JPH05282402A - Arrangement problem solving system - Google Patents

Arrangement problem solving system

Info

Publication number
JPH05282402A
JPH05282402A JP7789392A JP7789392A JPH05282402A JP H05282402 A JPH05282402 A JP H05282402A JP 7789392 A JP7789392 A JP 7789392A JP 7789392 A JP7789392 A JP 7789392A JP H05282402 A JPH05282402 A JP H05282402A
Authority
JP
Japan
Prior art keywords
placement
target
arranging
arrangement
evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7789392A
Other languages
Japanese (ja)
Inventor
Keiichi Handa
恵一 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7789392A priority Critical patent/JPH05282402A/en
Publication of JPH05282402A publication Critical patent/JPH05282402A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently obtain an approximate solution nearer to the optimum solution finally by giving evalutation for an (already set refererence target) selected as a reference target even once previously on arrangement results before and after the (shift) of an arranged target. CONSTITUTION:When an arranging place decided transiently by a temporary arranging place decision part 2c shows the one near to the reference target of an arranging target, it is decided as the arranging place by an arranging place decision part 2f. When it is not, the arranged target not relating to the reference target in the neighborhood of the reference target is shifted by a shift operating part 2d, and the arranging target is intruded into a null space. Thence, the sum of (degree of approximation X distance) between the already set reference target selected as the reference target once previously and the arranged target set as the reference target is held as an evaluation reference value in step 2e, and when the evaluation reference values of the already set reference target before and after shift are not deteriorated, a result of shift is decided as the arranging place, and when it is not, an arranging state before shift is restored. Those operations after evaluation are performed by the decision part 2f.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は幾つかの配置対象、例え
ば電子部品のIC、VLSIチップ素子を配置した時点
における配置状況を考慮して、次に配置すべき未配置対
象を最適に選択して配置していく配置問題解決システム
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention optimally selects an unarranged object to be arranged next, in consideration of several arranged objects, for example, an arrangement condition at the time of arranging ICs of electronic parts and VLSI chip elements. Related to the placement problem solving system.

【0002】[0002]

【従来の技術】例えば、プリント基板上に複数のICを
配置する問題、VLSIチップ上への素子の配置問題
等、種々の配置対象をどのように配置するかと云う問題
は様々な分野に存在する。
2. Description of the Related Art Problems such as how to arrange a plurality of ICs on a printed circuit board, how to arrange elements on a VLSI chip, and how to arrange various objects to be arranged exist in various fields. ..

【0003】この種の配置問題は、最適解を求めようと
すると多項式時間で解くことが極めて困難なため、最適
に近いいわゆる近似解を効率良く求めるという試みがな
されている。
This kind of placement problem is extremely difficult to solve in polynomial time when trying to find the optimum solution, so attempts have been made to efficiently find a so-called approximate solution that is close to the optimum.

【0004】一般的には、先ず既に配置決定された配置
済対象の全てに対して、次に配置するに最適な配置対象
を近接度に基づいて選択決定する。その上で、既に配置
決定されている配置済領域の周辺の、最適であろうと考
えられる場所を選定し、その場所に上述した如く選択決
定された配置対象を配置する。
In general, first, for all of the already-arranged objects that have already been arranged, the optimum arrangement object for the next arrangement is selected and decided based on the degree of proximity. After that, a place that is considered to be optimal around the already arranged arrangement area is selected, and the arrangement target selected and determined as described above is arranged at that place.

【0005】しかしながら、このような手順を踏まえな
がら配置対象とその配置場所とを決定していくには、配
置済領域の周辺の配置可能な場所の全てを、その都度チ
ェックする必要があり、配置場所を決定するのに手間が
掛かると云う不具合がある。
However, in order to determine the placement target and its placement location in consideration of such a procedure, it is necessary to check all the possible placement locations around the placement area each time. There is a problem that it takes time to decide the place.

【0006】[0006]

【発明が解決しようとする課題】このようにして従来の
配置問題解決システムにあっては、選択決定した配置対
象の配置場所を決定するには、既に配置対象が配置決定
された配置済領域の周辺の配置可能な場所の全てを、そ
の都度チェックする必要があり、非常に手間が掛かると
云う問題があった。
As described above, in the conventional placement problem solving system, in order to decide the placement location of the placement object selected and decided, the placement area of the already placed placement object is decided. There is a problem that it is very troublesome because it is necessary to check all the surrounding places that can be arranged each time.

