JPH05280820A - Absorption refrigeration system - Google Patents

Absorption refrigeration system

Info

Publication number
JPH05280820A
JPH05280820A JP7475992A JP7475992A JPH05280820A JP H05280820 A JPH05280820 A JP H05280820A JP 7475992 A JP7475992 A JP 7475992A JP 7475992 A JP7475992 A JP 7475992A JP H05280820 A JPH05280820 A JP H05280820A
Authority
JP
Japan
Prior art keywords
heat
absorption
absorber
generator
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7475992A
Other languages
Japanese (ja)
Inventor
Shiro Yakushiji
史朗 薬師寺
Yuji Watabe
裕司 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP7475992A priority Critical patent/JPH05280820A/en
Publication of JPH05280820A publication Critical patent/JPH05280820A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2315/00Sorption refrigeration cycles or details thereof
    • F25B2315/002Generator absorber heat exchanger [GAX]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2315/00Sorption refrigeration cycles or details thereof
    • F25B2315/006Reversible sorption cycles

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To reduce a circulating power when absorption heat is utilized for heating absorption liquid at a generating device in order to improve efficiency. CONSTITUTION:A heat pipe structure is utilized as a heat transmitting means between an absorber 4 and the generator (or a heat exchanger for heating absorption liquid). In this case, when a heat pipe 70 having no wick is used, it is necessary to place the absorption device at a high position and there occurs a certain restriction in its arrangement. However, its cost is less expensive. In turn, in the case that a heat pipe having a wick is utilized, its cost is increased. However, degree of freedom in installation becomes high. In addition, in the case that a plurality of heat pipes are utilized, their efficiencies are increased in reference to their positional relationships to each other. Accordingly, a circulating power for the thermal medium becomes unnecessary, heat transferring characteristics between the absorber and the generator (or a heat exchanger for heating absorption liquid) is improved and then an efficiency (COP) of the absorption cooling or heating machine is increased. In addition, in the case that a plurality of heat pipes are used, a temperature distribution is easily generated at the absorption device, resulting in that absorption efficiency is increased and so the size of the absorber can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本願発明は、吸収器および発生器
を備えた吸収式冷凍装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigeration system equipped with an absorber and a generator.

【0002】[0002]

【従来の技術】吸収式冷凍装置は、吸収器を備え、冷媒
が蒸発したときの蒸気を吸収剤を用いて吸収することに
より冷凍を行うものであるため、圧縮機が不要で運転音
が静かであり、設置場所の制限を受けない。又、消費電
力もわずかで、蒸気、温水などの排熱を利用し得る利点
がある。
2. Description of the Related Art An absorption refrigerating apparatus is equipped with an absorber, and the refrigeration is performed by absorbing vapor when a refrigerant is evaporated by using an absorbent. Therefore, there is no restriction on the installation location. Further, it has an advantage that it consumes little power and can utilize exhaust heat of steam, hot water, and the like.

【0003】したがって、最近では空気調和用の冷凍機
としても該吸収式冷凍装置が使用されるようになってき
ている。
Therefore, recently, the absorption type refrigerating apparatus has been used as a refrigerating machine for air conditioning.

【0004】ところで、該装置においては、例えば水−
アンモニア系の装置の場合、加熱蒸発されて発生器から
凝縮器に流れて行くアンモニアガス中には、相当量の水
蒸気が含まれているため、蒸発器から出るアンモニアガ
スのエンタルピが減少して冷凍能力が減少し、効率が悪
くなるから、本来凝縮器には100%のアンモニアガス
を流入させるようにする必要がある。
By the way, in the apparatus, for example, water-
In the case of an ammonia-based device, the amount of steam contained in the ammonia gas that is heated and evaporated and that flows from the generator to the condenser decreases the enthalpy of the ammonia gas that exits the evaporator, and the refrigeration Since the capacity is reduced and the efficiency is deteriorated, it is originally necessary to allow 100% ammonia gas to flow into the condenser.

