JPH0528439A - Magneto-resistance effect element and production thereof - Google Patents

Magneto-resistance effect element and production thereof

Info

Publication number
JPH0528439A
JPH0528439A JP3201120A JP20112091A JPH0528439A JP H0528439 A JPH0528439 A JP H0528439A JP 3201120 A JP3201120 A JP 3201120A JP 20112091 A JP20112091 A JP 20112091A JP H0528439 A JPH0528439 A JP H0528439A
Authority
JP
Japan
Prior art keywords
layer
magnetic
conductor layer
magneto
resistance effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3201120A
Other languages
Japanese (ja)
Other versions
JP2850584B2 (en
Inventor
Tomihiko Tatsumi
富彦 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3201120A priority Critical patent/JP2850584B2/en
Publication of JPH0528439A publication Critical patent/JPH0528439A/en
Application granted granted Critical
Publication of JP2850584B2 publication Critical patent/JP2850584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To obtain the MR element which is stable in output and is free from Barkhausen noises by using Ti or Ta as the nonmagnetic conductor layer of the magneto-resistance effect element. CONSTITUTION:An amorphous soft magnetic layer 2 for generating bias magnetic fields, the nonmagnetic conductor layer 3 and a magneto-resistance effect layer 4 consisting of a ferromagnetic material having a magneto-resistance effect are successively laminated on a substrate. The Ti or Ta is used as this nonmagnetic conductor layer 3. The formation of the film for the magneto- resistance effect layer 4 on the nonmagnetic conductor layer 3 is executed in a 50 to 250 deg.C range in the case of using of the Ti and in a 50 to 150 deg.C range in the case of using of the Ta. The formation of a diffused layer to disturb the uniaxial magnetic anisotropy of the MR effect layer 4 is prohibited and the magnetic domain structure of the MR effect layer 4 is stabilized by adopting such substrate temp. The MR element 4 which has the stable output, does not generate the Barkhausen noises and has high performance and high sensitivity is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は強磁性磁気抵抗効果(以
下、MR効果と略す。)を利用して磁界を検出する磁気
抵抗効果素子(以下、MR素子と略す。)に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive effect element (hereinafter abbreviated as MR element) for detecting a magnetic field by utilizing a ferromagnetic magnetoresistive effect (hereinafter abbreviated as MR effect).

【0002】[0002]

【従来の技術】MR素子を、線形応答性を有する高感度
の磁気センサーとして使用する場合には、MR素子に流
すセンス電流とMR素子内のMR効果層の磁化とのなす
角度を45度前後に設定するバイアス手段を具備しなけ
ればならない。上述のバイアス手段として、種々の方法
が開示されているが、この中で特願昭62−31285
9号に開示されたMR素子においては、バイアス磁界発
生用の非晶質軟磁性体層と、非磁性導体層と、MR層
が、基板上にこの順に積層された構造を有している。従
って非晶質軟磁性体層の磁界中熱処理がMR層成膜前に
実施できるため、熱処理条件を自由に設定でき良好なバ
イアス磁界を発生させる非晶質軟磁性体層を得ることが
できる。
2. Description of the Related Art When an MR element is used as a highly sensitive magnetic sensor having a linear response, the angle formed by the sense current flowing through the MR element and the magnetization of the MR effect layer in the MR element is about 45 degrees. Biasing means set to Various methods have been disclosed as the above-mentioned biasing means, among which Japanese Patent Application No. 62-31285 is disclosed.
The MR element disclosed in No. 9 has a structure in which an amorphous soft magnetic material layer for generating a bias magnetic field, a nonmagnetic conductor layer, and an MR layer are laminated in this order on a substrate. Therefore, since the heat treatment in the magnetic field of the amorphous soft magnetic material layer can be performed before forming the MR layer, it is possible to freely set the heat treatment conditions and obtain the amorphous soft magnetic material layer which generates a good bias magnetic field.