【0007】本発明はこのような事情を考慮してなされ
たもので、その目的とするところは、配置結果に対する
満足度を犠牲にすることなく、配置可能な場所について
のチェック数を減らして簡易に効率良く、配置問題を解
決することのできる配置問題解決システムを提供するこ
とにある。
The present invention has been made in consideration of such circumstances, and an object of the present invention is to reduce the number of checks of places where arrangement is possible without sacrificing the satisfaction of the arrangement result and simplify the operation. Another object of the present invention is to provide a placement problem solving system capable of solving placement problems efficiently.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するた
め、請求項1に対応する発明は、予め規定された複数の
配置場所に幾つかの配置対象を配置した状態で、次に配
置すべき最適な未配置対象の配置場所を未配置場所の中
から選択決定するシステムであって、複数の配置対象の
中の任意の2つの配置対象毎にこれらの配置対象を近接
配置させたい度合いを示す近接度を定義したテーブル
と、このテーブルを参照して次に配置しようとする未配
置対象を選択する為の基準となる配置済対象を基準対象
として選択する基準対象選択手段と、この基準対象選択
手段により選択された基準対象に対して最も近接させて
配置したい未配置対象を前記テーブルを参照して選択決
定する配置対象選択手段と、この配置対象選択手段で選
択決定された未配置対象を前記基準対象に最も近い未配
置場所を配置場所として仮決定する仮決定手段と、この
仮決定手段により配置場所として仮決定された未配置場
所に前記配置対象選択手段により選択決定された未配置
対象を配置する配置場所決定手段と、
In order to achieve the above-mentioned object, the invention according to claim 1 should be arranged next in a state in which several objects to be arranged are arranged at a plurality of predetermined arrangement places. A system for selecting and deciding an optimal placement location of a non-placement object from among the non-placement locations, and showing the degree to which these two placement objects are desired to be placed close to each other for any two placement objects. A table that defines the proximity, a reference target selection unit that selects an arranged target that serves as a reference for selecting an unplaced target to be arranged next by referring to this table, and this reference target selection Placement target selecting means for selecting and determining an unplaced target to be placed closest to the reference target selected by the means by referring to the table, and an unplaced pair selected and determined by the placement target selecting means. Tentatively determining means for tentatively determining the unplaced location closest to the reference object as the placement location, and the unplaced location selected and determined by the placement target selecting means in the unplaced location tentatively determined as the placement location by the tentative determination means. Placement location determining means for placing the target,

【0009】前記仮決定手段により配置場所として仮決
定された未配置対象を、前記基準対象の周囲にあってそ
の基準対象とはあまり関係のない配置済対象を「ずら
す」という操作を行うずらす操作手段と、
A shift operation for performing an operation of "shifting" an unplaced object, which is tentatively determined as an arrangement location by the tentative determining means, around an already-referenced object and which is irrelevant to the reference object. Means and

【0010】このずらす操作手段による「ずらす」とい
う操作を行った結果、その空いたスペースに配置対象を
割り込ませると共に、以前に少なくとも1度、基準対象
として選択された各々の既基準対象に対して、その既基
準対象と、それを基準対象とする全ての配置済対象との
間の近接度と距離の積の総和を評価参照値として保持し
ておき、前記ずらす操作手段による配置対象のずらしの
前後において各々の既基準対象の評価参照値が悪化しな
ければ、そのずらした結果を前記配置場所決定手段に出
力し、もしそうでなければ、前記配置対象をずらす前の
配置状態に戻す評価手段とを具備している。
As a result of performing the operation of "shifting" by the shifting operation means, the placement object is interrupted in the vacant space, and at the same time with respect to each of the existing reference objects previously selected as the reference object at least once. , The existing reference object and the sum of the products of the proximity and the distance between all the arranged objects having the reference object as the reference object are held as an evaluation reference value, and the arrangement object is displaced by the displacement operation means. If the evaluation reference value of each existing reference object does not deteriorate before and after, the shifted result is output to the placement location determining means, and if not, the evaluating means for returning the placement object to the placement state before shifting It is equipped with.

【0011】[0011]

【作用】請求項1に対応する発明によれば、未配置対象
を選択する為の基準となる配置済対象をテーブルを参照
して決定し、この決定された配置済対象を基準対象とし
て次に配置すべき未配置対象を前記テーブルを参照して
選択決定した後、その未配置対象を配置すべき場所を決
定していくとともに、その配置途中において基準対象の
周囲にあってその基準対象とはあまり関係のない配置済
対象をずらし、その結果空いたスペースに配置対象を割
り込ませるという配置改善方法を使い、この「ずらす」
前後の配置結果に対して、以前に1度でも基準対象とし
て選択された「既基準対象」に対する評価を行ってるの
で、最終的に最適解に近い近似解を効率良く得ることが
可能となる。
According to the invention corresponding to claim 1, the arranged object serving as a reference for selecting the unarranged object is determined by referring to the table, and the determined arranged object is used as the reference object. After selecting and deciding the unplaced object to be placed by referring to the table, the place where the unplaced object should be placed is decided, and the reference object around the reference object during the placement is the reference object. This "shift" is used by using a layout improvement method that shifts the placement targets that have little relation to each other, and then causes the placement targets to interrupt the empty space.
Since the "already-referenced object" that has been selected as the reference object is evaluated even once even with respect to the layout results before and after, it is possible to efficiently obtain the final approximate solution close to the optimal solution.