【0005】そこで、そのために、通常上記発生器内に
精留器を取り付けて、アンモニアガスを冷して水分を凝
縮させるか、あるいは又同精留器に上方から濃厚溶液を
流下させ、さらに下部の受液器から液化冷媒の一部をも
どして、これを同精留器中を流下させるようにしてアン
モニア蒸気中から水蒸気を取り去る方法を採用してい
る。
Therefore, for that purpose, a rectifier is usually installed in the generator to cool the ammonia gas to condense water, or alternatively, the concentrated solution is allowed to flow down from the upper part of the rectifier, and the lower part is further lowered. In this method, a part of the liquefied refrigerant is returned from the liquid receiver, and the liquefied refrigerant is allowed to flow down through the rectifier to remove water vapor from the ammonia vapor.

【0006】このように発生器内に精留器部を設けた吸
収式冷凍装置は、従来より公知である(例えば特開昭4
9−88778号公報)。
An absorption type refrigerating apparatus in which a rectifying section is provided in the generator as described above has been conventionally known (for example, Japanese Patent Application Laid-Open No. 4 (1999) -58,961).
9-88778).

【0007】[0007]

【発明が解決しようとする課題】ところで、上記のよう
な構成の吸収式冷凍装置では、特に精留器の段数が多く
なるほど発生器内の加熱効率が低下し、上方に行くに応
じて温度が低下する。従って、一般に、その冷暖房効率
(COP)を向上させる目的で吸収器と発生器との間に専
用の冷媒回路を設けて熱媒体を循環させ、吸収器での吸
収作用に伴う発熱を上記発生器での吸収液の加熱に有効
利用する伝熱システムが採用されている。
By the way, in the absorption type refrigerating apparatus having the above-mentioned structure, the heating efficiency in the generator decreases as the number of stages of the rectifier increases, and the temperature rises as it goes upward. descend. Therefore, in general, its cooling and heating efficiency
For the purpose of improving (COP), a dedicated refrigerant circuit is provided between the absorber and the generator to circulate the heat medium, and heat generated by the absorbing action in the absorber is used to heat the absorbing liquid in the generator. A heat transfer system that makes effective use is adopted.

【0008】しかし、該伝熱システムでは、熱媒体を循
環させるために相当に大きな循環動力を必要とし、コス
トも高い問題がある。
However, in the heat transfer system, a considerably large circulating power is required to circulate the heat medium, and the cost is high.

【0009】[0009]

【課題を解決するための手段】本願の請求項1および2
記載の発明は上記の問題を解決することを目的としてな
されたもので、それぞれ次のように構成されている。
Claims 1 and 2 of the present application
The inventions described are intended to solve the above problems, and are configured as follows.

【0010】(1) 請求項1記載の発明の構成 請求項1記載の発明の吸収式冷凍装置は、加熱手段(1
9)と、該加熱手段(19)により加熱されて冷媒と吸収
剤との混合作動液から作動液蒸気(G)を発生させる発生
器(1)と、上記作動液蒸気を凝縮させる凝縮器(2)と、
該凝縮器(2)で凝縮させた作動液を蒸発させる蒸発器
(3)と、該蒸発器(3)で蒸発した冷媒蒸気を作動液中に
吸収する吸収器(4)とを備えてなる吸収式冷凍装置にお
ける発生器(1)において、上記吸収器(4)と発生器(1)
とをヒートパイプ(70)で接続し、上記吸収器(4)の吸
収熱を発生器(1)に伝達するようにしたことを特徴とす
るものである。
(1) Structure of the Invention According to Claim 1 The absorption refrigerating apparatus according to the invention described in claim 1 comprises a heating means (1
9), a generator (1) that is heated by the heating means (19) to generate a working fluid vapor (G) from a mixed working fluid of a refrigerant and an absorbent, and a condenser (condensed to condense the working fluid vapor). 2) and
Evaporator for evaporating the working fluid condensed in the condenser (2)
A generator (1) in an absorption refrigeration system comprising: (3) and an absorber (4) that absorbs the refrigerant vapor evaporated in the evaporator (3) into a working fluid. ) And generator (1)
Are connected by a heat pipe (70) so that the absorbed heat of the absorber (4) is transferred to the generator (1).

【0011】(2) 請求項2記載の発明の構成 請求項2記載の発明の吸収式冷凍装置は、上記請求項1
記載の発明の吸収式冷凍装置の構成における上記ヒート
パイプ(70)が複数本のヒートパイプ(71),(72),
(73)より構成されていることを特徴とするものであ
る。
(2) Structure of the invention according to claim 2 The absorption refrigeration system of the invention according to claim 2 is the above-mentioned claim 1.
The heat pipe (70) in the configuration of the absorption refrigeration system of the invention described is a plurality of heat pipes (71), (72),
It is characterized by being composed of (73).