【0003】[0003]

【発明が解決しようとする課題】ところで、上述のMR
素子において、非磁性導体層として種々の金属を用い、
三層構造の作製条件を変化させて多種類のMR素子を作
製し、印加磁界と出力電圧の関係を測定したところ、試
料によっては出力電圧のふらつき、およびバルクハウゼ
ンノイズの著しい増加がみられた。同試料においては、
M−H特性の困難軸ループが大きく開いてショルダーが
みられることから、MR効果層内の一軸磁気異方性が分
散し、磁区構造が乱れていることが原因と考えられる。
従って、安定した出力を保ちバルクハウゼンノイズのみ
られないMR素子を得るためには、MR効果層において
良好な一軸磁気異方性がみられ、M−H特性の困難軸ル
ープに異常がみられない条件を満たす非磁性導体層材料
を選択しなければならない。さらに、作製条件として最
も影響が大きいと考えられる非磁性導体層上にMR層を
成膜する際の成膜基板温度について検討しなければなら
ない。本発明は上記のような点に留意して、磁気異方性
の分散がみられず、安定した出力を有する高性能、高出
力のMR素子を提供することを目的とする。
By the way, the above-mentioned MR
In the element, various metals are used as the non-magnetic conductor layer,
Various types of MR devices were manufactured by changing the manufacturing conditions of the three-layer structure, and the relationship between the applied magnetic field and the output voltage was measured. As a result, fluctuations in the output voltage and a marked increase in Barkhausen noise were observed depending on the sample. . In the same sample,
Since the hard axis loop of the MH characteristic is wide open and a shoulder is seen, it is considered that the uniaxial magnetic anisotropy in the MR effect layer is dispersed and the magnetic domain structure is disturbed.
Therefore, in order to obtain an MR element that does not produce Barkhausen noise with stable output, good uniaxial magnetic anisotropy is observed in the MR effect layer, and no abnormality is observed in the hard axis loop of the MH characteristic. A non-magnetic conductor layer material that satisfies the conditions must be selected. Further, it is necessary to study the film forming substrate temperature when forming the MR layer on the non-magnetic conductor layer, which is considered to have the greatest influence as a manufacturing condition. The present invention has been made in consideration of the above points, and an object thereof is to provide a high-performance and high-output MR element having stable output without showing dispersion of magnetic anisotropy.

【0004】[0004]

【課題を解決するための手段】本発明は、バイアス磁界
発生用の非晶質軟磁性体層と、非磁性導体層と、磁気抵
抗効果を有する強磁性体からなる磁気抵抗効果層とが基
板上に順次積層された構造を有する磁気抵抗効果素子に
おいて、非磁性導体層としてTiまたはTaを用いるこ
とを特徴とする磁気抵抗効果素子である。またその製造
方法は、バイアス磁界発生用の非晶質軟磁性体層と、非
磁性導体層と、磁気抵抗効果を有する強磁性体からなる
磁気抵抗効果層とを基板上に順次積層してなる磁気抵抗
効果素子の製造方法において、非磁性導体層としてTi
を用い、該非磁性導体層上に磁気抵抗効果層を成膜する
際の基板温度を50〜250℃の範囲とするか、あるい
は非磁性導体層としてTaを用い、該非磁性導体層上に
磁気抵抗効果層を成膜する際の基板温度を50〜150
℃の範囲とすることを特徴とする。
According to the present invention, a substrate is provided with an amorphous soft magnetic material layer for generating a bias magnetic field, a non-magnetic conductor layer, and a magnetoresistive effect layer made of a ferromagnetic material having a magnetoresistive effect. In the magnetoresistive effect element having a structure in which the nonmagnetic conductor layers are sequentially stacked on top of each other, Ti or Ta is used as the nonmagnetic conductor layer. Further, the manufacturing method is such that an amorphous soft magnetic material layer for generating a bias magnetic field, a non-magnetic conductor layer, and a magnetoresistive effect layer made of a ferromagnetic material having a magnetoresistive effect are sequentially laminated on a substrate. In the method of manufacturing a magnetoresistive effect element, Ti is used as the non-magnetic conductor layer.
And the substrate temperature at the time of forming the magnetoresistive effect layer on the nonmagnetic conductor layer is set in the range of 50 to 250 ° C., or Ta is used as the nonmagnetic conductor layer and the magnetoresistive layer is formed on the nonmagnetic conductor layer. The substrate temperature at the time of forming the effect layer is 50 to 150.
It is characterized in that it is in the range of ° C.