【0012】[0012]

【実施例】以下、図面を参照して本発明の配置問題解決
システムについて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An arrangement problem solving system of the present invention will be described below with reference to the drawings.

【0013】図1はその一実施例の概略的な構成を示す
ブロック図である。この実施例システムは、概略的には
配置対象データ入力部1、配置問題解決処理部2、配置
結果出力部3の3つのブロックから構成されている。
FIG. 1 is a block diagram showing a schematic configuration of one embodiment. The system of this embodiment is roughly composed of three blocks: an arrangement target data input unit 1, an arrangement problem solution processing unit 2, and an arrangement result output unit 3.

【0014】配置対象データ入力部1は、全ての配置対
象の中の任意の2つの配置対象毎に、それらの配置対象
を近接配置させたい度合いを示す近接度を定義したテー
ブルとして、配置対象に関するデータや、これらの配置
対象が配置される領域についてのデータを入力する為の
ものである。この入力データによって配置処理しようと
する配置対象が幾つ存在し、これらの配置対象間にどの
ような配置制約条件があるか、つまりどの配置対象とど
の配置対象とを近接させて配置させれば良いかの条件が
与えられる。またその配置領域がどのように定義されて
いるかが示される。
The placement target data input unit 1 relates to placement targets as a table defining, for each arbitrary two placement targets among all the placement targets, the degree of proximity indicating the degree to which those placement targets are to be placed close to each other. It is for inputting data and data on an area in which these placement objects are placed. There are many placement targets to be placed by this input data, and what placement constraint condition exists between these placement targets, that is, which placement target and which placement target should be placed close to each other. The condition is given. It also shows how the placement area is defined.

【0015】尚、前記近接度は2つの配置対象を近接配
置させたい度合いを示すもので、例えば正の整数値とし
て定義され、近接配置させたい度合いが高いほど大きい
数値として与えられる。
The proximity degree indicates the degree to which two placement targets are to be placed close to each other, and is defined as, for example, a positive integer value, and is given as a larger numerical value as the degree to which the placement targets are placed closer to each other is higher.

【0016】しかして、配置問題解決処理部2は、上記
配置対象データ入力部1から与えられる入力データに従
って配置問題を解決処理するもので、基準対象選択部2
a、配置対象選択部2b、配置場所仮決定部2c、ずら
す操作部(ずらす処理部)2d、評価部2e、配置場所
決定部2fの6つの処理機能を備えている。これら6つ
の処理機能は互いに関連して動作する。
The placement problem solution processing unit 2 solves the placement problem in accordance with the input data given from the placement target data input unit 1, and the reference subject selection unit 2
a, a placement target selection unit 2b, a placement location temporary determination unit 2c, a shift operation unit (shift processing unit) 2d, an evaluation unit 2e, and a placement location determination unit 2f. These six processing functions operate in relation to each other.

【0017】基本的には、先ず基準対象選択部2aにて
前記入力データに基づいて、既に配置決定された配置済
対象の中から、以下に示す配置対象を選択決定する為の
基準となる配置済対象を基準対象αとして選択する。こ
の基準対象αの選択決定の手法は配置処理の対象とする
問題の種類、例えば基板に部品を配置する問題に依存す
る。具体的には、例えば配置済対象のそれぞれについ
て、未配置対象との間の近接度の和をそれぞれ求め、こ
の近接度の和が最大となる配置済対象を基準対象αとし
て選択する。或いは後述する評価関数の下で前記未配置
対象との間の近接度を評価し、その評価結果に従って基
準対象αを選択する。尚、既に配置決定された配置済対
象が存在しない場合、つまり全ての配置対象が未配置の
初期状態にあっては、この処理手続きは省略される。
Basically, first, the reference object selecting section 2a serves as a reference arrangement for selecting and deciding the following arrangement objects from the already arranged arrangement objects based on the input data. The completed target is selected as the reference target α. The method of selecting and determining the reference object α depends on the type of problem to be subjected to the placement process, for example, the problem of placing a component on a board. Specifically, for example, for each of the arranged objects, the sum of the degrees of proximity to the unarranged object is obtained, and the arranged object having the maximum sum of the degrees of proximity is selected as the reference object α. Alternatively, the proximity to the unplaced object is evaluated under an evaluation function described later, and the reference object α is selected according to the evaluation result. It should be noted that if there is no already-arranged object that has already been arranged, that is, if all the objects to be arranged are in the initial state where they are not arranged, this processing procedure is omitted.

