の活性アル
ミナと金属の複合多孔体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a composite porous body of activated alumina and a metal for efficiently utilizing activated alumina utilized as a catalyst carrier or an adsorbent.

【0002】本発明の複合多孔体は、例えば自動車排気
ガスの浄化用触媒担体、水中有害物質の吸着除去フィル
ター、脱臭フィルター等の素材として適している。
The composite porous material of the present invention is suitable as a material for a catalyst carrier for purifying automobile exhaust gas, a filter for removing and removing harmful substances in water, a deodorizing filter, and the like.

【0003】[0003]

【従来の技術】活性アルミナの製造方法は、一般的には
水酸化アルミニウムを加熱し、結晶水を分離させること
によって生成させる。
2. Description of the Related Art A method for producing activated alumina is generally produced by heating aluminum hydroxide and separating water of crystallization.

【0004】中でも、アルミニウム塩の中和により生成
する水酸化アルミニウムを加熱して、結晶水を分離させ
る方法によると超微細結晶構造の活性アルミナが生成
し、従って比表面積も大きく、活性度が高いものが得ら
れる。
Among them, according to the method of heating aluminum hydroxide produced by neutralization of aluminum salt to separate the water of crystallization, activated alumina having an ultrafine crystal structure is produced, and therefore the specific surface area is large and the activity is high. You get something.

【0005】しかし、生成する粉末が微細である為に取
扱いが困難になりやすい欠点がある。
However, there is a drawback that handling is difficult because the produced powder is fine.

【0006】例えば、ガス流体と効率良く接触させる為
には粒状に加工したり、ハニカム状に成型しないと通気
性が保てない。
[0006] For example, in order to make efficient contact with a gas fluid, the gas permeability cannot be maintained unless it is processed into granules or molded into a honeycomb shape.

【0007】この微細活性アルミナも通常のセラミック
の加工方法、例えば押出成型して焼成する方法等に準じ
て加工することはできるが、強度を出す為にしっかり焼
結すると比表面積が小さくなって活性度が落ちる。
This fine activated alumina can also be processed in accordance with a usual ceramic processing method, for example, a method of extrusion molding and firing, but if it is firmly sintered to obtain strength, the specific surface area becomes small and the activity becomes small. I lose my degree.

【0008】逆に活性度を保つ為に焼結を弱くすると強
度が保てず、水に接触すると割れたり、粉化したりする
問題が生じ、根本的な解決と成りがたい。
On the contrary, if the sintering is weakened in order to maintain the activity, the strength cannot be maintained, and when it comes into contact with water, problems such as cracking and pulverization occur, and it is difficult to completely solve the problem.

【0009】また、一般的に触媒や吸着反応は拡散律速
となるため、成形体に加工した活性アルミナの成形体内
部の活性アルミナは反応にほとんど寄与しない。
Further, in general, the catalyst and the adsorption reaction are diffusion-controlled, so that the activated alumina inside the molded body of the activated alumina processed into the molded body hardly contributes to the reaction.

【0010】[0010]

【発明が解決しようとする課題】微細活性アルミナの活
性を充分に活用するためには通気性、耐熱衝撃性、耐振
動強度性能を長期間にわたって発揮する活性アルミナ素
材が望まれており、本発明は微細活性アルミナの活性を
充分に活用し、かつ、通気性の確保、通気性を確保する
為の構造体の強度を高めて安定して使用できる材料及び
その製法の提供を課題としている。
SUMMARY OF THE INVENTION In order to fully utilize the activity of fine activated alumina, an activated alumina material that exhibits breathability, thermal shock resistance, and vibration resistance strength over a long period of time is desired. The object is to provide a material that makes full use of the activity of fine activated alumina, secures air permeability, and enhances the strength of the structure for ensuring air permeability so that it can be used stably, and a manufacturing method thereof.

【0011】[0011]

【課題を解決するための手段】本発明は、三次元網目状
金属多孔体を担持体とし、該担持体の表面にアルミナ微
粒子を担持させたことを特徴とする活性アルミナと金属
の複合多孔体。
DISCLOSURE OF THE INVENTION The present invention is a composite porous body of activated alumina and metal, characterized in that a three-dimensional mesh-like metal porous body is used as a carrier and alumina fine particles are supported on the surface of the carrier. ..