【0005】[0005]

【作用】非磁性導体層上にMR効果層を成膜する際、基
板温度がある温度以上になると層間に拡散が起こり、軟
磁性を示さない磁性合金層が形成される。この層が持つ
大きく非均一な磁気異方性は、MR効果層の一軸磁気異
方性を分散させ、磁区構造を乱す。この乱れによって外
部磁界に対する素子の応答にヒステリシスや飛びが発生
し、出力が不安定になり、バルクハウゼンノイズが発生
する。従って、望ましくない磁性合金層が形成されにく
い非磁性導体層材料としてTiまたはTaを選び、非磁
性導体層とMR効果層(一般にはNiFe層である。)
の拡散度に応じた成膜基板温度の上限を設定してやるこ
とによって、MR効果層の一軸磁気異方性を乱す拡散層
の形成を阻止し、MR効果層の磁区構造を安定化するこ
とができる。すなわち、安定した出力を持ち、バルクハ
ウゼンノイズの生じない高性能高感度のMR素子が実現
される。なお、MR効果層の成膜基板温度が低すぎる
と、MR効果層の結晶状態が乱れ、比抵抗値が上がるこ
とによって磁気抵抗変化比(以後、MR比と呼ぶ。)が
小さくなってしまい、出力が大幅に低下してしまう。従
って、成膜基板温度に上限値だけでなく下限値も必要と
なる。
When the MR effect layer is formed on the non-magnetic conductor layer, if the substrate temperature exceeds a certain temperature, diffusion occurs between the layers, and a magnetic alloy layer that does not exhibit soft magnetism is formed. The large and non-uniform magnetic anisotropy of this layer disperses the uniaxial magnetic anisotropy of the MR effect layer and disturbs the magnetic domain structure. Due to this disturbance, hysteresis or jump occurs in the response of the element to the external magnetic field, the output becomes unstable, and Barkhausen noise occurs. Therefore, Ti or Ta is selected as the material of the non-magnetic conductor layer in which an undesirable magnetic alloy layer is hard to be formed, and the non-magnetic conductor layer and the MR effect layer (generally a NiFe layer).
By setting the upper limit of the film formation substrate temperature according to the diffusivity of the MR effect layer, it is possible to prevent the diffusion layer from disturbing the uniaxial magnetic anisotropy of the MR effect layer and stabilize the magnetic domain structure of the MR effect layer. . That is, a high-performance and high-sensitivity MR element having a stable output and free from Barkhausen noise is realized. If the temperature of the MR effect layer deposition substrate is too low, the crystalline state of the MR effect layer is disturbed and the specific resistance value increases, so that the magnetoresistance change ratio (hereinafter referred to as the MR ratio) becomes small. The output will drop significantly. Therefore, not only the upper limit value but also the lower limit value is required for the film formation substrate temperature.