【0018】次に、配置対象選択部2bが起動され、前
述した如く選択された基準対象αに対して、その基準対
象αとの近接度が最大となる未配置対象βを1つ選択す
る。近接度が最大の未配置対象βが複数個存在する場合
は、所定の選択規則に従っていづれか1つを選択する。
また、基準対象αが定められない初期時においては、未
配置対象βの中の1つを所定の規則に従って選択する。
このような選択は、例えば未配置対象βの重要度や機能
・役割等を配慮する等して行われる。
Next, the placement target selection unit 2b is activated to select one unplaced target β having the maximum proximity to the reference target α selected as described above. When there are a plurality of unplaced objects β with the highest degree of proximity, one of them is selected according to a predetermined selection rule.
Further, at the initial stage when the reference object α is not defined, one of the unplaced objects β is selected according to a predetermined rule.
Such selection is performed in consideration of, for example, the importance, function, and role of the unallocated object β.

【0019】配置場所仮決定部2cにおいて配置対象の
配置場所を仮決定し、その配置場所が配置対象の基準対
象の近くならば配置場所決定部2fにてその仮の配置場
所を配置場所として決定し、もしそうでなければ、ずら
す操作部2dにて基準対象の周囲にあってその基準対象
とはあまり関係のない(複数の)配置済対象をずらすと
いう操作をし、その結果空いたスペースに配置対象を割
り込ませる。次に評価部2eにおいて、以前に少なくと
も1度基準対象として選択された各々の対象、つまり既
基準対象に対して、その既基準対象と、それを基準対象
とする全ての配置済対象との間の近接度×距離の総和を
評価参照値として常に保持しておき、ずらしの前後にお
いて各々の既基準対象の評価参照値が悪化しなければ、
そのずらした結果を配置場所として決定し、もしそうで
なければずらす前の配置状態に戻す、これらの評価後の
操作は配置場所決定部2fにて行われる。このように構
成された配置問題解決システムにおける配置対象の配置
決定について、更に詳しく説明する。
The tentative placement location deciding unit 2c tentatively decides the placement location of the placement target, and if the placement location is near the reference target of the placement target, the placement location determining unit 2f decides the temporary placement location as the placement location. If this is not the case, the shift operation unit 2d performs an operation of shifting the arranged objects (a plurality of) that are located around the reference object and are not very related to the reference object, and as a result, make an empty space. Interrupt the placement target. Next, in the evaluation unit 2e, for each target previously selected as the reference target at least once, that is, for the already-referenced target, between the already-referenced target and all the arranged objects having the reference target as the reference target. Always hold the sum of proximity x distance as an evaluation reference value, and if the evaluation reference value of each existing reference target does not deteriorate before and after shifting,
The post-evaluation operation of determining the shifted result as the placement location and returning to the placement state before shifting otherwise is performed by the placement location determination unit 2f. The placement determination of the placement target in the placement problem solving system configured as described above will be described in more detail.

【0020】今、図2に示すようにプリント基板の予め
定められた格子上の点に10個のIC部品(配置対象、
以下では単に部品と呼ぶ)が既に配置済であり、基準対
象選択部2aにて部品Kが基準対象として、配置対象選
択部2bにて部品Sが選択部品として、配置場所仮決定
部2cにて(x4,y4)の位置に仮配置されたとす
る。ここで(m,n)は格子点の列と行の対を表すもの
とする。
Now, as shown in FIG. 2, ten IC parts (arrangement targets,
(Hereinafter simply referred to as “component”) has already been placed, the component K is the reference target in the reference target selection unit 2a, the component S is the selected component in the placement target selection unit 2b, and the temporary placement location determination unit 2c is It is assumed that it is temporarily arranged at the position (x4, y4). Here, (m, n) represents a column-row pair of grid points.

【0021】尚、ここではその説明が複雑化することを
避けるべく、部品のサイズは全て〔1cm×2cm〕で
あるとし、これを配置するときの向きはその1番ピンが
左上にくる向きとする。そして、これらの部品が配置さ
れる格子の間隔(大きさ)は〔2cm×3cm〕である
とする。叉、部品間の距離は1番ピン(格子点)間のい
わゆるマンハッタン距離であるとする、即ち、縦横に格
子を辿っていく際の最短路の長さとする。配置結果の評
価度は、2つの部品が配置された格子点間の距離と、そ
の2つの部品間の結合度(接続本数)との積を、全ての
部品対について求め、その和をとった値とする。この場
合の評価度は、上記積和の値が小さいほど良いことにな
る。
In order to avoid making the description complicated, it is assumed that the size of all parts is [1 cm × 2 cm], and the orientation when arranging them is that the first pin is in the upper left direction. To do. The spacing (size) of the grid in which these components are arranged is [2 cm × 3 cm]. In addition, the distance between the parts is the so-called Manhattan distance between the first pins (grid points), that is, the length of the shortest path when tracing the grid in the vertical and horizontal directions. For the evaluation degree of the placement result, the product of the distance between the grid points where the two parts are placed and the degree of coupling (the number of connections) between the two parts was found for all the parts pairs, and the sum was taken. The value. In this case, the smaller the sum of products, the better the evaluation degree.