【0012】また本発明は、金属多孔体を水酸化アルミ
ニウム溶液に浸漬し、水酸化アルミニウムを金属多孔体
表而に沈着させた後、乾燥し、さらに非酸化雰囲気で焼
成、脱結晶水処理することを特徴とする活性アルミナと
金属の複合多孔体の製造方法。
Further, in the present invention, the porous metal body is immersed in an aluminum hydroxide solution to deposit aluminum hydroxide on the surface of the porous metal body, dried, and then baked in a non-oxidizing atmosphere and treated with decrystallization water. A method for producing a composite porous body of activated alumina and a metal, comprising:

【0013】また本発明は、上記金属多孔体が40μ以
下の金属超微粉末を成形、焼成した三次元網目構造であ
ることを特徴とする活性アルミナと金属の複合多孔体の
製造方法。
The present invention also provides a method for producing a composite porous body of activated alumina and a metal, wherein the porous metal body has a three-dimensional network structure obtained by molding and firing ultrafine metal powder having a size of 40 μm or less.

【0014】また本発明は、上記金属超微粉末を成形体
を該金属の融点より100〜500℃低い温度で焼成す
ることを特徴とする活性アルミナと金属の複合多孔体の
製造方法である。
The present invention is also a method for producing a composite porous body of activated alumina and metal, which comprises firing the above-mentioned ultrafine metal powder at a temperature 100 to 500 ° C. lower than the melting point of the metal.

【0015】[0015]

【作用】本出願人は先に特開平02―019405号、
特開平02―254106号によって、鉄等の金属粉と
結合剤の混練物を樹脂フォーム上に塗着した後に焼成し
て金属多孔体を製造する方法を提案した。
The applicant of the present invention has previously disclosed Japanese Patent Application Laid-Open No. 02-019405,
Japanese Unexamined Patent Publication No. 02-254106 has proposed a method for producing a metal porous body by applying a kneaded product of a metal powder such as iron and a binder onto a resin foam and then firing the mixture.

【0016】この金属多孔体は金属粒子成形体を焼結し
たので通気性、耐熱衝撃性、耐振動強度性能等の特性を
持っている。
This porous metal body has characteristics such as air permeability, thermal shock resistance, and vibration strength performance because it is a sintered metal particle body.

【0017】本発明者等は、上記金属微粉末成形体を焼
結して製造する際に、焼結途中段階で停止させることに
より金属多孔体の構造内に数十μ以下の細孔を内蔵した
金属多孔体が得られ、しかもその金属多孔体の通気性、
耐熱衝撃性、耐振動強度性能等の特性は上記従来の上記
金属多孔体のそれと遜色ないことを確認した。
The inventors of the present invention have incorporated pores of several tens of μ or less in the structure of the metal porous body by stopping the sintering in the middle of sintering when producing the metal fine powder compact by sintering. A porous metal body is obtained, and the air permeability of the porous metal body is
It was confirmed that the properties such as the thermal shock resistance and the vibration resistance performance were comparable to those of the above-mentioned conventional porous metal body.

【0018】金属粉末とポリビニールアルコール等のバ
インダーを混合し、ウレタンフォームに塗着したり、押
し出し成型法によりハニカム構造体を成型し、非酸化雰
囲気で金属の融点より100〜500℃低い温度で焼結
させると0.1mm以上の大型空孔を持つ構造体であり
ながら、その構造体自体が数十μ以下の細孔を持つ多孔
体で構成される金属の多孔体が製造できる。
Metal powder and a binder such as polyvinyl alcohol are mixed and coated on urethane foam, or a honeycomb structure is molded by an extrusion molding method at a temperature 100 to 500 ° C. lower than the melting point of the metal in a non-oxidizing atmosphere. When sintered, it is possible to manufacture a metal porous body which is a structure having large pores of 0.1 mm or more, but the structure itself is a porous body having pores of tens of μm or less.

【0019】これらの金属多孔体は一般的にセラミック
スの焼結体に比較して耐熱衝撃性や耐振動強度が優れ
る。
These metal porous bodies are generally superior in thermal shock resistance and vibration resistance as compared with ceramic sintered bodies.

【0020】上記金属粉末成形体の焼結温度をその金属
の融点より100〜500℃低い温度としたのは、焼結
過程に於いてその金属粒子相互が完全に溶融接着すると
金属粒子間に形成されていた微細間隙が消滅する。
The sintering temperature of the above-mentioned metal powder compact is set to a temperature which is 100 to 500 ° C. lower than the melting point of the metal, because the metal particles are completely melt-bonded to each other during the sintering process to form between the metal particles. The fine gap that had been created disappears.

【0021】その金属の融点より100〜500℃低い
温度で焼結すると金属粒子相互がその表層のみの融着と
なるので微細間隙が残存する。
When sintered at a temperature 100 to 500 ° C. lower than the melting point of the metal, the metal particles are fused only to the surface layer of the metal, so that fine gaps remain.

【0022】一方、金属粒子が微細になるほど融点にな
ると瞬時に溶解するという特性を示す。
On the other hand, the finer the metal particles, the more quickly the melting point of the metal particles melts.

【0023】従って使用する金属の種類、粒子径によっ
て融点より100〜500℃低い温度を選択するもので
ある。
Therefore, a temperature lower than the melting point by 100 to 500 ° C. is selected depending on the kind of metal used and the particle size.

【0024】上記担持体用金属としては、Fe、Ni、
Cr、Cu、Zn及びAl等があり、これら金属を単独
あるいは組み合わせて使用することができる。
Examples of the metal for the carrier include Fe, Ni,
There are Cr, Cu, Zn, Al and the like, and these metals can be used alone or in combination.

【0025】上記金属粒子の粒径を40μ以下としたの
は、微細金属粒子相互の表層のみを融着させる接点を増
大させることによって、微細間隙を残存させた状態で耐
熱衝撃性や耐振動強度を発現させるためである。
The particle size of the above-mentioned metal particles is set to 40 μm or less because the number of contacts for fusing only the surface layers of the fine metal particles to each other is increased, and the thermal shock resistance and the vibration resistance strength in the state where the fine gaps remain. This is to express.

【0026】これらの金属多孔体を担持体としてその表
層に活性アルミナの微粒子を付着させると活性アルミナ
の特性を損なうことなく、且つ耐熱衝撃性や耐振動強度
を持たせることができる。
By using these metal porous bodies as a carrier and adhering the fine particles of activated alumina to the surface layer thereof, it is possible to impart thermal shock resistance and vibration resistance without deteriorating the characteristics of activated alumina.

【0027】前記のようにして製造した金属多孔体の表
層に活性アルミナの微粒子を付着させる方法としては、
アルミニウム塩の水溶液をアルカリ水溶液等で中和し、
水酸化アルミニウム水溶液を製造する。
As a method for adhering fine particles of activated alumina to the surface layer of the metal porous body produced as described above,
Neutralize the aluminum salt solution with an alkaline solution,
An aluminum hydroxide aqueous solution is produced.

【0028】金属が酸化し易い場合はアルコール溶液に
水酸化アルミニウム水溶液を少量溶解した溶液を用いて
も良い。
When the metal is easily oxidized, a solution prepared by dissolving a small amount of an aluminum hydroxide aqueous solution in an alcohol solution may be used.

【0029】その中に金属多孔体を浸漬するか、金属多
孔体に水酸化アルミニウム溶液を噴霧するかして金属多
孔体の表面、及び細孔部に水酸化アルミニウムを析出さ
せる。
By immersing the porous metal body therein or by spraying an aluminum hydroxide solution on the porous metal body, aluminum hydroxide is deposited on the surface and the pores of the porous metal body.

【0030】その後、速やかに乾燥機等で溶媒を乾燥さ
せ、非酸化雰囲気で250℃以上の温度で焼成し、結晶
水を分解、分離させることにより金属多孔体の表層が活
性アルミナの微粒子で被覆された複合多孔体が製造でき
る。
After that, the solvent is rapidly dried by a drier or the like and baked at a temperature of 250 ° C. or higher in a non-oxidizing atmosphere to decompose and separate the water of crystallization so that the surface layer of the porous metal is coated with fine particles of activated alumina. The composite porous body can be produced.

【0031】非酸化雰囲気で焼成するのは金属多孔体の
酸化を防止する為であり、特に金属多孔体の比表面積が
大きい場合には低温でも酸化反応がし易くなるので注意
を要する。
The firing in a non-oxidizing atmosphere is for preventing the oxidization of the porous metal body, and in particular, when the specific surface area of the porous metal body is large, the oxidization reaction is likely to occur even at a low temperature, so caution is required.

【0032】活性アルミナ微粒子は金属多孔体の細孔に
根を張った構造で焼結しているため単体の活性アルミナ
のように簡単に破壊されることなく大型空孔を持つ構造
体として通気性を保つことができる。
Since the activated alumina fine particles are sintered in a structure in which the pores of the metal porous body are rooted, the activated alumina fine particles are not destroyed as easily as the activated alumina alone, but have a large air permeability as a structure. Can be kept.

【0033】このようにして熱衝撃や振動に強く、かつ
活性アルミナの活性度を維持した素材として従来達成で
きなかった特性を持つ素材の製造方法が確立できた。
In this way, a method for producing a material having resistance to thermal shock and vibration and having characteristics that could not be achieved conventionally as a material maintaining the activity of activated alumina could be established.

【0034】次に本発明の実施例について述べる。Next, examples of the present invention will be described.

【0035】[0035]

【実施例1】目の粗さが20PPIのウレタンフォーム
に20μアンダーの微細鉄粉を有機バインダーと混合し
て塗着して非酸化雰囲気で1150℃×2時間焼成して
鉄多孔体を製造した。
Example 1 A fine iron powder having a particle size of 20 μP and a fine iron powder of 20 μ under was mixed and applied to an urethane foam, and the mixture was fired in a non-oxidizing atmosphere at 1150 ° C. for 2 hours to produce a porous iron body. ..

【0036】1個のサイズは約90mm×80mm×1
0mmで重量は約40gであった。
The size of one piece is about 90 mm × 80 mm × 1
At 0 mm, the weight was about 40 g.

【0037】また、同様にして40μアンダーのSUS
粉末、10μアンダーの銅粉末をそれぞれ1250℃×
2時間、800℃×2時間焼成して金属多孔体を製造し
た。
Similarly, SUS of 40 μ under
Powder, 10μ under copper powder 1250 ℃ ×
The porous metal was manufactured by firing at 800 ° C. for 2 hours for 2 hours.

【0038】それぞれのサイズはともに約90mm×8
0mm×10mmで、重量は約50gであった。
Each size is about 90 mm × 8
The size was 0 mm × 10 mm, and the weight was about 50 g.

【0039】塩化アルミニウム0.005mol/l〜
0.05mol/lの水溶液に0.01mol/lの水
酸化カリウム水溶液または0.7mol/lのアンモニ
ア水溶液を添加してpH7〜8に調整した。
Aluminum chloride 0.005 mol / l ~
The pH was adjusted to 7 to 8 by adding a 0.01 mol / l potassium hydroxide aqueous solution or a 0.7 mol / l ammonia aqueous solution to the 0.05 mol / l aqueous solution.

【0040】一部についてはその水溶液をさらにエタノ
ールで6倍〜11倍に希釈した。それらの水溶液、エタ
ノール・水混合溶液に金属多孔体を浸漬して30分間放
置した後、溶液を切って即120℃に設定した乾燥機に
入れて2時間乾燥した。
In part, the aqueous solution was further diluted 6 to 11 times with ethanol. After immersing the porous metal body in the aqueous solution and ethanol / water mixed solution and leaving it for 30 minutes, the solution was cut and immediately put in a dryer set at 120 ° C. for drying for 2 hours.

【0041】更に、水素3%、窒素97%の弱還元雰囲
気下で250℃〜1000℃の温度にそれぞれ2時間保
持して水酸化アルミニウムの活性化処理を行った。
Further, the aluminum hydroxide was activated by holding it at a temperature of 250 ° C. to 1000 ° C. for 2 hours in a weak reducing atmosphere of 3% hydrogen and 97% nitrogen.

【0042】その結果、表層には活性アルミナが生成
し、SEM観察、X線回折では活性アルミナの生成が確
認できた。その調査例を図1に示した。
As a result, activated alumina was produced in the surface layer, and it was confirmed by SEM observation and X-ray diffraction that activated alumina was produced. An example of the investigation is shown in FIG.

【0043】図1はSUS多孔体に水酸化アルミニウム
を析出させ、750℃で2時間焼成して製造した活性ア
ルミナとSUSの複合多孔体表面より活性アルミナ部分
を削り取ってX線回折で分析した結果であり、ピークに
○印がある回折角は活性アルミナの生成を示している。
FIG. 1 shows a result of X-ray diffraction analysis of the active alumina portion scraped from the surface of the composite porous body of activated alumina and SUS produced by precipitating aluminum hydroxide on the SUS porous body and firing at 750 ° C. for 2 hours. And the diffraction angle with a circle in the peak indicates the formation of activated alumina.

【0044】ロータップ振動篩に3時間かけてもほとん
ど粉の発生が認められず、振動に対する強度の強さが確
認できた。
Almost no generation of powder was observed on the low-tap vibrating screen over 3 hours, and the strength against vibration could be confirmed.

【0045】また、生成した活性アルミナの活性度を評
価する為に、アセトアルデヒドの吸着性能を調べた。
Further, in order to evaluate the activity of the produced activated alumina, the adsorption performance of acetaldehyde was examined.

【0046】調査方法は図2に示した構造の評価装置で
装置の内容積は40 l、ファンの循環能力は400 l
/分である。アセトアルデヒドの初期濃度は100pp
mとし30分後の除去率を脱臭率として評価した。
The investigation method is the evaluation device having the structure shown in FIG. 2, the inner volume of the device is 40 l, and the circulation capacity of the fan is 400 l.
/ Min. Initial concentration of acetaldehyde is 100pp
The removal rate after 30 minutes was evaluated as the deodorization rate.

【0047】評価試料の重量は鉄多孔体系は40g前
後、SUS多孔体と銅多孔体は約50gに揃えた。比較
の為に評価した活性アルミナは粒径が約1mm以下の粉
状のものと粒径が約5mmφの粒状のものをそれぞれ4
0gづつ、不織布に広げて試験した。
The weight of the evaluation sample was about 40 g for the iron porous system, and about 50 g for the SUS porous body and the copper porous body. The activated alumina evaluated for comparison was powdered with a particle size of about 1 mm or less and granular with a particle size of about 5 mm.
The test was performed by spreading 0 g each on a non-woven fabric.

【0048】金属多孔体に付着した活性アルミナの重量
は約1g前後で、市販の活性アルミナ粉に比較して1/
40の重量しか使用していないにも関わらず、ほぼ同程
度の脱臭率を示した。代表的な測定例を第1表に示し
た。
The weight of activated alumina adhering to the porous metal is about 1 g, which is 1/100 of that of commercially available activated alumina powder.
Despite using only 40 weights, the deodorizing rate was almost the same. Typical measurement examples are shown in Table 1.

【0049】[0049]

【表1】 [Table 1]

【0050】[0050]

【発明の効果】本発明により、活性アルミナの活性度が
高く、且つ通気性、耐熱衝撃、耐振動強度の優れた活性
アルミナと金属の複合多孔体が入手でき、またこれら素
材を経済的に製造できるのでその産業上の効果は大き
い。
INDUSTRIAL APPLICABILITY According to the present invention, a composite porous body of activated alumina and a metal having high activity of activated alumina and excellent in air permeability, heat shock resistance and vibration resistance can be obtained, and these materials can be economically produced. Because it is possible, its industrial effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】活性アルミナ粉のX線回折強度を示す図であ
る。
FIG. 1 is a diagram showing an X-ray diffraction intensity of activated alumina powder.

【図2】脱臭性能を評価する試験装置の構造を示す説明
図である。
FIG. 2 is an explanatory view showing the structure of a test device for evaluating deodorizing performance.

【符号の説明】[Explanation of symbols]

1 密閉容器 2 循環ファン 3 脱臭材評価試料 4 ガス導入口 5 ガスサンプル採取口 6 ガス循環の方向 1 Airtight container 2 Circulation fan 3 Deodorant evaluation sample 4 Gas inlet 5 Gas sample collection port 6 Gas circulation direction

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 三次元網目状金属多孔体を担持体とし、
該担持体の表面にアルミナ微粒子を担持させたことを特
徴とする活性アルミナと金属の複合多孔体。
1. A three-dimensional mesh metal porous body as a carrier,
A composite porous body of activated alumina and a metal, characterized in that fine alumina particles are supported on the surface of the carrier.
【請求項2】 金属多孔体を水酸化アルミニウム溶液に
浸漬し、水酸化アルミニウムを金属多孔体表面に沈着さ
せた後、乾燥し、さらに非酸化雰囲気で焼成、脱結晶水
処理することを特徴とする活性アルミナと金属の複合多
孔体の製造方法。
2. A method of immersing a porous metal body in an aluminum hydroxide solution to deposit aluminum hydroxide on the surface of the porous metal body, followed by drying, firing in a non-oxidizing atmosphere, and decrystallization water treatment. A method for producing a composite porous body of activated alumina and a metal.
【請求項3】 上記金属多孔体が40μ以下の金属超微
粉末を成形、焼成した三次元網目構造であることを特徴
とする請求項2に記載の活性アルミナと金属の複合多孔
体の製造方法。
3. The method for producing a composite porous body of activated alumina and a metal according to claim 2, wherein the metal porous body has a three-dimensional network structure formed by molding ultrafine metal powder of 40 μm or less and firing. ..
【請求項4】 上記金属超微粉末を成形体を該金属の融
点より100〜500℃低い温度で焼成することを特徴
とする請求項2または3に記載の活性アルミナと金属の
複合多孔体の製造方法。
4. The activated alumina-metal composite porous body according to claim 2, wherein the metal ultrafine powder is fired at a temperature of 100 to 500 ° C. lower than the melting point of the metal. Production method.
JP4119851A 1992-04-15 1992-04-15 Composite porous body of activated alumina and metal Withdrawn JPH05287325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4119851A JPH05287325A (en) 1992-04-15 1992-04-15 Composite porous body of activated alumina and metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4119851A JPH05287325A (en) 1992-04-15 1992-04-15 Composite porous body of activated alumina and metal

Publications (1)

Publication Number Publication Date
JPH05287325A true JPH05287325A (en) 1993-11-02

Family

ID=14771846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4119851A Withdrawn JPH05287325A (en) 1992-04-15 1992-04-15 Composite porous body of activated alumina and metal

Country Status (1)

Country Link
JP (1) JPH05287325A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018008198A (en) * 2016-07-12 2018-01-18 株式会社ダイセル Solid catalyst, and method of producing aldehydes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018008198A (en) * 2016-07-12 2018-01-18 株式会社ダイセル Solid catalyst, and method of producing aldehydes

Similar Documents

Publication Publication Date Title
US7951246B2 (en) Method for manufacturing open porous metallic foam body
RU2170140C2 (en) Method of preparing catalyst deposited on activated carbon, and thus prepared catalyst
RU2641124C2 (en) Carbon bodies and ferromagnetic carbon bodies
JP2012153596A (en) Method for manufacturing inorganic porous body which has one-dimensional structure body arranged, the inorganic porous body and member made using the same
JP2014124630A (en) Photocatalyst carrier and method for manufacturing the same
KR20170140494A (en) Manganese-copper catalyst coated silicon carbide honeycomb
JPH05287325A (en) Composite porous body of activated alumina and metal
GB2245505A (en) Porous sepiolite and catalyst containing it
JP4344102B2 (en) Catalyst slurry for exhaust gas denitration and method for producing the same
KR20200127966A (en) Method for manufacturing an open pore molded article made of metal and a molded article manufactured using the method
JP7383601B2 (en) Method for manufacturing a surface-modified metal open-pore molded body
JPH11128667A (en) Deodorization filter
JPH11123330A (en) Exhaust gas cleaning catalyst and manufacture thereof
RU2772522C2 (en) Method for producing an open-pore shaped body which has a modified surface and is made of metal, and a shaped body obtained by said method
JP3899054B2 (en) Highly efficient ozonolysis porous material and method for producing the same
JPH06271904A (en) Porous metal
JP4471191B2 (en) Method for producing deodorizing catalyst
JPH0754197A (en) Production of functional aluminum porous body
RU2052287C1 (en) Catalyst for air scrubbing from oxygen-containing impurities and a method of its producing
RU2418890C2 (en) Metal powder obtaining method
JPH11314022A (en) Photocatalytic deodorization filter and manufacture thereof
JP2003246686A (en) Method of producing spinel porous body
US20060252640A1 (en) Metal or metal oxide porous material prepared by use of dextran or related soluble carbohydrate polymer
JPH05228374A (en) Oxidation catalyst and its production
JPH07246335A (en) Catalyst for decomposition of ozone and its production

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706