【0006】[0006]

【実施例】次に本発明の実施例について説明する。 実施例1 図2は、本発明の一実施例を示す図である。図2におい
て、ガラス基板1上にRFスパッタ法を用いて、非晶質
軟磁性体層2となる膜厚50nmのCoZrMoを成膜
した。CoZrMo成膜中には永久磁石を用いて200
エルステッドの磁界を印加し、同膜に一軸磁気異方性を
付与した。成膜後、付与された磁気異方性の容易軸方向
に200エルステッドの磁界を印加しながら、300℃
の熱処理を2時間行い、軟磁性および一軸磁気異方性の
向上を図った。次に同じくRFスパッタ法を用いて、非
磁性導体層3となる膜厚20nmのTiを、前記した非
晶質軟磁性体層2上に成膜した。さらに同じくRFスパ
ッタ法を用いて、MR効果層4となる膜厚40nmのN
82Fe18(wt%)を成膜した。この際の成膜基板温
度は、−50、0、50、100、150、200、2
50、300、350℃の9種類とした。これらの試料
における困難軸方向のM−H特性の測定結果を表1に示
す。表中、困難軸方向のM−H特性をAとしたのは図1
(a)のタイプを示し、Bとしたのは図1(b)のタイ
プを示す。成膜基板温度−50℃から250℃の試料で
は一軸磁気異方性を示す膜特有の良好な困難軸ループが
得られているが、300℃および350℃の試料におい
ては、困難軸ループが大きく開いてショルダーがみられ
ることから、MR効果層すなわちNi82Fe18膜内の一
軸磁気異方性が分散していることがわかる。
EXAMPLES Next, examples of the present invention will be described. Embodiment 1 FIG. 2 is a diagram showing an embodiment of the present invention. In FIG. 2, a CoZrMo film having a film thickness of 50 nm to be the amorphous soft magnetic layer 2 was formed on the glass substrate 1 by using the RF sputtering method. 200% by using a permanent magnet during CoZrMo film formation
An Oersted magnetic field was applied to impart uniaxial magnetic anisotropy to the film. After the film formation, while applying a magnetic field of 200 Oersted in the easy axis direction of the imparted magnetic anisotropy, 300 ° C.
Was heat-treated for 2 hours to improve soft magnetism and uniaxial magnetic anisotropy. Next, similarly using the RF sputtering method, Ti having a film thickness of 20 nm to be the nonmagnetic conductor layer 3 was formed on the amorphous soft magnetic material layer 2 described above. Further, by using the RF sputtering method as well, N having a film thickness of 40 nm to be the MR effect layer 4 is formed.
A film of i 82 Fe 18 (wt%) was formed. The film forming substrate temperature at this time is −50, 0, 50, 100, 150, 200, 2
There were 9 types of 50, 300 and 350 ° C. Table 1 shows the measurement results of the MH characteristics of these samples in the hard axis direction. In the table, the M-H characteristic in the hard axis direction is designated as A in FIG.
The type of (a) is shown, and B is the type of FIG. 1 (b). Good hard-axis loops peculiar to the film exhibiting uniaxial magnetic anisotropy were obtained in the sample at the film-forming substrate temperature of -50 ° C to 250 ° C, but the hard-axis loop was large in the samples at 300 ° C and 350 ° C. Since the shoulders are opened and seen, it can be seen that the uniaxial magnetic anisotropy in the MR effect layer, that is, the Ni 82 Fe 18 film is dispersed.

【0007】[0007]

【表1】 ──────────────────────────────────── 成膜基板温度(℃) −50 0 50 100 150 200 250 300 350 ──────────────────────────────────── 困難軸方向のM−H特性 A A A A A A A B B ────────────────────────────────────[Table 1] ────────────────────────────────────   Deposition substrate temperature (℃) −50 0 50 100 150 200 250 300 350 ────────────────────────────────────   MH characteristics in the difficult axis direction A A A A A A A A B B ────────────────────────────────────