【0022】図2では簡単のためA,B間、及びK,S
間の結合度のみ線を使って表示してある。K,B間の結
合度は0とする。他の配置済部品間の結合度は、簡単の
ため0とみなす。このように制限しても以下の本質的説
明には影響を与えない。また図2では、KとAのみが、
以前に少なくとも1度基準対象として選択された部品
(既基準部品)であるとする。
In FIG. 2, between A and B, and K and S for simplicity.
Only the degree of coupling between is shown using a line. The degree of coupling between K and B is 0. The degree of coupling between other arranged parts is regarded as 0 for simplicity. Such a restriction does not affect the following essential explanation. Also, in FIG. 2, only K and A are
It is assumed that the component is a component (already-referenced component) previously selected as a reference target at least once.

【0023】今、図2において基準部品対象Kと選択部
品Sとの結合度は5、距離は(2cm×2)+(3cm
×1)=7cmである。これは結合度が高いにも係わら
ず距離が離れ過ぎていると判断されたとする。このよう
な判断基準は予め配置対象データ入力部1において、部
品のサイズと配置の向き、結合度、等のデータとともに
与えられているものとする。
Now, in FIG. 2, the coupling degree between the reference part object K and the selected part S is 5, and the distance is (2 cm × 2) + (3 cm
× 1) = 7 cm. It is assumed that it is determined that the distance is too large despite the high degree of coupling. It is assumed that such a criterion is given in advance in the placement target data input unit 1 together with data such as the size of the component, the orientation of the placement, and the degree of coupling.

【0024】上記のような場合、ずらす処理部2dにお
いて基準部品Kの周囲にあってその基準部品とはあまり
関係のない(複数の)配置済部品をずらすという操作を
し、その結果空いたスペースに選択部品を割り込ませ
る。図2では部品BがKとはあまり関係が無い部品であ
るので、図3に示すように、部品B及びCが下にずらさ
れ、空いたスペースに選択部品Sが挿入される。
In the above case, in the shift processing section 2d, the operation is performed to shift the arranged parts (a plurality of) arranged around the reference part K and not related to the reference part, resulting in an empty space. To interrupt the selected part. In FIG. 2, since the component B is a component that is not very related to K, the components B and C are shifted downward and the selected component S is inserted into the empty space, as shown in FIG.

【0025】次に、評価部2eにて、以前に少なくとも
1度基準対象として選択された部品(既基準対象、図2
ではKとA)の各々に対して、その既基準対象と、それ
を基準対象とする全ての配置済対象との間の近接度×距
離の総和(評価値)を計算し直し、保持してある「ずら
す」前の評価参照値と比較する。ずらした後の評価値の
総和がずらす前の評価参照値の総和を越えなければ、そ
のずらした結果を配置場所として決定し、もしそうでな
ければ、ずらす前の配置状態に戻す。図2の状態で部品
A,Kの評価参照値はそれぞれ(2cm×2本)=4、
(7cm×5本)=35であり、その総和は39であ
る。一方、図3でA,Kの評価値を計算すると、それぞ
れ(5cm×2本)=10、(3cm×5本)=15で
あり、その総和は25である。ずらした後の評価値の総
和25がずらす前の評価参照値の総和35を越えていな
いので、そのずらした結果(図3)を配置場所として決
定する。
Next, in the evaluation unit 2e, the part previously selected as the reference object at least once (the existing reference object, FIG.
Then, for each of K and A), recalculate the sum of (proximity) × distance (evaluation value) between the existing reference object and all the arranged objects with the reference object and hold it. Compare with an evaluation reference value before a certain "shift". If the sum of the evaluation values after shifting does not exceed the sum of the evaluation reference values before shifting, the shifted result is determined as the placement location, and if not, the placement state before shifting is restored. In the state of FIG. 2, the evaluation reference values of the parts A and K are (2 cm × 2 pieces) = 4,
(7 cm × 5 lines) = 35, and the total sum is 39. On the other hand, when the evaluation values of A and K are calculated in FIG. 3, (5 cm × 2 lines) = 10 and (3 cm × 5 lines) = 15, respectively, and the total sum is 25. Since the sum 25 of the evaluation values after the shift does not exceed the sum 35 of the evaluation reference values before the shift, the shift result (FIG. 3) is determined as the placement location.