【0012】[0012]

【作用】本願の請求項1および2記載の発明の吸収式冷
凍装置は、各々上記のように構成されている結果、当該
各構成に対応して次のような作用を奏する。
The absorption type refrigerating apparatus of the present invention according to claims 1 and 2 of the present application is configured as described above, and as a result, the following operation is achieved corresponding to each configuration.

【0013】(1) 請求項1記載の発明の吸収式冷凍装
置の作用 請求項1記載の発明の吸収式冷凍装置では、上述の如
く、吸収器と発生器とをヒートパイプによって結び、熱
伝達を行うようになっている。
(1) Operation of the absorption type refrigeration system of the invention described in claim 1 In the absorption type refrigeration system of the invention described in claim 1, as described above, the absorber and the generator are connected by a heat pipe, and heat transfer is performed. Is supposed to do.

【0014】したがって、何等の駆動力を必要とするこ
となく、吸収熱を発生器側に移送して吸収液の加熱を行
うことができるようになる。
Therefore, the absorbed heat can be transferred to the generator side to heat the absorbing liquid without requiring any driving force.

【0015】この場合、例えばウィックのないヒートパ
イプを用いると、吸収器側を高い位置に置く必要があり
配置に制約が生じるが、コストは低くてすむ。他方、ウ
ィックのあるヒートパイプを用いると、コストは高くな
るが配置上の自由度が高くなる。
In this case, for example, if a heat pipe without a wick is used, it is necessary to place the absorber side at a high position and the arrangement is restricted, but the cost is low. On the other hand, using a heat pipe with a wick increases the cost but increases the degree of freedom in arrangement.

【0016】(2) 請求項2記載の発明の吸収式冷凍装
置の作用 請求項2記載の発明の吸収式冷凍装置では、上記請求項
1記載の発明の吸収式冷凍装置におけるヒートパイプが
複数本のものよりなっている。
(2) Operation of the absorption refrigeration system of the invention described in claim 2 In the absorption refrigeration system of the invention described in claim 2, a plurality of heat pipes are provided in the absorption refrigeration system of the invention described in claim 1. It consists of

【0017】その結果、吸収器内において温度分布が生
じ易くなって吸収効率が向上するようになる。
As a result, the temperature distribution is likely to occur in the absorber and the absorption efficiency is improved.

【0018】[0018]

【発明の効果】従って、本願発明によると、吸収器の吸
収熱を熱媒体を循環させることなく吸収液の加熱に利用
することができ、循環動力が不要となる。
Therefore, according to the present invention, the absorption heat of the absorber can be utilized for heating the absorbing liquid without circulating the heat medium, and the circulation power is unnecessary.

【0019】また、特に請求項2記載の発明のように、
複数本のヒートパイプを用いるようにすると、吸収器内
において温度分布が生じ易くなり、吸収効率が高くなる
結果、吸収器を小型化し得るメリットが生じる。
Further, in particular, as in the invention described in claim 2,
If a plurality of heat pipes are used, the temperature distribution is likely to occur in the absorber, and the absorption efficiency is increased. As a result, there is an advantage that the absorber can be downsized.

【0020】[0020]

【実施例】図1〜図3は、本願発明の実施例に係る吸収
式冷凍装置を示している。
1 to 3 show an absorption type refrigerating apparatus according to an embodiment of the present invention.

【0021】先ず図2及び図3には、同吸収式冷凍装置
における溶液及び冷媒の回路構成が示されている。該図
2及び図3において符号1は発生器、2は図2に示す冷
房運転時には凝縮器となり、図3に示す暖房運転時には
蒸発器となる第1の熱交換器、3は同じく冷房運転時に
は蒸発器となり、暖房運転時には凝縮器となる第2の熱
交換器、4は吸収器を示している。
First, FIGS. 2 and 3 show circuit configurations of a solution and a refrigerant in the absorption type refrigerating apparatus. 2 and 3, reference numeral 1 is a generator, 2 is a condenser during the cooling operation shown in FIG. 2, and is a first heat exchanger that serves as an evaporator during the heating operation shown in FIG. 3, and 3 is also during the cooling operation. The second heat exchangers 4 that serve as evaporators and condensers during heating operation are absorbers.