【0008】この積層体上に同じくRFスパッタ法を用
いて、電極層5となる膜厚250nmのAuを成膜し
た。さらに、この積層体上に所定のフォトレジストパタ
ーンを形成し、Arガス雰囲気中でイオンエッチングを
行い、長さ30μm、幅5μmの矩形状、および端子形
状のパターンに加工した。この際のエッチング条件は、
加速電圧500V、Arガス圧力1×10-4Torrで
あった。さらに、フォトレジスト処理および選択化学エ
ッチングによって感磁部分6である矩形状のパターンお
よび電極端子7を形成し、MR素子を作製した。このM
R素子の印加磁界と出力電圧の関係を測定したところ、
成膜基板温度が50℃から250℃の素子においてはバ
ルクハウゼンノイズはほとんどみられなかった。MR比
は1.5%以上であり、出力電圧は十分大きく安定して
いた。一方、成膜基板温度−50℃および0℃の試料に
おいてはMR比は0.8%以下と小さく十分な出力が得
られなかった。また、300℃および350℃の試料に
おいては、MR比は2%以上であり十分大きな出力電圧
が得られたが、バルクハウゼンノイズが観察され、さら
に出力電圧にふらつきがみられた。以上のことから、T
iからなる非磁性導体層上にMR効果層を成膜する際の
基板温度を50℃以上,250℃以下とすることによ
り、出力が安定した、バルクハウゼンノイズのみられな
い高性能高出力のMR素子が得られた。
An Au film having a thickness of 250 nm to be the electrode layer 5 was formed on this laminated body by the same RF sputtering method. Further, a predetermined photoresist pattern was formed on this laminated body, and ion etching was performed in an Ar gas atmosphere to form a rectangular shape having a length of 30 μm and a width of 5 μm, and a terminal-shaped pattern. The etching conditions at this time are
The acceleration voltage was 500 V and the Ar gas pressure was 1 × 10 −4 Torr. Further, a rectangular pattern which is the magnetically sensitive portion 6 and the electrode terminal 7 were formed by photoresist treatment and selective chemical etching, and an MR element was produced. This M
When the relationship between the applied magnetic field of the R element and the output voltage was measured,
Barkhausen noise was hardly observed in the device in which the film formation substrate temperature was 50 ° C. to 250 ° C. The MR ratio was 1.5% or more, and the output voltage was sufficiently large and stable. On the other hand, in the samples at the film formation substrate temperature of -50 ° C and 0 ° C, the MR ratio was as small as 0.8% or less, and a sufficient output could not be obtained. Further, in the samples at 300 ° C. and 350 ° C., the MR ratio was 2% or more and a sufficiently large output voltage was obtained, but Barkhausen noise was observed, and further, the output voltage fluctuated. From the above, T
A high-performance and high-output MR with stable output and free from Barkhausen noise by setting the substrate temperature to 50 ° C. or higher and 250 ° C. or lower when the MR effect layer is formed on the non-magnetic conductor layer made of i A device was obtained.

【0009】実施例2 非磁性導体層として膜厚200オングストロームのTa
を用いたこと以外は全く実施例1と同様にしてMR素子
を作製した。Taからなる非磁性導体層上にMR効果層
を成膜する際の基板温度も同様に、−50、0、50、
100、150、200、250、300、350℃の
9種類とした。これらの試料における困難軸方向のM−
H特性を表2に示す。表中、困難軸方向のM−H特性に
おけるAおよびBは表1と同様である。成膜基板温度−
50℃から150℃の試料では一軸磁気異方性を示す膜
特有の良好な困難軸ループが得られているが、200℃
から350℃の試料においては、困難軸ループが大きく
開いてショルダーがみられることから、MR効果層すな
わちNi82Fe18膜内の一軸磁気異方性が分散している
ことがわかる。
Example 2 Ta having a film thickness of 200 Å as a non-magnetic conductor layer
An MR element was manufactured in exactly the same manner as in Example 1 except that was used. Similarly, the substrate temperature at the time of forming the MR effect layer on the non-magnetic conductor layer made of Ta is -50, 0, 50,
There were 9 types of 100, 150, 200, 250, 300 and 350 ° C. M- in the direction of the hard axis in these samples
H characteristics are shown in Table 2. In the table, A and B in the M-H characteristic in the hard axis direction are the same as in Table 1. Deposition substrate temperature-
A good hard-axis loop peculiar to the film showing uniaxial magnetic anisotropy was obtained in the sample of 50 to 150 ° C, but 200 ° C
From the sample of 350 ° C. to 350 ° C., the hard axis loop is greatly opened and the shoulder is seen, which shows that the uniaxial magnetic anisotropy in the MR effect layer, that is, the Ni 82 Fe 18 film is dispersed.