【0026】上記の方法は基本的には、基準対象という
概念があるからこそ出来る方法である。なぜなら、一般
に、基準対象の周囲にその基準対象との近接度が高い配
置対象が配置されるので、従って基準対象中心に評価を
行うのが適切であるからである。
The above method is basically possible because of the concept of reference object. This is because, in general, an arrangement object having a high degree of proximity to the reference object is arranged around the reference object, and therefore it is appropriate to perform the evaluation mainly on the reference object.

【0027】本出願人は、以上述べた内容と類似した内
容を先に出願したが、この先願明細書(特願平2−18
2617号明細書)において、次に配置しようとする未
配置対象を選択する為の基準となる配置済対象を基準対
象として選択し、選択された基準対象に対して最も近接
度の大きい未配置対象を選択決定し、前記基準対象に最
も近い未配置場所を配置場所として決定し、この配置場
所として決定された未配置場所に前記選択決定された未
配置対象を配置するという方法を提案した。この先願の
方法によると、配置対象が配置領域の一箇所に集中する
ことのない、比較的に良い近似解を効率良く求めること
ができるが、さらに最適に近い近似解を求めるには問題
点がある。
The applicant of the present application filed an application similar to the above-mentioned content in advance, but this prior application specification (Japanese Patent Application No. 2-18)
No. 2617 specification), an arranged object that is a reference for selecting an undisposed object to be arranged next is selected as a reference object, and an undisposed object having the highest degree of proximity to the selected reference object. Has been proposed, and a non-arranged location closest to the reference object is determined as an arrangement location, and the selected non-arranged object is arranged at the non-arrangement location determined as the arrangement location. According to the method of this prior application, it is possible to efficiently obtain a relatively good approximate solution in which the arrangement target is not concentrated in one place of the arrangement area, but there is a problem in obtaining an approximate solution that is closer to the optimum. is there.

【0028】このように従来の配置問題解決システムに
あっては、選択決定した配置対象の配置場所を決定する
には、既に配置対象が配置決定された配置済領域の周辺
の配置可能な場所の全てを、チェックする必要があり、
非常に手間が掛かると云う問題があった。また、それを
解消しようとする方法、即ち基準対象という概念を用い
る方法にも、より最適な解を求めるには不具合な問題点
があった。
As described above, in the conventional placement problem solving system, in order to determine the placement location of the placement object that has been selected and decided, the placement locations around the already placed area where the placement object has already been decided are set. Everything needs to be checked,
There was a problem that it was very troublesome. In addition, the method of solving it, that is, the method of using the concept of the reference object also has a problem in that a more optimal solution is obtained.

【0029】本実施例では、以上のような問題点を除去
できる。すなわち、配置途中において基準対象の周囲に
あってその基準対象とはあまり関係のない配置済対象を
「ずらす」という操作をし、その結果空いたスペースに
配置対象を割り込ませるという配置改善方法において、
ずらす前後の配置結果に対する評価をし、最終的に最適
解に近い近似解を得ることができる。
In this embodiment, the above problems can be eliminated. That is, in the arrangement improvement method of performing an operation of "shifting" an already-arranged object that is not related to the reference object in the vicinity of the reference object during the arrangement, and as a result causes the arrangement object to be interrupted in an empty space,
The placement results before and after the shift can be evaluated, and finally an approximate solution close to the optimal solution can be obtained.

【0030】上記した本発明の実施例は、先願の基準対
象選択という概念と併せて使用した場合、実用レベルで
の数多くの対象を配置処理する問題において、効率及び
最終的な配置結果の評価に対して、非常に大きな効果と
して現れることになる。
When the embodiment of the present invention described above is used in combination with the concept of reference object selection of the prior application, in the problem of arranging a large number of objects on a practical level, the efficiency and the final arrangement result are evaluated. , It will appear as a very large effect.

【0031】配置問題解決システムによれば、配置済対
象の中から基準対象を選択し、その基準対象に対して近
接度が最大の未配置対象を選択し、その基準対象に最も
近い未配置場所に配置すると云う処理を優先的に実行す
る。
According to the placement problem solving system, the reference object is selected from the placed objects, the unplaced object having the highest degree of proximity to the reference object is selected, and the unplaced location closest to the reference object is selected. Priority is given to the process of arranging in.

【0032】この配置方法による配置の途中過程におい
て、より良い配置状態を維持していくために配置済対象
を「ずらす」という操作をした際、ずらす前とずらした
後の評価方法として、以前に少なくとも1度、基準対象
として選択された各々の対象(既基準対象)に対して、
その既基準対象と、それを基準対象とする全ての配置済
対象との間の近接度×距離の総和を評価参照値として保
持しておき、ずらしの前後において各々の既基準対象の
評価参照値が悪化しなければ、そのずらした結果を配置
場所として決定し、もしそうでなければ、前の配置状態
に戻す。
In the process of arranging by this arranging method, when the operation of "displaced" the arranged object in order to maintain a better arrangement state, as the evaluation method before and after the displacement, At least once, for each target selected as the reference target (existing reference target),
The sum of proximity x distance between the existing reference object and all arranged objects that are the reference object is retained as an evaluation reference value, and the evaluation reference value of each existing reference object before and after shifting. If is not deteriorated, the shifted result is determined as the placement location, and if not, the previous placement state is restored.

