JPH11128667A - Deodorization filter - Google Patents

Deodorization filter

Info

Publication number
JPH11128667A
JPH11128667A JP9309619A JP30961997A JPH11128667A JP H11128667 A JPH11128667 A JP H11128667A JP 9309619 A JP9309619 A JP 9309619A JP 30961997 A JP30961997 A JP 30961997A JP H11128667 A JPH11128667 A JP H11128667A
Authority
JP
Japan
Prior art keywords
skeleton
polyurethane foam
skeleton structure
dimensional network
resin net
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9309619A
Other languages
Japanese (ja)
Inventor
Hisashi Mori
久 森
Eigo Tanuma
田沼  栄伍
Fumio Odaka
文雄 小高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP9309619A priority Critical patent/JPH11128667A/en
Publication of JPH11128667A publication Critical patent/JPH11128667A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Filtering Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently remove hot harmful gaseous components discharged from a garbage incinerator, an automobile, etc., under a small pressure drop by fixing a deodorant having gas adsorbing performance and decomposing performance on a material having a three-dimensional network skeleton structure and imparting heat resistance and regenerating function. SOLUTION: An inorg. firing material is fired on the skeleton of a polyurethane form or a resin net having a three-dimensional network skeleton structure so as to improve the heat resistance of the structure. A cubic net based on synthetic chemical fibers of PP, etc., is suitable for use as the material having the three-dimensional network skeleton structure. A deodorant having gas adsorbing performance and decomposing performance is then fixed on the front, rear and lateral faces of the polyurethane foam or resin net and on the inner skeleton with an inorg. binder such as a colloidal silica type inorg. binder or water glass to produce the objective deodorization filter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ゴミ焼却炉や自
動車などから排出される高温状態の有害ガス成分に対し
低圧力損失下でしかも効率良くガス成分を除去するため
の脱臭フィルターに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deodorizing filter for efficiently removing high-temperature harmful gas components discharged from a garbage incinerator or an automobile under a low pressure loss and efficiently.

【0002】[0002]

【従来の技術】三次元網状化骨格構造を有するガス吸着
及び分解フィルターの従来の技術では有機系のフィルタ
ー母材をベースに有機系のバインダーにて脱臭剤を固着
せしめた特公平4−35201号公報に記載の脱臭フィ
ルターがあるが、耐熱性の弱い有機系材料で構成されて
いたため、ゴミ焼却炉や自動車などから排出される高温
状態の有害ガス成分の除去及び一旦吸着飽和したガス成
分を高温状態で再活性させて用いる用途等については耐
熱性がないため適用することができなかった。
2. Description of the Related Art In the prior art of a gas adsorption and decomposition filter having a three-dimensional network skeleton structure, Japanese Patent Publication No. 4-35201 discloses a method in which a deodorant is fixed with an organic binder based on an organic filter base material. Although there is a deodorizing filter described in the official gazette, it is composed of organic materials with low heat resistance, so it removes harmful gas components discharged from garbage incinerators and automobiles, etc. It could not be used for applications in which it is reactivated in a state because it does not have heat resistance.

【0003】[0003]

【発明が解決しようとする課題】三次元網状化骨格構造
のフィルターはその構造的特徴により低通気であり、し
かも内部濾過機能が高くガス成分との接触効率がよくフ
ィルターの構造としては最適である。しかしながら、三
次元網状化骨格構造のフィルター母材はポリウレタンフ
ォームやナイロンやポリプロピレンやポリエステルなど
の有機材料で構成されていたため、耐熱強度に問題があ
り上述のように耐熱性を要求される用途においては適用
することが出来ず、かつ一旦吸着飽和したガス成分を高
温状態で再活性させて用いることも出来なかった。
A filter having a three-dimensional reticulated skeleton structure has a low air permeability due to its structural characteristics, has a high internal filtration function, has a high contact efficiency with gas components, and is optimal as a filter structure. . However, since the filter base material of the three-dimensional reticulated skeleton structure is composed of an organic material such as polyurethane foam, nylon, polypropylene, or polyester, there is a problem in heat resistance, and in applications where heat resistance is required as described above, It could not be applied, nor could the gas component once adsorbed and saturated be reactivated at high temperatures for use.

【0004】そこで、この発明は、耐熱性を有し、再生
可能な三次元網状化骨格構造の脱臭フィルターを提供す
ることを目的とする。
Accordingly, an object of the present invention is to provide a deodorizing filter having a heat-resistant and reproducible three-dimensional network skeleton structure.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成するた
め、この発明は、ガス吸着性能及び分解性能を有した三
次元網状化骨格構造の耐熱再生機能を有するようにした
ものである。
In order to achieve the above-mentioned object, the present invention has a heat-resistant regeneration function of a three-dimensional reticulated skeleton structure having gas adsorption performance and decomposition performance.