【0010】[0010]

【表2】 ──────────────────────────────────── 成膜基板温度(℃) −50 0 50 100 150 200 250 300 350 ──────────────────────────────────── 困難軸方向のM−H特性 A A A A A B B B B ────────────────────────────────────[Table 2] ────────────────────────────────────   Deposition substrate temperature (℃) −50 0 50 100 150 200 250 300 350 ────────────────────────────────────   MH characteristics in the difficult axis direction A A A A A A B B B B B ────────────────────────────────────

【0011】このMR素子の印加磁界と出力電圧の関係
を測定したところ、成膜基板温度が50℃から150℃
の素子においては、MR比は1.5%以上であり、出力
電圧は十分大きく安定していた。一方、成膜基板温度−
50℃および0℃の試料においてはMR比は0.8%以
下と小さく十分な出力が得られなかった。また、200
℃から350℃の試料においては、MR比は1.8%以
上であり十分大きな出力電圧が得られたが、バルクハウ
ゼンノイズが観察され、さらに出力電圧にふらつきが見
られた。以上のことから、Taからなる非磁性導体層上
にMR効果層を成膜する際の基板温度を50℃以上,1
50℃以下とすることにより、出力が安定した、バルク
ハウゼンノイズのみられない高性能高出力のMR素子が
得られた。
When the relationship between the applied magnetic field and the output voltage of this MR element was measured, the film formation substrate temperature was 50 ° C. to 150 ° C.
In the element (1), the MR ratio was 1.5% or more, and the output voltage was sufficiently large and stable. On the other hand, the film forming substrate temperature −
In the samples at 50 ° C. and 0 ° C., the MR ratio was as small as 0.8% or less, and a sufficient output could not be obtained. Also, 200
In the sample from ℃ to 350 ℃, the MR ratio was 1.8% or more, and a sufficiently large output voltage was obtained, but Barkhausen noise was observed, and further, the output voltage fluctuated. From the above, the substrate temperature at the time of forming the MR effect layer on the nonmagnetic conductor layer made of Ta is 50 ° C. or higher, 1
By setting the temperature to 50 ° C. or lower, an MR element with stable output and high performance and high output free from Barkhausen noise was obtained.

【0012】比較例 非磁性導体層として膜厚200オングストロームのV、
Sc、Cr、Zr、Y、Nb、Mo、Hf、Wを用いた
こと以外は全く実施例1と同様にしてMR素子を作製し
た。非磁性導体層上にMR効果層を成膜する際の基板温
度は、−50、50、150、250、350℃の5種
類とした。これらの試料における困難軸方向のM−H特
性を測定したところ、いずれの試料においても図1
(b)に相当する困難軸ループが得られた。すなわちN
82Fe18膜内の一軸磁気異方性が分散していることが
わかる。これらのMR素子において印加磁界と出力電圧
の関係を測定したところ、バルクハウゼンノイズが観察
され、さらに出力電圧にふらつきが見られた。以上のよ
うに、三層構造のMR素子において、非磁性導体層とし
ては、V、Sc、Cr、Zr、Y、Nb、Mo、Hf、
Wのいずれの元素も適していないことがわかる。
Comparative Example As a non-magnetic conductor layer, V having a film thickness of 200 Å,
An MR element was produced in exactly the same manner as in Example 1 except that Sc, Cr, Zr, Y, Nb, Mo, Hf and W were used. The substrate temperature at the time of forming the MR effect layer on the non-magnetic conductor layer was -50, 50, 150, 250, and 350 ° C. The MH characteristics of these samples in the direction of the hard axis were measured.
A hard axis loop corresponding to (b) was obtained. Ie N
It can be seen that the uniaxial magnetic anisotropy in the i 82 Fe 18 film is dispersed. When the relationship between the applied magnetic field and the output voltage was measured in these MR elements, Barkhausen noise was observed and the output voltage fluctuated. As described above, in the MR element having the three-layer structure, the non-magnetic conductor layers include V, Sc, Cr, Zr, Y, Nb, Mo, Hf,
It can be seen that none of the elements W are suitable.