【0022】ところで、吸収式冷凍サイクルの原理それ
自体は既に周知であるが、今図2及び図3の吸収式冷凍
装置において同冷凍サイクルがどのようにして実行され
るかについて、一応以下簡略に説明する。
By the way, although the principle of the absorption refrigeration cycle itself is already well known, the following briefly describes how the refrigeration cycle is executed in the absorption refrigeration apparatus of FIGS. 2 and 3. explain.

【0023】先ず、図2に示す冷房運転時について説明
すると、冷房運転時には、発生器1においてヒータ(バ
ーナ)19によって作動液(この実施例ではアンモニア水
溶液)を加熱すると、該作動液から冷媒(アンモニア)と
吸収液(水)の混合蒸気が発生し、この混合蒸気が発生器
1の容器11内に形成されている精留器部13を通って
上昇する。
First, the cooling operation shown in FIG. 2 will be described. When the working fluid (ammonia aqueous solution in this embodiment) is heated by the heater (burner) 19 in the generator 1 during the cooling operation, a refrigerant ( A mixed vapor of (ammonia) and an absorbing liquid (water) is generated, and the mixed vapor rises through the rectifier section 13 formed in the container 11 of the generator 1.

【0024】精留器部13では、適宜段数(この実施例
では4段)のトレー状の貯液部D1〜D4が形成されてい
て、後述する吸収器4側から発生器1に供給される作動
液Bcが最上段の貯液部D4から順次下段の貯液部D3,D
2,D1へ流下するようにされている。
In the rectification section 13, tray-shaped liquid storage sections D 1 to D 4 having an appropriate number of steps (4 steps in this embodiment) are formed, and are supplied to the generator 1 from the absorber 4 side described later. The working fluid Bc to be stored is sequentially stored from the uppermost liquid storage portion D 4 to the lower liquid storage portions D 3 and D.
It is designed to flow down to 2 , D 1 .

【0025】精留器部13では、下方から上昇するアン
モニアと水の混合蒸気が各貯液棚(D1〜D4)を通過する
たびに、温度降下と、上方からの濃溶液との接触とによ
り同混合蒸気中のアンモニア濃度が上昇し、そして該精
留器部13で濃縮されたアンモニア−水混合蒸気は、さ
らに上段の分縮器部14で水分が分離されて約99.8%の
アンモニアガス(ガス冷媒)となる。このガス冷媒は図2
において矢印A11,A12で示すように第1の四路切換弁
31を経て凝縮器となる第1の熱交換器2へ供給され
る。第1の熱交換器2では、ファン68により空冷され
て凝縮熱を放出しアンモニアガスが液化してアンモニア
液(液冷媒)となる。
In the rectifier section 13, every time the mixed vapor of ammonia and water rising from below passes through each storage rack (D 1 to D 4 ), the temperature drop and the contact with the concentrated solution from above. The concentration of ammonia in the mixed vapor is increased by and, and the ammonia-water mixed vapor concentrated in the rectification unit 13 is further separated in the upper dephlegmator unit 14 to have about 99.8% ammonia. It becomes gas (gas refrigerant). This gas refrigerant is
In the figure, as shown by the arrows A 11 and A 12 , it is supplied to the first heat exchanger 2 which serves as a condenser through the first four-way switching valve 31. In the first heat exchanger 2, the air is cooled by the fan 68 to release the heat of condensation and the ammonia gas is liquefied to become ammonia liquid (liquid refrigerant).

【0026】この液冷媒は図2において矢印A13で示す
ように冷媒間熱交換器32を通って減圧器33で減圧さ
れた後、二重管構造の第2の熱交換器(蒸発器)3で室内
機からの循環水(循環水配管路35内を循環流通する)と
熱交換して蒸発し(循環水は冷却されて冷房用冷熱源と
なる)、再度ガス冷媒(アンモニアガス)となる。このガ
ス冷媒は図2において矢印A14で示すように第2の四路
切換弁36を通って前述の冷媒間熱交換器32へ送ら
れ、そこで熱交換器2からの液冷媒(コイル32C内を
通る)を予冷却した後、前述の第1の四路切換弁31及
び第2の四路切換弁36を経て(図2中の矢印A15、A
16)、吸収器4へ送給される。
This liquid refrigerant passes through the inter-refrigerant heat exchanger 32 as shown by arrow A 13 in FIG. 2 and is decompressed by the decompressor 33, and then the second heat exchanger (evaporator) having the double pipe structure. In 3, the heat is exchanged with the circulating water from the indoor unit (circulating and circulating in the circulating water piping 35) to evaporate (the circulating water is cooled and becomes a cooling heat source for cooling), and is again used as a gas refrigerant (ammonia gas). Become. This gas refrigerant is sent to the inter-refrigerant heat exchanger 32 through the second four-way switching valve 36 as shown by an arrow A 14 in FIG. 2, where the liquid refrigerant from the heat exchanger 2 (in the coil 32C). Through the first four-way switching valve 31 and the second four-way switching valve 36 (arrows A 15 , A in FIG. 2).
16 ), and is sent to the absorber 4.

【0027】吸収器4は、このガス冷媒を発生器1から
供給される作動液中に再度吸収させる作用を行うもの
で、次のような方法で同作用を実行する。
The absorber 4 serves to absorb the gas refrigerant again into the working fluid supplied from the generator 1, and carries out the same action in the following manner.

【0028】すなわち、吸収器4の容器41内の最上段
部には作動液の散布器42が設けられており、該散布器
42に対して矢印L1で示すように発生器1の蒸気発生
部12から精留器内熱交換器27及び減圧器28を介し
て作動液(3%希溶液)Baが供給される。この希溶液Ba
は吸収器容器41内で散布器42から散布されて同吸収
器容器41内に供給される上記ガス冷媒を吸収して容器
内底部液溜り49に落下する。
That is, a sprayer 42 of the working liquid is provided at the uppermost stage in the container 41 of the absorber 4, and the vapor generation of the generator 1 is indicated by the arrow L 1 with respect to the sprayer 42. The working liquid (3% dilute solution) Ba is supplied from the section 12 through the heat exchanger 27 in the rectifier and the pressure reducer 28. This dilute solution Ba
Absorbs the gas refrigerant that has been sprayed from the sprayer 42 in the absorber container 41 and is supplied into the absorber container 41, and falls into the container bottom liquid pool 49.

【0029】この容器底部液溜り49に貯留される作動
液(濃溶液)Bcは、ポンプ51により、図2中の矢印
2,L3で示すように圧送され、分縮器内熱交換器29
で熱交換(吸熱)されたあと、発生器1内の次段の貯液棚
3へ供給される。
The working liquid (concentrated solution) Bc stored in the container bottom liquid pool 49 is pressure-fed by the pump 51 as indicated by arrows L 2 and L 3 in FIG. 29
After being heat-exchanged (heat-absorbed) in, the liquid is supplied to the next-stage liquid storage shelf D 3 in the generator 1.

【0030】一方、符号70は吸収器4で生じる吸収熱
を発生器1側に伝達するヒートパイプ部を示し、該ヒー
トパイプ部70は、図1に示すように第1〜第3の複数
本のヒートパイプ71〜73よりなり、該第1〜第3の
各ヒートパイプ71,72,73は各々その一端71a,7
2a,73aを上記発生器1の第2、第3、第4の各貯液
棚D2,D3,D4の上面部内に挿入配置されている一方、
また他端71b,72b,73bを上記発生器1側と逆の位
置関係にして吸収器4の容器41内に上下方向の高さを
異にして挿入配置されている。そして、各挿入部分には
各々フィン74,74・・・、75,75・・・が多数設
けられている。該ヒートパイプ71,72,73内には、
所定の作動流体が納入されている。
On the other hand, reference numeral 70 indicates a heat pipe section for transmitting absorption heat generated in the absorber 4 to the side of the generator 1. The heat pipe section 70 includes a plurality of first to third plurality as shown in FIG. Heat pipes 71 to 73, and the first to third heat pipes 71, 72, 73 are respectively connected to one end 71a, 7
2a and 73a are inserted and arranged in the upper surface portions of the second, third and fourth liquid storage shelves D 2 , D 3 and D 4 of the generator 1,
Further, the other ends 71b, 72b, 73b are placed in the container 41 of the absorber 4 with different heights in the vertical direction with the positional relationship opposite to that of the generator 1 side. A large number of fins 74, 74 ..., 75, 75 ... Are provided in each insertion portion. In the heat pipes 71, 72, 73,
The specified working fluid has been delivered.

【0031】従って、上記吸収器4で上記ガス冷媒が作
動液に吸収される時に発生する吸収熱は当該各ヒートパ
イプ71,72,73を介して上記発生器1内の各貯液棚
2,D3,D4上の作動液に効率良く伝達され、効果的に
作動液が加熱されるようになる。
Therefore, the absorbed heat generated when the gas refrigerant is absorbed in the working fluid in the absorber 4 passes through the heat pipes 71, 72, 73 and the liquid storage shelves D 2 in the generator 1 are transferred. , D 3 , D 4 are efficiently transmitted to the working fluid, and the working fluid is effectively heated.

【0032】その結果、作動液の加熱度が更に向上し、
ひいては冷暖房効率が向上するようになる。
As a result, the heating degree of the working fluid is further improved,
Eventually, the heating and cooling efficiency will be improved.

【0033】しかも、上記のようにヒートパイプ部70
は、上記吸収器4内の作動液の温度分布と発生器1内の
貯液部D2〜D4の温度分布とを考慮して十分な温度勾配
が取れるように接続配置された第1〜第3の複数本のヒ
ートパイプ71,72,73より構成されているために、
特に吸収器4内に適切な温度分布が生じ、吸収効率が高
くなるので、吸収器4の小型化が可能となる。
Moreover, as described above, the heat pipe portion 70
Considering the temperature distribution of the working fluid in the absorber 4 and the temperature distribution of the liquid storage portions D 2 to D 4 in the generator 1, the first to the first are connected and arranged so that a sufficient temperature gradient can be obtained. Since it is composed of the third plurality of heat pipes 71, 72, 73,
In particular, since an appropriate temperature distribution is generated in the absorber 4 and the absorption efficiency is increased, the absorber 4 can be downsized.

【0034】なお、上記冷却水配管路60中には、2個
の三方切換弁62,63が設けられていて、この三方切
換弁62,63の切換えにより放熱器5と第3の吸収器
内熱交換器48との間の冷却水配管路60が開閉され
る。
Incidentally, two three-way switching valves 62, 63 are provided in the cooling water piping 60, and by switching the three-way switching valves 62, 63, the radiator 5 and the third absorber The cooling water piping 60 with the heat exchanger 48 is opened and closed.

【0035】次に、図3に示す暖房運転時について説明
すると、暖房運転時には、先ず、図2に示す冷房運転時
の冷凍回路のうち、第1及び第2の四路切換弁31,3
6が切換り、同冷凍回路を流通するガス冷媒(アンモニ
アガス)の流れ方向が切換えられる(矢印A21〜A28)。
又、それと同時に、冷却水配管路60中の2つの三方切
換弁62,63が切換えられて、放熱器5と第3の吸収
器内熱交換器48の間の冷却水流通が遮断され、それに
かわって、循環水配管路35中の三方切換弁61の切換
えにより、上記第3の吸収器内熱交換器48が循環水配
管路35と接続される(矢印C22〜C23)。
Next, the heating operation shown in FIG. 3 will be described. During the heating operation, first, the first and second four-way switching valves 31, 3 of the refrigeration circuit in the cooling operation shown in FIG.
6 is switched, and the flow direction of the gas refrigerant (ammonia gas) flowing through the refrigeration circuit is switched (arrows A 21 to A 28 ).
At the same time, the two three-way switching valves 62, 63 in the cooling water pipe line 60 are switched, and the cooling water flow between the radiator 5 and the third heat exchanger 48 in the absorber is cut off. instead, by switching the three-way valve 61 in the circulation water pipe passage 35, the third absorber in the heat exchanger 48 is connected to the circulating water pipe passage 35 (arrow C 22 ~C 23).

【0036】図3の冷凍回路においては、発生器1の分
縮器部14で生成されたガス冷媒(濃度99.8%)は、矢印
21〜A23で示すように第1の四路切換弁31及び第2
の四路切換弁36を通って凝縮器として作用する第2の
熱交換器3へ流入し、ここで循環水配管路35を通って
室内機から供給される循環水と熱交換して凝縮する。循
環水はこれにより加熱され、室内機での暖房用熱源とな
る。なお、この実施例では、室内機への循環水は、3つ
の三方切換弁61,62,63の切換えにより、先ず矢印
22,C23で示すように第3の吸収器内熱交換器48を
出た後、凝縮器となる第2の熱交換器3を通り室内機へ
還流する。すなわち、図3の吸収式冷凍装置では、暖房
運転時には、第3の吸収器内熱交換器48で得られる吸
収熱と第2の熱交換器3で得られる凝縮熱とをもって暖
房用熱源としている。
In the refrigeration circuit of FIG. 3, the gas refrigerant (concentration 99.8%) generated in the dephlegmator section 14 of the generator 1 has a first four-way switching valve as indicated by arrows A 21 to A 23. 31 and second
Flows into the second heat exchanger 3 acting as a condenser through the four-way switching valve 36, and is condensed there by exchanging heat with the circulating water supplied from the indoor unit through the circulating water piping 35. .. The circulating water is heated by this and becomes a heat source for heating in the indoor unit. In this embodiment, the circulating water to the indoor unit, by switching the three-way switching valve 61, 62 and 63, first arrows C 22, first as shown by C 23 3 of the absorber in the heat exchanger 48 After exiting, the gas is returned to the indoor unit through the second heat exchanger 3 serving as a condenser. That is, in the absorption refrigeration system of FIG. 3, during the heating operation, the heat of absorption is obtained by the heat exchanger 48 in the third absorber and the heat of condensation obtained by the second heat exchanger 3. ..

【0037】凝縮器として作用する第2の熱交換器3で
液化した冷媒は、矢印A24で示すように減圧器33で減
圧されたあと、蒸発器として作用する第1の熱交換器2
で蒸発し(ファン68による空気熱交換蒸発)、さらに第
1の四路切換弁31、冷媒間熱交換器32、第2の四路
切換弁36を経て吸収器4へ供給される(矢印A25〜A
28)。
The refrigerant liquefied in the second heat exchanger 3 acting as a condenser is decompressed by the decompressor 33 as shown by an arrow A 24 , and then the first heat exchanger 2 acting as an evaporator.
Is evaporated (air heat exchange evaporation by the fan 68), and further supplied to the absorber 4 via the first four-way switching valve 31, the inter-refrigerant heat exchanger 32, and the second four-way switching valve 36 (arrow A). 25 ~ A
28 ).

【0038】なお、発生器1での水−アンモニア混合蒸
気の発生・精留・分縮作用と、吸収器4におけるアンモ
ニアガス冷媒の吸収作用とは、図2に示す冷房運転時の
場合と同様であり、又、その間の作動液(濃溶液と希溶
液)の流れも図2の場合と同様であるのでその説明は省
略する。
The generation, rectification and partial condensation of the water-ammonia mixed vapor in the generator 1 and the absorption of the ammonia gas refrigerant in the absorber 4 are the same as in the cooling operation shown in FIG. The flow of the working fluid (concentrated solution and dilute solution) during that time is also the same as in the case of FIG.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本願発明の実施例に係る吸収式冷凍装
置の要部の構成を示す断面図である。
FIG. 1 is a cross-sectional view showing a configuration of a main part of an absorption refrigerating apparatus according to an embodiment of the present invention.

【図2】図2は、同装置の冷房運転時における冷凍サイ
クルを示す冷凍回路図である。
FIG. 2 is a refrigeration circuit diagram showing a refrigeration cycle during a cooling operation of the device.

【図3】図3は、同装置の暖房運転時における冷凍サイ
クルを示す冷凍回路図である。
FIG. 3 is a refrigeration circuit diagram showing a refrigeration cycle during the heating operation of the device.

【符号の説明】[Explanation of symbols]

1は発生器、2は第1の熱交換器、3は第2の熱交換
器、4は吸収器、11は容器、13は精留器部、71〜
73は第1〜第3のヒートパイプ、74,75はフィン
である。
1 is a generator, 2 is a first heat exchanger, 3 is a second heat exchanger, 4 is an absorber, 11 is a container, 13 is a rectifier section, 71-
73 is the first to third heat pipes, and 74 and 75 are fins.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 加熱手段(19)と、該加熱手段(19)に
より加熱されて冷媒と吸収剤との混合作動液から作動液
蒸気(G)を発生させる発生器(1)と、上記作動液蒸気を
凝縮させる凝縮器(2)と、該凝縮器(2)で凝縮させた作
動液を蒸発させる蒸発器(3)と、該蒸発器(3)で蒸発し
た冷媒蒸気を作動液中に吸収する吸収器(4)とを備えて
なる吸収式冷凍装置における発生器(1)において、上記
吸収器(4)と発生器(1)とをヒートパイプ(70)で接続
し、上記吸収器(4)の吸収熱を発生器(1)に伝達するよ
うにしたことを特徴とする吸収式冷凍装置。
1. A heating means (19), a generator (1) which is heated by the heating means (19) to generate a working fluid vapor (G) from a working fluid mixed with a refrigerant and an absorbent, and the above-mentioned operation. A condenser (2) for condensing the liquid vapor, an evaporator (3) for evaporating the working liquid condensed by the condenser (2), and a refrigerant vapor evaporated by the evaporator (3) in the working liquid. In a generator (1) in an absorption refrigeration system comprising an absorber (4) for absorbing, the absorber (4) and the generator (1) are connected by a heat pipe (70), An absorption type refrigeration system characterized in that the absorption heat of (4) is transferred to a generator (1).
【請求項2】 上記ヒートパイプ(70)が複数本のヒー
トパイプ(71),(72),(73)よりなることを特徴とす
る請求項1記載の吸収式冷凍装置。
2. The absorption refrigerating apparatus according to claim 1, wherein the heat pipe (70) comprises a plurality of heat pipes (71), (72), (73).
JP7475992A 1992-03-30 1992-03-30 Absorption refrigeration system Pending JPH05280820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7475992A JPH05280820A (en) 1992-03-30 1992-03-30 Absorption refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7475992A JPH05280820A (en) 1992-03-30 1992-03-30 Absorption refrigeration system

Publications (1)

Publication Number Publication Date
JPH05280820A true JPH05280820A (en) 1993-10-29

Family

ID=13556531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7475992A Pending JPH05280820A (en) 1992-03-30 1992-03-30 Absorption refrigeration system

Country Status (1)

Country Link
JP (1) JPH05280820A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09138028A (en) * 1995-11-02 1997-05-27 Lg Electronics Inc Generator-absorber heat exchanger for ammonia absorption type air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09138028A (en) * 1995-11-02 1997-05-27 Lg Electronics Inc Generator-absorber heat exchanger for ammonia absorption type air conditioner

Similar Documents

Publication Publication Date Title
US5067330A (en) Heat transfer apparatus for heat pumps
USRE34747E (en) Absorption refrigeration and heat pump system with defrost
JP2011089722A (en) Method and device for refrigeration/air conditioning
US6631624B1 (en) Phase-change heat transfer coupling for aqua-ammonia absorption systems
CN214665343U (en) Absorption heat pump unit
JPH05280820A (en) Absorption refrigeration system
USRE34600E (en) Energy recovery system for absorption heat pumps
JP3397164B2 (en) Heat pump cycle type absorption refrigeration and heating simultaneous removal machine and method
JP4315855B2 (en) Absorption refrigerator
JP3401546B2 (en) Absorption refrigerator
JP2580275B2 (en) Air conditioning system using absorption refrigerator
JP4282225B2 (en) Absorption refrigerator
JP3484142B2 (en) 2-stage double-effect absorption refrigerator
JPH05272831A (en) Absorption refrigerator
JP4557468B2 (en) Absorption refrigerator
JPH0350373Y2 (en)
JPH11257782A (en) Absorption cold heat generator
JP3448681B2 (en) Absorption type cold heat generator
JP3161321B2 (en) Absorption heat pump
KR100314471B1 (en) Generator of absorption heat pump using ammonia
KR0184216B1 (en) Ammonia absorptive refrigerator
JPH07318189A (en) Air-conditioning system of building
KR20020070907A (en) Absorbtion type chiller/heater using water as refrigerant
KR19990028877U (en) Generator of Absorption Heat Pump
JPH05272844A (en) Absorption refrigerator