【0006】[0006]

【発明の実施の形態】この発明において、本発明者達は
三次元網状化骨格構造の耐熱強度を向上させる為の手段
として、これら三次元網状化骨格構造のポリウレタンフ
ォームや樹脂ネットの骨格上に予め無機系の焼成材料を
用い焼成させる事により耐熱強度の高いフィルター母材
とすることが出来、比較的低温で使用される用途におい
ては三次元網状化骨格構造の有機系母材が熱劣化によっ
て多少その強度が失われても、三次元網状化骨格構造の
骨格上に形成された耐熱バインダー成分によって結合さ
れた無機質の材料によってフィルター強度を代替保持す
る事が可能である事を見いだした。さらにこれらの技術
をベースにガス吸着性能及び分解性能を有する脱臭剤を
三次元網状化骨格構造の骨格上に無機系のバインダーに
て固着せしめることにより高度な耐熱性を有した三次元
網状化骨格構造の脱臭フィルターを供給することが出来
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the present inventors have proposed a method for improving the heat resistance of a three-dimensional networked skeleton structure by embedding the three-dimensional networked skeleton structure in a polyurethane foam or resin net skeleton. By firing in advance using an inorganic firing material, a filter base material with high heat resistance can be obtained, and in applications where it is used at a relatively low temperature, the organic base material having a three-dimensional reticulated skeleton structure is thermally degraded. It has been found that even if the strength is somewhat lost, the filter strength can be maintained by an inorganic material bound by a heat-resistant binder component formed on the skeleton of the three-dimensional network skeleton structure. In addition, based on these technologies, a three-dimensional reticulated skeleton with high heat resistance is obtained by fixing a deodorant having gas adsorption performance and decomposition performance on a three-dimensional reticulated skeleton structure with an inorganic binder. We can supply a deodorizing filter with a structure.

【0007】三次元網状化骨格構造を有する材料として
は、ポリウレタンフォーム(株式会社ブリヂストン製の
エバーライトSF)、ナイロン、ポリプロピレン、ポリ
エステル等の合成化学繊維をベースとした立体ネット
(樹脂製ネット状織物)(ユニチカ株式会社製のSK1
067SG)などが好適に使用できる。また、三次元網
状化骨格構造の骨格上に固着されるガス吸着性能及び分
解性能を有する脱臭剤としては、その使用の目的により
適宜選択する必要があるため、特に限定はしないが、主
なものとして活性炭、活性白土、ゼオライト、セピオラ
イト、シリカ、アルミナ、及びSiO2 、ZnO、Ti
2 等の原料をベースとした無機系合成化学脱臭剤また
は光励起作用により触媒活性の生じるTiO2 系触媒、
さらにこれらの脱臭剤にAu、Ag、Ru、Rh、P
d、Pt、Mn、Ni、Co、アルカリ金属、アルカリ
土類金属などの金属触媒を担持させた金属触媒担持型脱
臭剤が挙げられる。脱臭剤の粒子径については後述する
実施例1のように脱臭剤の後付着製法の場合若しくは、
後述する実施例2のように脱臭剤のスラリーを浸漬法に
より含浸加工する方法など、その製造方法により適宜選
択することが出来るため特に限定するものではないが、
実施例1の場合のように脱臭剤を後付着法により加工す
る場合のように三次元網状化骨格構造の表裏内部の骨格
表面上に脱臭剤粒子を均一に付着できるための最適な脱
臭剤の粒子径としてはフィルター母材の平均骨格間距離
の50分の1以上、1.5分の1以下の平均粒子径を有
する脱臭剤がよい。また、実施例1の場合は脱臭剤をス
ラリー形状にして浸漬含浸加工するため、好ましい粒子
径としては平均粒子径500μm以下の粉末品がよい。
[0007] Materials having a three-dimensional reticulated skeleton structure include a three-dimensional net (resin net-like woven fabric made of synthetic chemical fiber such as polyurethane foam (Everlight SF manufactured by Bridgestone Corporation), nylon, polypropylene, polyester, etc.). ) (SK1 manufactured by Unitika Ltd.)
067SG) and the like can be suitably used. The deodorant having gas adsorption performance and decomposition performance fixed on the skeleton of the three-dimensional networked skeleton structure is not particularly limited because it is necessary to appropriately select the deodorant according to the purpose of its use. Activated carbon, activated clay, zeolite, sepiolite, silica, alumina, and SiO 2 , ZnO, Ti
An inorganic synthetic chemical deodorant based on a raw material such as O 2 or a TiO 2 -based catalyst having catalytic activity caused by photoexcitation;
Further, these deodorants include Au, Ag, Ru, Rh, P
d, Pt, Mn, Ni, Co, a metal catalyst-carrying type deodorant carrying a metal catalyst such as an alkali metal and an alkaline earth metal. Regarding the particle size of the deodorant, in the case of a post-adhesion production method as in Example 1 described later, or
Although not particularly limited, it can be appropriately selected depending on the manufacturing method, such as a method of impregnating a slurry of a deodorant by a dipping method as in Example 2 described below,
As in the case of Example 1, when the deodorant is processed by the post-adhesion method, an optimal deodorant for uniformly attaching the deodorant particles to the skeleton surface inside the front and back surfaces of the three-dimensional networked skeleton structure. As the particle diameter, a deodorant having an average particle diameter of 1/50 or more and 1.5 / 1.5 or less of the average inter-skeleton distance of the filter base material is preferable. Further, in the case of Example 1, since the deodorizing agent is slurried and subjected to immersion impregnation, a powder having an average particle diameter of 500 μm or less is preferable.

【0008】上述の脱臭剤を固着する無機系のバインダ
ーとしては、三次元網状化骨格構造のフィルター母材に
前述の脱臭剤を固着させ、かつ使用環境時における耐熱
性を有するバインダーであれば特に限定はしないがシリ
カゾルなどのコロイダルシリカ系の無機バインダーや水
ガラス(ケイ酸ナトリウムの濃水溶液)が挙げられる。
As the inorganic binder for fixing the above-mentioned deodorant, a binder which has the above-mentioned deodorant fixed to a filter base material having a three-dimensional network skeleton structure and which has heat resistance in a use environment can be used. Although not limited, a colloidal silica-based inorganic binder such as silica sol or water glass (a concentrated aqueous solution of sodium silicate) may be used.

【0009】また、三次元網状化骨格構造を有するポリ
ウレタンフォーム又は樹脂製ネット状織物の表裏側面及
び内部の骨格上に予め含浸乾燥させる無機質の材料とし
ては、フィルター使用目的により適宜選択する必要があ
るので特に限定するものではないがAl2 2 、SiO
2 、SiCなどの水分散スラリーが好適に使用できる。
骨格上にスラリーを含浸乾燥させた後ガス吸着性能及び
分解性能を有する脱臭剤を無機系のバインダーにて固着
せしめる。
The inorganic material to be impregnated and dried beforehand on the front and back side surfaces and inside skeleton of a polyurethane foam or a resin net-like woven fabric having a three-dimensional network skeleton structure must be appropriately selected depending on the purpose of use of the filter. Although not particularly limited, Al 2 O 2 , SiO 2
2. A water-dispersed slurry such as SiC can be suitably used.
After the slurry is impregnated and dried on the skeleton, a deodorant having gas adsorption performance and decomposition performance is fixed with an inorganic binder.

【0010】フィルターの使用温度が比較的低温の場合
はバインダーの接着強度を向上させるための手段として
前述の無機系のバインダーの替りにあるいは一緒に有機
系のバインダーを用いることもでき、このような有機系
のバインダーとしては、アクリル系、ウレタン系、SB
R系、NBR系、クロロプレン系の粘着及び接着性能を
有するバインダーが好適に使用できる。
When the operating temperature of the filter is relatively low, an organic binder can be used instead of or together with the above-mentioned inorganic binder as a means for improving the adhesive strength of the binder. Organic binders include acrylic, urethane, and SB.
R-based, NBR-based, and chloroprene-based binders having tackiness and adhesion performance can be suitably used.

【0011】さらに、この発明の脱臭フィルターは、三
次元網状化骨格構造を有する樹脂製ネット状織物又はポ
リウレタンフォームの表裏側面及び内部の骨格上にガス
吸着性能及び分解性能を有する脱臭剤と無機、有機系の
バインダー及びガラス化剤によって構成されたスラリー
を含浸乾燥させた後、焼成することによっても得られ
る。ここで使用されるガラス化剤としては、Al
2 3 、SiO2 、LiCO3など、アルミナ、シリ
カ、そしてアルカリ金属及びアルカリ土類金属の酸化
物、炭酸化物などを主原料とし高温焼成によりガラス化
したものが好適に使用できる。焼成条件としては、使用
される脱臭剤の種類や性質により無酸素雰囲気や還元ガ
ス雰囲気、及び空気雰囲気など適宜選択出来、脱臭剤の
能力が使用環境下で最大限に発揮出来しかも目的とする
フィルターの強度が充分得られる温度雰囲気であれば良
く特に限定するものではないが、焼成温度としては10
00℃以上の高温焼成品が好適に使用出来る。
Further, the deodorizing filter of the present invention comprises a deodorizing agent having a gas adsorbing property and a decomposing property on the front and back sides of a resin net-like woven fabric or a polyurethane foam having a three-dimensional networked skeleton structure and an inorganic skeleton. It is also obtained by impregnating and drying a slurry composed of an organic binder and a vitrifying agent, followed by baking. The vitrifying agent used here is Al
A material obtained by vitrifying by high-temperature sintering using alumina, silica, oxides or carbonates of alkali metals and alkaline earth metals as main raw materials such as 2 O 3 , SiO 2 , and LiCO 3 can be suitably used. Depending on the type and properties of the deodorizing agent used, calcination conditions can be selected as appropriate, such as an oxygen-free atmosphere, a reducing gas atmosphere, and an air atmosphere. The temperature is not particularly limited as long as it is a temperature atmosphere in which sufficient strength can be obtained.
High-temperature fired products of 00 ° C. or more can be suitably used.

【0012】実施例1 1インチ直線上の穴の数を定義するセル数表示で6PP
I、厚み10mm品の三次元網状化骨格構造を有する
(株)ブリヂストン製のセラミックフォームを用いこれ
に触媒化成工業(株)製のシリカゾル(商品名キャタロ
イド)を70gWet./リッターとなるように浸漬含浸させ、
その後、北越炭素工業(株)製の平均粒度60メッシュ
の椰子殻活性炭(商品名Y−60)を三次元網状化骨格
構造の表裏及び内部の骨格表面上に付着加工させる。さ
らにこの脱臭フィルターを100℃で15分間乾燥固着
させて耐熱性を有する脱臭フィルターを得た。
EXAMPLE 1 6PP in cell number display that defines the number of holes on a 1-inch straight line
I. A ceramic foam made by Bridgestone Co., Ltd. having a three-dimensional reticulated skeletal structure with a thickness of 10 mm was used, and a silica sol (trade name: Cataloid) made by Catalyst Chemicals Co., Ltd. was made 70 g Wet./liter . Immersion impregnation,
Thereafter, coconut shell activated carbon (trade name: Y-60) having an average particle size of 60 mesh manufactured by Hokuetsu Carbon Industry Co., Ltd. is adhered and processed on the front and back surfaces of the three-dimensional reticulated skeleton structure and on the inside skeleton surface. The deodorizing filter was dried and fixed at 100 ° C. for 15 minutes to obtain a deodorizing filter having heat resistance.

【0013】実施例2 椰子殻活性炭の微粉末品として北越炭素工業(株)製
(商品名Y−300)を乾燥状態で40部、無機バイン
ダーとして触媒化成工業(株)製のシリカゾル(商品名
キャタロイド)固形分33%品を60部の割合で混合さ
せトータル固形分59.8%のスラリーを予め形成し、
1インチ直線上の穴の数を定義するセル数表示で6PP
I、厚み10mm品の三次元網状化骨格構造を有する
(株)ブリヂストン製のセラミックフォームに前述の活
性炭スラリーを浸漬含浸し、その後、余剰スラリーを除
去させ、100℃で30分間乾燥して耐熱性の脱臭フィ
ルターを得た。
Example 2 As a fine powder of coconut shell activated carbon, 40 parts of a dry powder of Hokuetsu Carbon Industries Co., Ltd. (trade name: Y-300), and silica sol (trade name of Catalysis Chemical Industry Co., Ltd.) as an inorganic binder (Cataroid) A product having a solid content of 33% is mixed in a proportion of 60 parts to form a slurry having a total solid content of 59.8% in advance,
6PP in cell number display that defines the number of holes on a 1-inch straight line
I. The activated carbon slurry described above was immersed and impregnated in a ceramic foam made by Bridgestone Co., Ltd. having a three-dimensional reticulated skeleton structure with a thickness of 10 mm, then the excess slurry was removed and dried at 100 ° C. for 30 minutes to obtain heat resistance. Was obtained.

【0014】上述の方法で得られた耐熱脱臭フィルター
の活性炭付着量は実施例1のもので60g/リッター、ま
た、実施例2のもので35g/リッターであった。実施例1
のフィルターは実施例2の製法と比較し活性炭の表面が
無機バインダー層により被覆されておらず、かつ約1.
7倍の活性炭付着量を稼ぐことが可能なため、後述のベ
ンゼンの吸着性能試験の結果から判るように脱臭性能的
には優位である。
The amount of activated carbon deposited on the heat-resistant deodorizing filter obtained by the above-mentioned method was 60 g / liter in Example 1 and 35 g / liter in Example 2. Example 1
In the filter of Example 2, the surface of the activated carbon was not covered with the inorganic binder layer as compared with the production method of Example 2, and about 1.
Since it is possible to obtain seven times the amount of activated carbon attached, it is superior in deodorizing performance as can be seen from the results of a benzene adsorption performance test described below.

【0015】比較例 比較例としては特公平4−35201号公報の記載に基
づき(株)ブリヂストン製の三次元網状化骨格構造のポ
リウレタンフォーム(商品名HR−06)、セル6PP
I、厚み10mmをフィルターの母材とし、予め綜研化学
(株)製のアクリル系の有機バインダー(商品名EW−
2501)にて前述の三次元網状化ポリウレタンフォー
ムに乾燥固形分で25g/リッターとなるように浸漬含浸し
100℃で5分間乾燥した後、北越炭素工業(株)製の
椰子殻活性炭Y−60品をポリウレタンフォームの表裏
面及び内部に後付着加工させ、さらに余剰の活性炭を振
るい落とし活性炭付着量として60g/リッターとなるよう
に調整させた。
Comparative Example As a comparative example, a polyurethane foam having a three-dimensional reticulated skeleton structure (trade name: HR-06) manufactured by Bridgestone Co., Ltd. based on the description in Japanese Patent Publication No. 4-35201, cell 6PP
I, a thickness of 10 mm was used as a base material of a filter, and an acrylic organic binder (trade name EW-
In 2501), the above-mentioned three-dimensional reticulated polyurethane foam was immersed and impregnated at a dry solid content of 25 g / liter and dried at 100 ° C. for 5 minutes, and then a coconut shell activated carbon Y-60 manufactured by Hokuetsu Carbon Industry Co., Ltd. The product was post-adhered to the front and back surfaces and the inside of the polyurethane foam, and excess activated carbon was shaken off to adjust the amount of activated carbon to 60 g / liter.

【0016】実施例1及び実施例2の脱臭フィルターは
3点曲げ試験を行うために試験片を10mm×20mm×1
00mmに裁断し、スパン間の距離を80mm、ヘッドのス
ピードを10mm/min.に調整し、試験を行った。試験の
方法は予めn=5の曲げ強度を測定し、この平均値を初
期曲げ強度とする。本フィルターの高温使用時を想定し
たフィルターの強度を評価するために、10mm×20mm
×100mmに裁断した実施例1及び実施例2の試験片を
300℃×72Hr. 放置し、前述と同様の方法で3点曲
げ試験を行った。これら耐熱試験前後のn=5の3点曲
げ試験の平均値から300℃×72Hr. における初期強
度保持率を割り出した。その結果は表1に示す。
In the deodorizing filters of Examples 1 and 2, a test piece of 10 mm × 20 mm × 1 was used to perform a three-point bending test.
The test was conducted by adjusting the distance between spans to 80 mm and the head speed to 10 mm / min. In the test method, the bending strength of n = 5 is measured in advance, and the average value is used as the initial bending strength. 10mm x 20mm to evaluate the strength of the filter assuming high temperature use of this filter
Each of the test pieces of Example 1 and Example 2 cut to a size of × 100 mm was left at 300 ° C. for 72 hours and subjected to a three-point bending test in the same manner as described above. The initial strength retention at 300 ° C. × 72 hr. Was determined from the average value of the three-point bending test with n = 5 before and after the heat resistance test. The results are shown in Table 1.

【0017】比較例の試験片は実施例1及び実施例2の
ものと比較しフィルターの剛性がないため、耐熱試験前
後の初期強度保持率の測定は引っ張り強度の試験で代用
した。本試験条件は、予め10mm×20mm×100mmに
裁断した比較例の試験サンプルを用意し、n=5の割合
で初期引っ張り強度の試験を行い、その平均値を初期引
っ張り強度とする。また、10mm×20mm×100mmに
裁断した比較例の試験サンプルを300℃×72Hr. 放
置した。熱間保持後の比較例3のサンプルはフィルター
母材の強度劣化が著しく、フィルター形状が保持できて
いないため、熱間保持後の引っ張り強度試験が行えぬ状
況であり、初期強度保持率は0%であった。
Since the test piece of the comparative example did not have the rigidity of the filter as compared with the test pieces of Example 1 and Example 2, the measurement of the initial strength retention before and after the heat resistance test was replaced by the tensile strength test. In this test condition, a test sample of a comparative example cut in advance to 10 mm × 20 mm × 100 mm is prepared, a test of the initial tensile strength is performed at a ratio of n = 5, and the average value is defined as the initial tensile strength. Further, a test sample of a comparative example cut into a size of 10 mm × 20 mm × 100 mm was left at 300 ° C. × 72 hr. In the sample of Comparative Example 3 after the hot holding, the strength of the filter base material was significantly deteriorated, and the filter shape could not be held. Therefore, the tensile strength test after the hot holding could not be performed, and the initial strength holding ratio was 0. %Met.

【0018】実施例1及び実施例2は、比較例のサンプ
ルを20Φに裁断し各々のサンプルについてベンゼン1
00ppm 、サンプルのガス通気径20Φ、流量1リッター/
min.の通気法による条件下で脱臭性能の評価を行いベン
ゼンの除去率が0%になるまでベンゼン100ppm の標
準ガスを通気させた。その後、脱臭性能の回復性能試験
を行うべく上述の脱臭性能評価後のサンプルを200℃
×5Hr. 放置し、さらに他のガス成分の影響のないクリ
ーンな常温環境下で60分間冷却した後、再度前述と同
様の脱臭性能評価を行った。脱臭性能の回復率の算出は
初期脱臭性能の吸着曲線の面積積分値及び200℃×5
Hr. 放置による再脱臭試験後の吸着曲線の面積積分値か
らベンゼン脱臭性能の回復率を割り出した。比較例のサ
ンプルは200℃×5Hr. 放置によりバインダーの接着
強度が悪くなり活性炭の粉落ちが顕著に生じていた。こ
のような活性炭脱落による影響と熱分解性ガス発生の影
響により、比較例の脱臭性能の回復率は実施例1及び実
施例2のものと比較し著しく低く、熱再生的に見て不向
きであることが判る。
In Examples 1 and 2, the sample of the comparative example was cut into 20Φ,
00ppm, sample gas vent diameter 20Φ, flow rate 1 liter /
The deodorizing performance was evaluated under the conditions of the min. ventilation method, and a standard gas of benzene 100 ppm was ventilated until the benzene removal rate became 0%. Thereafter, in order to conduct a recovery performance test of the deodorizing performance, the sample after the evaluation of the deodorizing performance was subjected to 200 ° C.
× 5Hr. After leaving to stand, and further cooling for 60 minutes in a clean room temperature environment free from the influence of other gas components, the same deodorization performance evaluation as described above was performed again. The recovery rate of the deodorizing performance was calculated by calculating the area integrated value of the adsorption curve of the initial deodorizing performance and 200 ° C. × 5.
The recovery rate of the benzene deodorizing performance was determined from the area integrated value of the adsorption curve after the re-deodorization test by leaving Hr. In the sample of the comparative example, the adhesive strength of the binder was deteriorated by leaving the sample at 200 ° C. for 5 hours. Due to the influence of the activated carbon falling off and the generation of the pyrolytic gas, the recovery rate of the deodorizing performance of the comparative example is significantly lower than those of the examples 1 and 2 and is not suitable in terms of heat regeneration. You can see that.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】以上説明したように、この発明によれ
ば、高温状態の有害ガス成分に対し低圧力損失下でしか
も効率良くガス成分を除去することができる。また、常
温状態に使用される空気清浄を目的とした脱臭フィルタ
ーにおいても、一度ガス成分を吸着し飽和した脱臭フィ
ルターを高温状態に保持することによって吸着ガス成分
を脱離又は触媒作用によって分解させ再生することが可
能であるため、再生型の脱臭フィルターとしても使用で
き広範な適用が期待できる。
As described above, according to the present invention, a gas component can be efficiently removed from a harmful gas component in a high temperature state under a low pressure loss. In addition, even in deodorizing filters used for cleaning air used at room temperature, the adsorbed gas components are desorbed or decomposed by catalytic action to regenerate by holding the deodorized filter that has absorbed and saturated the gas components at a high temperature. Therefore, it can be used as a regeneration type deodorizing filter, and wide application can be expected.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ガス吸着性能及び分解性能を有した三次
元網状化骨格構造の耐熱再生機能を有した脱臭フィルタ
ー。
1. A deodorizing filter having a heat-resistant regeneration function of a three-dimensional networked skeleton structure having gas adsorption performance and decomposition performance.
【請求項2】 三次元網状化骨格構造を有するポリウレ
タンフォーム又は樹脂ネットの表裏側面及び内部の骨格
上にガス吸着性能及び分解性能を有する脱臭剤を無機系
のバインダーにて固着せしめた請求項1記載の脱臭フィ
ルター。
2. A deodorizing agent having a gas adsorbing property and a decomposing property is fixed on an upper and lower side surface and an inner skeleton of a polyurethane foam or a resin net having a three-dimensional network skeleton structure with an inorganic binder. The deodorizing filter described.
【請求項3】 三次元網状化骨格構造を有するポリウレ
タンフォーム又は樹脂ネットの表裏側面及び内部の骨格
上に予め無機質の材料を主成分とするスラリーを含浸乾
燥させ、その後ガス吸着性能及び分解性能を有する脱臭
剤を無機系のバインダーにて固着せしめた請求項1記載
の脱臭フィルター。
3. A slurry containing an inorganic material as a main component is impregnated and dried on the front and back side surfaces and inside skeleton of a polyurethane foam or a resin net having a three-dimensional network skeleton structure, and then the gas adsorption performance and the decomposition performance are improved. The deodorizing filter according to claim 1, wherein the deodorizing agent is fixed with an inorganic binder.
【請求項4】 三次元網状化骨格構造を有するポリウレ
タンフォーム又は樹脂ネットの表裏側面及び内部の骨格
上にガス吸着性能及び分解性能を有する脱臭剤を無機系
のバインダーにて固着せしめた後、焼成することによっ
て得られる請求項1記載の脱臭フィルター。
4. A deodorizing agent having gas adsorption performance and decomposition performance is fixed on a front and back side surface and inside skeleton of a polyurethane foam or a resin net having a three-dimensional network skeleton structure with an inorganic binder, and then fired. The deodorizing filter according to claim 1, which is obtained by:
【請求項5】 三次元網状化骨格構造を有するポリウレ
タンフォーム又は樹脂ネットの表裏側面及び内部の骨格
上に予め無機質の材料を主成分とするスラリーを含浸乾
燥させ焼成させた後ガス吸着性能及び分解性能を有する
脱臭剤を無機系のバインダーにて固着せしめた請求項1
記載の脱臭フィルター。
5. A polyurethane foam or resin net having a three-dimensional network skeleton structure, which is impregnated with a slurry containing an inorganic material as a main component, dried and calcined on the front and back side surfaces and inside skeleton of the resin net. 2. A deodorant having high performance is fixed by an inorganic binder.
The deodorizing filter described.
【請求項6】 三次元網状化骨格構造を有するポリウレ
タンフォーム又は樹脂ネットの表裏側面及び内部の骨格
上に予め無機質の材料を主成分とするスラリーを含浸乾
燥させ、その後ガス吸着性能及び分解性能を有する脱臭
剤を耐熱性を有した有機バインダーにて固着せしめた請
求項1記載の脱臭フィルター。
6. A slurry mainly composed of an inorganic material is impregnated and dried on the front and back side surfaces and inside skeleton of a polyurethane foam or a resin net having a three-dimensional network skeleton structure. The deodorizing filter according to claim 1, wherein the deodorizing agent is fixed with an organic binder having heat resistance.
【請求項7】 三次元網状化骨格構造を有するポリウレ
タンフォーム又は樹脂ネットの表裏側面及び内部の骨格
上にガス吸着性能及び分解性能を有する脱臭剤と無機、
有機系のバインダー及びガラス化剤を主成分とするスラ
リーを含浸乾燥させた後、焼成することによって得られ
る請求項1記載の脱臭フィルター。
7. A deodorant having gas adsorption performance and decomposition performance on the front and back side surfaces and inside skeleton of a polyurethane foam or a resin net having a three-dimensional networked skeleton structure, and an inorganic material.
2. The deodorizing filter according to claim 1, wherein the filter is obtained by impregnating and drying a slurry containing an organic binder and a vitrifying agent as main components, followed by baking.
【請求項8】 三次元網状化骨格構造を有するポリウレ
タンフォーム又は樹脂ネットの表裏側面及び内部の骨格
上に予め耐熱性を有するバインダー成分を含有したスラ
リーを含浸乾燥させた後、本スラリーが乾燥する前にポ
リウレタンフォームの平均骨格間距離の50分の1以
上、1.5分の1以下の平均粒径を有する吸着体粒子を
付着することによって得られる吸着体の一部が骨格表面
に固着され残部が露出した請求項1記載の脱臭フィルタ
ー。
8. A slurry containing a binder component having heat resistance is impregnated and dried on the front and back side surfaces and inside skeleton of a polyurethane foam or a resin net having a three-dimensional network skeleton structure, and then the slurry is dried. Part of the adsorbent obtained by adhering adsorbent particles having an average particle diameter of not less than 1/50 and not more than 1 / 1.5 of the average inter-skeleton distance of the polyurethane foam is fixed to the surface of the skeleton. The deodorizing filter according to claim 1, wherein the remaining portion is exposed.
【請求項9】 三次元網状化骨格構造を有するポリウレ
タンフォーム又は樹脂ネットの表裏側面及び内部の骨格
上に予め耐熱性を有するバインダー成分を含有したスラ
リーを含浸させた後、本スラリーが乾燥する前にポリウ
レタンフォームの平均骨格間距離の50分の1以上、
1.5分の1以下の平均粒径を有する吸着体粒子を付着
し、さらに焼成することによって得られる吸着体の一部
が骨格表面に固着され残部が露出した請求項1記載の脱
臭フィルター。
9. After impregnating a slurry containing a binder component having heat resistance in advance on the front and back side surfaces and inside skeleton of a polyurethane foam or a resin net having a three-dimensional network skeleton structure, and before drying the slurry. More than 1/50 of the average inter-skeleton distance of polyurethane foam,
2. The deodorizing filter according to claim 1, wherein a part of the adsorbent obtained by adhering adsorbent particles having an average particle diameter of 1.5 times or less and further baking is fixed to the surface of the skeleton and the remaining part is exposed.
JP9309619A 1997-10-23 1997-10-23 Deodorization filter Pending JPH11128667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9309619A JPH11128667A (en) 1997-10-23 1997-10-23 Deodorization filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9309619A JPH11128667A (en) 1997-10-23 1997-10-23 Deodorization filter

Publications (1)

Publication Number Publication Date
JPH11128667A true JPH11128667A (en) 1999-05-18

Family

ID=17995220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9309619A Pending JPH11128667A (en) 1997-10-23 1997-10-23 Deodorization filter

Country Status (1)

Country Link
JP (1) JPH11128667A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1030543A1 (en) * 1999-02-19 2000-08-23 Matsushita Electric Industrial Co., Ltd. Non-woven fabric material and prepreg, and circuit board using the same
WO2003085768A1 (en) * 2002-04-05 2003-10-16 Bridgestone Corporation Fluid cleaner and fuel cell power generator facility
WO2004091774A1 (en) * 2003-04-15 2004-10-28 Bridgestone Corporation Material and apparatus for adsorbing and desorbing carbon dioxide
WO2005056175A1 (en) * 2003-12-15 2005-06-23 Asahi Kasei Chemicals Corporation Porous formed article and method for production thereof
JP2008043580A (en) * 2006-08-18 2008-02-28 Mitsubishi Electric Corp Deodorizing filter and air cleaning device
JP2017028743A (en) * 2013-03-15 2017-02-02 ボーズ・コーポレーションBose Corporation Method of manufacturing three-dimensional air-adsorbing structure
CN112516780A (en) * 2020-10-27 2021-03-19 蒲城驭腾新材料科技有限公司 Calcium-based desulfurizer and preparation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1030543A1 (en) * 1999-02-19 2000-08-23 Matsushita Electric Industrial Co., Ltd. Non-woven fabric material and prepreg, and circuit board using the same
WO2003085768A1 (en) * 2002-04-05 2003-10-16 Bridgestone Corporation Fluid cleaner and fuel cell power generator facility
WO2004091774A1 (en) * 2003-04-15 2004-10-28 Bridgestone Corporation Material and apparatus for adsorbing and desorbing carbon dioxide
US7402198B2 (en) 2003-04-15 2008-07-22 Bridgestone Corporation Carbon dioxide adsorption-desorption material and adsorption-desorption apparatus
WO2005056175A1 (en) * 2003-12-15 2005-06-23 Asahi Kasei Chemicals Corporation Porous formed article and method for production thereof
JPWO2005056175A1 (en) * 2003-12-15 2007-07-05 旭化成ケミカルズ株式会社 Porous molded body and method for producing the same
KR100804360B1 (en) * 2003-12-15 2008-02-15 아사히 가세이 케미칼즈 가부시키가이샤 Porous formed article and method for production thereof
JP4671419B2 (en) * 2003-12-15 2011-04-20 旭化成ケミカルズ株式会社 Porous molded body and method for producing the same
JP2008043580A (en) * 2006-08-18 2008-02-28 Mitsubishi Electric Corp Deodorizing filter and air cleaning device
JP2017028743A (en) * 2013-03-15 2017-02-02 ボーズ・コーポレーションBose Corporation Method of manufacturing three-dimensional air-adsorbing structure
CN112516780A (en) * 2020-10-27 2021-03-19 蒲城驭腾新材料科技有限公司 Calcium-based desulfurizer and preparation method thereof

Similar Documents

Publication Publication Date Title
EP1475151B1 (en) Use of a catalyst for purifying exhaust gas of diesel engines
EP0648535B1 (en) Method of producing a pore-impregnated body
CN101679128B (en) Honeycomb structure
JP5486497B2 (en) Deodorizing catalyst, deodorizing method using the same, and regenerating method of the catalyst
WO2007023558A1 (en) Tungsten oxide photocatalyst, process for producing the same, and fiber cloth having deodorizing/antifouling function
JPWO2007000825A1 (en) Honeycomb structure
US6843817B2 (en) Ceramic filter and filter device
CN112166213A (en) Activated porous fibers and products including the same
KR101982018B1 (en) Catalyst- Coated Filters Which Have Increased Catalytic Activity By Adding Lithium Element
JPH11128667A (en) Deodorization filter
KR20170140494A (en) Manganese-copper catalyst coated silicon carbide honeycomb
EP3393629B1 (en) A catalyst bed and method for reducing nitrogen oxides
JP2005523154A (en) Filter element
JP2005163243A (en) Photocatalyst-carrying fibrous formed body
JP2002331212A (en) Dedusting deodorizing filter
JP2004313844A (en) Harmful substance decomposing method
JPH0810619A (en) Ozone decomposing catalyst and decomposing method
JPS62106843A (en) Catalyst for purifying exhaust gas and its preparation
JP2000317271A (en) Adsorbent
JPS60220148A (en) Honeycomb shaped deodorizing catalyst
JPH10202046A (en) Dust collecting and deodorizing filter for air conditioner and regenerating method thereof
JP4471191B2 (en) Method for producing deodorizing catalyst
JPH06154529A (en) Filter
JPH10165808A (en) Improved deodorant
JP2006272290A (en) Exhaust gas cleaning method and exhaust gas cleaning device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060523