【0013】[0013]

【発明の効果】以上述べてきたように、本発明によれ
ば、MR効果層の一軸磁気異方性を乱す拡散層の形成を
阻止し、MR層の磁区構造を安定化することにより、出
力が安定しており、かつバルクハウゼンノイズのみられ
ない高性能高出力のMR素子が得られる。
As described above, according to the present invention, the formation of the diffusion layer disturbing the uniaxial magnetic anisotropy of the MR effect layer is prevented, and the magnetic domain structure of the MR layer is stabilized, so that the output is improved. It is possible to obtain a high-performance and high-output MR element which is stable and has no Barkhausen noise.

【図面の簡単な説明】[Brief description of drawings]

【図1】MR効果層成膜時の各基板温度における困難軸
方向のM−H特性を示した図である。
FIG. 1 is a diagram showing MH characteristics in a hard axis direction at each substrate temperature during film formation of an MR effect layer.

【図2】本発明によるMR素子の一実施例を示す構成図
である。
FIG. 2 is a configuration diagram showing an embodiment of an MR element according to the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 非晶質軟磁性体層 3 非磁性導体層 4 MR効果層 5 電極層 6 感磁部分 7 電極端子 1 glass substrate 2 amorphous soft magnetic layer 3 Non-magnetic conductor layer 4 MR effect layer 5 Electrode layer 6 Magnetic field 7 electrode terminals

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 バイアス磁界発生用の非晶質軟磁性体層
と、非磁性導体層と、磁気抵抗効果を有する強磁性体か
らなる磁気抵抗効果層とが基板上に順次積層された構造
を有する磁気抵抗効果素子において、非磁性導体層とし
てTiまたはTaを用いることを特徴とする磁気抵抗効
果素子。
1. A structure in which an amorphous soft magnetic material layer for generating a bias magnetic field, a non-magnetic conductor layer, and a magnetoresistive effect layer made of a ferromagnetic material having a magnetoresistive effect are sequentially laminated on a substrate. The magnetoresistive effect element which has Ti or Ta as a nonmagnetic conductor layer.
【請求項2】 バイアス磁界発生用の非晶質軟磁性体層
と、非磁性導体層と、磁気抵抗効果を有する強磁性体か
らなる磁気抵抗効果層とを基板上に順次積層してなる磁
気抵抗効果素子の製造方法において、非磁性導体層とし
てTiを用い、該非磁性導体層上に磁気抵抗効果層を成
膜する際の基板温度を50〜250℃の範囲とすること
を特徴とする磁気抵抗効果素子の製造方法。
2. A magnetic layer comprising an amorphous soft magnetic material layer for generating a bias magnetic field, a non-magnetic conductor layer, and a magnetoresistive effect layer made of a ferromagnetic material having a magnetoresistive effect, which are sequentially laminated on a substrate. In the method of manufacturing a resistance effect element, Ti is used as the non-magnetic conductor layer, and the substrate temperature at the time of forming the magnetoresistive effect layer on the non-magnetic conductor layer is in the range of 50 to 250 ° C. Method of manufacturing resistance effect element.
【請求項3】 バイアス磁界発生用の非晶質軟磁性体層
と、非磁性導体層と、磁気抵抗効果を有する強磁性体か
らなる磁気抵抗効果層とを基板上に順次積層してなる磁
気抵抗効果素子の製造方法において、非磁性導体層とし
てTaを用い、該非磁性導体層上に磁気抵抗効果層を成
膜する際の基板温度を50〜150℃の範囲とすること
を特徴とする磁気抵抗効果素子の製造方法。
3. A magnetic layer comprising an amorphous soft magnetic material layer for generating a bias magnetic field, a non-magnetic conductor layer, and a magnetoresistive effect layer made of a ferromagnetic material having a magnetoresistive effect, which are sequentially laminated on a substrate. In a method of manufacturing a resistance effect element, Ta is used as a non-magnetic conductor layer, and a substrate temperature when forming a magnetoresistive effect layer on the non-magnetic conductor layer is set in a range of 50 to 150 ° C. Method of manufacturing resistance effect element.
JP3201120A 1991-07-17 1991-07-17 Method of manufacturing magnetoresistive element Expired - Fee Related JP2850584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3201120A JP2850584B2 (en) 1991-07-17 1991-07-17 Method of manufacturing magnetoresistive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3201120A JP2850584B2 (en) 1991-07-17 1991-07-17 Method of manufacturing magnetoresistive element