【0033】このように実行するので、配置場所決定の
ためのチェック数を減らすことができ、しかも配置途中
で配置改善も効率良くできるので、最終的に従来のシス
テムの場合以上に良い評価を得ることができる。
Since this is performed, the number of checks for determining the placement location can be reduced, and the placement can be improved efficiently during the placement, so that finally a better evaluation is obtained than in the case of the conventional system. be able to.

【0034】尚、本発明は上述した実施例に限定される
ものではない。例えば前述の実施例では、配置対象であ
るICの大きさを均一としたが、各対象の大きさが異な
る場合等を考慮して配置問題を解いていくこともできる
ことは勿論である。また配置対象の配置の向きを考慮す
ることも勿論のことである。その他本発明は、その要旨
を変更しない範囲で種々変形して実施できる。
The present invention is not limited to the above embodiment. For example, in the above-described embodiment, the size of the ICs to be arranged is uniform, but it is needless to say that the arrangement problem can be solved in consideration of the case where the sizes of the respective objects are different. Further, it goes without saying that the orientation of the placement target is taken into consideration. Others The present invention can be variously modified and implemented within the scope of the invention.

【0035】[0035]

【発明の効果】以上述べた本発明によれば、配置対象の
配置結果に対する満足度を犠牲にすることなく、配置可
能な場所についてのチェック数を減らして簡易に効率良
く、配置問題を解決することのできる配置問題解決シス
テムを提供することができる。
As described above, according to the present invention, the number of checks of places where arrangement is possible is reduced and the arrangement problem is solved easily and efficiently without sacrificing the satisfaction of the arrangement result of the arrangement object. It is possible to provide an arrangement problem solving system capable of doing so.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係わる配置問題解決システ
ムの概略的な構成を示すブロック図。
FIG. 1 is a block diagram showing a schematic configuration of a placement problem solving system according to an embodiment of the present invention.

【図2】図1の実施例における配置対象の配置の途中過
程を示す図。
FIG. 2 is a diagram showing an intermediate process of placement of placement targets in the embodiment of FIG.

【図3】図1の実施例における「ずらす」操作を行った
後の図。
FIG. 3 is a diagram after performing a “shift” operation in the embodiment of FIG.

【符号の説明】[Explanation of symbols]

1…配置対象データ入力部、2…配置問題解決処理部、
2a…基準対象選択部、2b…配置対象選択部、2c…
配置場所仮決定部、2d…ずらす操作部(ずらす処理
部)、2e…評価部、2f…配置場所決定部、3…配置
結果出力部。
1 ... Arrangement target data input section, 2 ... Arrangement problem solving processing section,
2a ... Reference object selection section, 2b ... Arrangement object selection section, 2c ...
Placement temporary decision unit, 2d ... Shift operation unit (shift processing unit), 2e ... Evaluation unit, 2f ... Placement determination unit, 3 ... Placement result output unit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 予め規定された複数の配置場所に幾つか
の配置対象を配置した状態で、次に配置すべき最適な未
配置対象の配置場所を未配置場所の中から選択決定する
システムであって、 複数の配置対象の中の任意の2つの配置対象毎にこれら
の配置対象を近接配置させたい度合いを示す近接度を定
義したテーブルと、 このテーブルを参照して次に配置しようとする未配置対
象を選択する為の基準となる配置済対象を基準対象とし
て選択する基準対象選択手段と、 この基準対象選択手段により選択された基準対象に対し
て最も近接させて配置したい未配置対象を前記テーブル
を参照して選択決定する配置対象選択手段と、 この配置対象選択手段で選択決定された未配置対象を前
記基準対象に最も近い未配置場所を配置場所として仮決
定する仮決定手段と、 この仮決定手段により配置場所として仮決定された未配
置場所に前記配置対象選択手段により選択決定された未
配置対象を配置する配置場所決定手段と、 前記仮決定手段により配置場所として仮決定された未配
置対象を、前記基準対象の周囲にあってその基準対象と
はあまり関係のない配置済対象を「ずらす」という操作
を行うずらす操作手段と、 このずらす操作手段による「ずらす」という操作を行っ
た結果、その空いたスペースに配置対象を割り込ませる
と共に、以前に少なくとも1度、基準対象として選択さ
れた各々の既基準対象に対して、その既基準対象と、そ
れを基準対象とする全ての配置済対象との間の近接度と
距離の積の総和を評価参照値として保持しておき、前記
ずらす操作手段による配置対象のずらしの前後において
各々の既基準対象の評価参照値が悪化しなければ、その
ずらした結果を前記配置場所決定手段に出力し、もしそ
うでなければ、前記配置対象をずらす前の配置状態に戻
す評価手段と、 を具備してなる配置問題解決システム。
1. A system for selecting and deciding an optimum placement location of a non-placement object to be placed next, in a state in which several placement objects are placed at a plurality of predetermined placement locations. Therefore, a table that defines the degree of proximity for each of two arbitrary placement targets among a plurality of placement targets and the degree of closeness of these placement targets, and the next placement is performed by referring to this table The reference object selecting means for selecting the arranged object as the reference for selecting the unarranged object as the reference object, and the unarranged object to be arranged closest to the reference object selected by the reference object selecting means. Arrangement target selecting means for making a selection decision by referring to the table, and the non-arrangement object selected and decided by the arrangement target selecting means is tentatively decided as the arrangement place at the non-arrangement location closest to the reference object. Deciding means, arranging place deciding means for arranging the unplaced object selected and decided by the arranging object selecting means in the unplaced place tentatively decided as the arranging place by the tentative deciding means, and arranging as the arranging place by the tentative deciding means The tentatively determined non-placed object has an operation means for performing an operation of "displaceing" an arranged object around the reference object and having little relation to the reference object, and "displacement" by the operation means for shifting. As a result of performing the operation, the placement target is interrupted in the vacant space, and the existing reference target and the reference target for each existing reference target that has been selected as the reference target at least once before. The sum of the products of the proximity and the distance with all the arranged objects is held as an evaluation reference value, and before the displacement of the arranged objects by the shifting operation means is performed. After that, if the evaluation reference value of each existing standard object does not deteriorate, the shifted result is output to the placement location determining means, and if not, the evaluating means for returning the placement object to the placement state before shifting A placement problem solving system comprising:
JP7789392A 1992-03-31 1992-03-31 Arrangement problem solving system Pending JPH05282402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7789392A JPH05282402A (en) 1992-03-31 1992-03-31 Arrangement problem solving system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7789392A JPH05282402A (en) 1992-03-31 1992-03-31 Arrangement problem solving system

Publications (1)

Publication Number Publication Date
JPH05282402A true JPH05282402A (en) 1993-10-29

Family

ID=13646762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7789392A Pending JPH05282402A (en) 1992-03-31 1992-03-31 Arrangement problem solving system

Country Status (1)

Country Link
JP (1) JPH05282402A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6308143B1 (en) 1996-02-21 2001-10-23 Matsushita Electric Industrial Co., Ltd. Layout input apparatus, layout input method, layout verification apparatus, and layout verification method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6308143B1 (en) 1996-02-21 2001-10-23 Matsushita Electric Industrial Co., Ltd. Layout input apparatus, layout input method, layout verification apparatus, and layout verification method

Similar Documents

Publication Publication Date Title
US6275971B1 (en) Methods and apparatus for design rule checking
US6513149B1 (en) Routing balanced clock signals
JP2001306641A (en) Automatic arranging and wiring method for semiconductor integrated circuit
US6971082B2 (en) Method and apparatus for revising wiring of a circuit to prevent electro-migration
JPH05282402A (en) Arrangement problem solving system
JP2005267302A (en) Wiring path determination method and system
JP2002259481A (en) Method and device for determining noise measures, storage medium and computer program
US20040153987A1 (en) Method and system for connecting computer-generated rectangles
JP3278600B2 (en) Automatic layout method and apparatus
JP2715931B2 (en) Semiconductor integrated circuit design support method
JP4047190B2 (en) Automatic wiring method and automatic wiring program for causing computer to execute the method
JPH04219946A (en) Method and apparatus for inspecting output dot of semiconductor device
JPH05120380A (en) Wiring processing system
JPH08288395A (en) Method and equipment for layout processing
JP2620005B2 (en) Placement and wiring decision method
JPH10283378A (en) Automatic component arranging method
JPH07296027A (en) Automatic bundle wiring route decision method for printed board
Lin et al. A multi-layer obstacles-avoiding router using X-architecture
JP2004326453A (en) Semiconductor integrated circuit design method and semiconductor integrated circuit design program
JP3095307B2 (en) Automatic electric component placement apparatus and automatic electric component placement method
JP2002215704A (en) Method and device for determining terminal position in module
JPH0540802A (en) Arrangement design system
JP2011145971A (en) Method of designing semiconductor integrated circuit
Tomioka et al. Routing of monotonic parallel and orthogonal netlists for single-layer ball grid array packages
JPH04247579A (en) Device and method for automatic parallel wiring