Publications (2)

Publication Number Publication Date
JPH0528439A true JPH0528439A (en) 1993-02-05
JP2850584B2 JP2850584B2 (en) 1999-01-27

Family

ID=16435744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3201120A Expired - Fee Related JP2850584B2 (en) 1991-07-17 1991-07-17 Method of manufacturing magnetoresistive element

Country Status (1)

Country Link
JP (1) JP2850584B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5557491A (en) * 1994-08-18 1996-09-17 International Business Machines Corporation Two terminal single stripe orthogonal MR head having biasing conductor integral with the lead layers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6323217A (en) * 1986-07-15 1988-01-30 Sony Corp Magneto-resistance effect type magnetic head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6323217A (en) * 1986-07-15 1988-01-30 Sony Corp Magneto-resistance effect type magnetic head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5557491A (en) * 1994-08-18 1996-09-17 International Business Machines Corporation Two terminal single stripe orthogonal MR head having biasing conductor integral with the lead layers
US5653013A (en) * 1994-08-18 1997-08-05 International Business Machines Corporation Two terminal single stripe orthogonal MR head

Also Published As

Publication number Publication date
JP2850584B2 (en) 1999-01-27

Similar Documents

Publication Publication Date Title
US7660081B2 (en) Superparamagnetic platelets field sensing devices
US5206590A (en) Magnetoresistive sensor based on the spin valve effect
US10665374B2 (en) Magnetoresistive effect element, magnetic head, sensor, high frequency filter, and oscillation element
US20200388302A1 (en) Magnetoresistive effect element, magnetic head, sensor, high-frequency filter, and oscillator
JP3466470B2 (en) Thin film magnetoresistive element
US11163023B2 (en) Magnetic device
JPH1187804A (en) Thin-film magnetic field sensor
JPH0870149A (en) Magnetoresistance element
JP2003179283A (en) Magnetic sensor
JP5869405B2 (en) Magnetic detection element and magnetic sensor using the same
JP2019012810A (en) Magnetoresistance effect element, magnetic head, sensor, high frequency filter and oscillation element
JP2850584B2 (en) Method of manufacturing magnetoresistive element
JP2701557B2 (en) Magnetoresistive element and method of manufacturing the same
JPH1091921A (en) Dual spin bulb-type thin film magnetic head
JP2545935B2 (en) Magnetoresistive thin film and method of manufacturing the same
JP3028585B2 (en) Magnetoresistive element
JPH0642566B2 (en) Method of manufacturing magnetic low resistance element
JPH042185A (en) Magnetoresistance effect thin film
JP2806549B2 (en) Magnetoresistance effect element
JPH10326920A (en) Magnetic resistance effect sensor and its manufacture
JPH0240972A (en) Magnetoresistance effect thin film
JPH08297814A (en) Magneto-resistance effect element
JPH11214767A (en) Magnetoresistance effect element and manufacture thereof
JPH10233540A (en) Magneto-resistance effect film
JPH07202294A (en) Magnetoresistive element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees