JPH09138028A - Generator-absorber heat exchanger for ammonia absorption type air conditioner - Google Patents

Generator-absorber heat exchanger for ammonia absorption type air conditioner

Info

Publication number
JPH09138028A
JPH09138028A JP8307548A JP30754896A JPH09138028A JP H09138028 A JPH09138028 A JP H09138028A JP 8307548 A JP8307548 A JP 8307548A JP 30754896 A JP30754896 A JP 30754896A JP H09138028 A JPH09138028 A JP H09138028A
Authority
JP
Japan
Prior art keywords
generator
absorber
heat
gax
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8307548A
Other languages
Japanese (ja)
Inventor
Kyong Ik-Soo
イク−ソー・キョング
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
L G DENSHI KK
LG Electronics Inc
Original Assignee
L G DENSHI KK
LG Electronics Inc
Gold Star Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L G DENSHI KK, LG Electronics Inc, Gold Star Co Ltd filed Critical L G DENSHI KK
Publication of JPH09138028A publication Critical patent/JPH09138028A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/04Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being ammonia evaporated from aqueous solution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2315/00Sorption refrigeration cycles or details thereof
    • F25B2315/002Generator absorber heat exchanger [GAX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To attempt to rapidly transfer heat by the reduction of heat loss by coupling a heat pipe to a GAX-generator for condensing operating fluid from a GAX-absorber for setting the fluid from liquid state to vapor state, and circulating the fluid. SOLUTION: A GAX-absorber 107 for rasing the temperature of inner operating fluid by the heat transfer due to the contact with dilute solution from a generator 101 and absorption heat is formed at the upper stage in an absorber 102. A GAX-generator 106 for heat exchanging with concentrated solution fed from the absorber 102 to the generator 101 to raise the temperature of the concentrated solution is formed at the upper stage in the generator 101. A heat pipe 108 is coupled from the absorber 107 to the generator 106 to circulate the fluid. Thus, the heat loss is reduced to make it possible to attempt to rapidly transfer the heat.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はアンモニア吸収式冷
暖房機の発生器−吸収器熱交換機(GAX)に関し、特
に発生器−吸収器熱交換機(GAX)の内部の作動流体
が外部の駆動力なしに円滑に循環するようにして熱損失
を減少させるとともに熱伝達を迅速に行うようにしたも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a generator-absorber heat exchanger (GAX) for an ammonia absorption air conditioner, and more particularly, a working fluid inside the generator-absorber heat exchanger (GAX) has no external driving force. It is designed to smoothly circulate in order to reduce heat loss and to perform heat transfer quickly.

【0002】[0002]

【従来の技術】従来のアンモニア吸収式冷暖房機の発生
器−吸収器熱交換機と周辺部の構成を図1に示す。発生
器1は、濃度の高いアンモニア水溶液11(以下、濃厚
溶液という)から冷媒のアンモニアを蒸発させてアンモ
ニア冷媒蒸気を得てそれを冷媒蒸気流出管9へ送り出す
とともに、アンモニア蒸発によって生じた濃度の低いア
ンモニア水溶液(以下希薄溶液という)を作る。冷媒蒸
気流出管9は上記発生器1で蒸発されたアンモニア冷媒
蒸気を凝縮器(図示せず)に導くために発生器1の上段
に形成されている。発生器1で生成された希薄溶液は発
生器1内に設けられた希薄溶液コイル3を通して吸収器
2へ導かれる。
2. Description of the Related Art FIG. 1 shows the structure of a generator-absorber heat exchanger and its peripheral part of a conventional ammonia absorption type air conditioner. The generator 1 evaporates ammonia as a refrigerant from a high-concentration aqueous ammonia solution 11 (hereinafter, referred to as a concentrated solution) to obtain an ammonia refrigerant vapor, and sends it to the refrigerant vapor outflow pipe 9, and at the same time, the concentration of the ammonia vapor generated Make a low aqueous ammonia solution (hereinafter referred to as a dilute solution). The refrigerant vapor outflow pipe 9 is formed in the upper stage of the generator 1 to guide the ammonia refrigerant vapor evaporated in the generator 1 to a condenser (not shown). The dilute solution produced in the generator 1 is guided to the absorber 2 through the dilute solution coil 3 provided in the generator 1.

【0003】周知のように、凝縮器へ送られたアンモニ
ア蒸気はそこで凝縮され、図示しない蒸発器へ送られ、
蒸発器で再び蒸発させられ、冷媒蒸気流入管10から吸
収器2へ流入させられる。吸収器2は、そのアンモニア
蒸気を吸収器へ送られてきた希薄溶液に吸収して溶解さ
せ、その際発生する熱を冷却水12で冷却し、発生器1
から送られてきた希薄溶液にアンモニアを吸収させて濃
厚溶液を形成するようになっている。ポンプ5によりそ
の濃厚溶液を再び発生器1へ戻す。
As is well known, the ammonia vapor sent to the condenser is condensed there and sent to an evaporator (not shown),
It is evaporated again in the evaporator and is made to flow from the refrigerant vapor inflow pipe 10 into the absorber 2. The absorber 2 absorbs and dissolves the ammonia vapor in the dilute solution sent to the absorber, cools the heat generated at that time with the cooling water 12, and the generator 1
The dilute solution sent from the plant absorbs ammonia to form a concentrated solution. Pump 5 returns the concentrated solution to generator 1 again.

【0004】さらに、発生器1と吸収器2との間にポン
プ8で作動流体を循環させる管路が形成され、その管路
中に吸収器2内の上段部にGAX−吸収器部7が形成さ
れ、発生器1内の上段部にGAX−発生器部6が形成さ
れている。GAX−吸収器部7で作動流体を加熱し、G
AX−発生器部6で高濃度溶液を加熱する。
Further, a pipeline for circulating a working fluid by a pump 8 is formed between the generator 1 and the absorber 2, and a GAX-absorber section 7 is provided in the upper stage of the absorber 2 in the pipeline. The GAX-generator section 6 is formed in the upper part of the generator 1. GAX-absorber unit 7 heats the working fluid to
The high-concentration solution is heated in the AX-generator section 6.

【0005】このような従来のアンモニア吸収式冷暖房
機の発生器−吸収器熱交換機の動作を説明する。一般的
なアンモニア吸収式冷暖房機は基本的に4個の構成要
素、すなわち、発生器1、凝縮機、蒸発機、吸収器2と
で構成されている。上記発生器−吸収器熱交換機(GA
X)は、システムのエネルギー利用効率を高めようとす
るもので、吸収器2での熱を発生器1内の濃厚溶液に伝
達する熱交換装置である。
The operation of the conventional generator-absorber heat exchanger of such an ammonia absorption type air conditioner will be described. A general ammonia absorption type air conditioner is basically composed of four components, that is, a generator 1, a condenser, an evaporator and an absorber 2. The above generator-absorber heat exchanger (GA
X) is intended to improve the energy utilization efficiency of the system, and is a heat exchange device that transfers the heat in the absorber 2 to the concentrated solution in the generator 1.

【0006】図1に示すように、発生器1に熱を加える
と、発生器1内の濃厚溶液11からアンモニアが蒸発し
て濃厚溶液は希薄溶液になる。蒸発したアンモニア冷媒
蒸気は発生器1上段に形成された冷媒蒸気流出管9を通
じて凝縮機に送出される。発生器1で生成された希薄溶
液は濃厚溶液より比重が高くて発生器1内の下段部に下
降し、その下降された希薄溶液が希薄溶液コイル3に流
入されて吸収器2内に移送される。
As shown in FIG. 1, when heat is applied to the generator 1, ammonia is evaporated from the concentrated solution 11 in the generator 1 and the concentrated solution becomes a dilute solution. The evaporated ammonia refrigerant vapor is sent to the condenser through the refrigerant vapor outflow pipe 9 formed in the upper stage of the generator 1. The dilute solution generated in the generator 1 has a higher specific gravity than the concentrated solution and descends to the lower part of the generator 1, and the descended dilute solution is introduced into the dilute solution coil 3 and transferred into the absorber 2. It

【0007】蒸発機で蒸発されて形成されたアンモニア
冷媒蒸気は、凝縮器、圧縮機を経て吸収器2の下段部に
設置された冷媒蒸気流入管10を通じて吸収器に流入す
る。この冷媒蒸気流入管10を通じて流入されたアンモ
ニア冷媒蒸気は吸収器2上段部から流入される希薄溶液
に吸収される。そのアンモニア蒸気が溶解した希薄溶液
は吸収器2に流入される冷却水12と熱交換しながら濃
厚溶液となって吸収器2の下段部に集まる。
The ammonia refrigerant vapor formed by evaporation in the evaporator passes through the condenser and the compressor and flows into the absorber through the refrigerant vapor inflow pipe 10 installed in the lower part of the absorber 2. The ammonia refrigerant vapor that has flowed in through the refrigerant vapor inflow pipe 10 is absorbed by the dilute solution that flows in from the upper part of the absorber 2. The dilute solution in which the ammonia vapor is dissolved becomes a concentrated solution while exchanging heat with the cooling water 12 flowing into the absorber 2, and collects in the lower part of the absorber 2.

【0008】この吸収器2の下段部に集まった濃厚溶液
は溶液ポンプ5のポンピング作動によって熱交換機4を
通過しながらアンモニアを吸収する際の吸収熱の一部を
受けて温度が上昇されて発生器1の内部に流入される。
そのとき、吸収器2内の上段部に形成されたGAX−吸
収器部7は発生器1内に形成された希薄溶液コイル3内
を流れて吸収器2内に流入された希薄溶液との接触及び
前記吸収熱による熱交換が行われて作動流体の温度を上
昇させる。発生器−吸収器熱交換機(GAX)内の作動
流体はポンプ8のポンピング作動により循環して発生器
1内に形成されたGAX−発生器部6で吸収器2から発
生器1に移送された濃厚溶液と熱交換してその濃厚溶液
の温度を上昇させる。
The concentrated solution collected in the lower part of the absorber 2 is heated by the pumping operation of the solution pump 5 while receiving a part of the absorption heat when absorbing the ammonia while passing through the heat exchanger 4 and is raised in temperature. It flows into the inside of the container 1.
At that time, the GAX-absorber part 7 formed in the upper part of the absorber 2 contacts the dilute solution flowing into the absorber 2 by flowing in the dilute solution coil 3 formed in the generator 1. And heat exchange by the absorbed heat is performed to raise the temperature of the working fluid. The working fluid in the generator-absorber heat exchanger (GAX) is circulated by the pumping operation of the pump 8 and transferred from the absorber 2 to the generator 1 in the GAX-generator part 6 formed in the generator 1. Heat exchange with the concentrated solution to raise the temperature of the concentrated solution.

【0009】この発生器−吸収器熱交換機(GAX)で
の熱利用効率を高めるため、発生器1内で上側にある管
を吸収器2では下側になるように交差させて発生器−吸
収器熱交換機(GAX)の構造を∞形状にしている。
In order to improve the heat utilization efficiency in the generator-absorber heat exchanger (GAX), the upper pipe in the generator 1 is crossed to the lower side in the absorber 2 so that the generator-absorber is absorbed. The structure of the heat exchanger (GAX) has an ∞ shape.

【0010】[0010]

【発明が解決しようとする課題】しかし、従来のアンモ
ニア吸収式冷暖房機の発生器−吸収器熱交換機は内部の
作動流体の円滑な循環のためにポンプを使用するのでポ
ンプの駆動のための電力が必要で、そのポンプの電力に
よるエネルギー利用効率が低下し、維持費が上昇される
問題点がある。また、ポンプ設置によるシステムの製造
原価が上昇する問題点がある。本発明の目的は、発生器
−吸収器熱交換機(GAX)内部の作動流体が外部の駆
動力なしに円滑に循環されるようにして熱損失を減少さ
せ、しかも迅速な熱伝達を図ることができるようにした
アンモニア吸収式冷暖房機の発生器−吸収器熱交換機
(GAX)を提供することである。
However, since the generator-absorber heat exchanger of the conventional ammonia absorption type air conditioner uses the pump for the smooth circulation of the working fluid therein, the power for driving the pump is required. However, there is a problem in that the energy utilization efficiency of the electric power of the pump is reduced and the maintenance cost is increased. Further, there is a problem that the manufacturing cost of the system increases due to the installation of the pump. An object of the present invention is to allow working fluid inside a generator-absorber heat exchanger (GAX) to be smoothly circulated without external driving force to reduce heat loss and to achieve rapid heat transfer. It is an object of the present invention to provide a generator-absorber heat exchanger (GAX) for an ammonia absorption type heating and cooling machine that is made possible.

【0011】[0011]

【課題を解決するための手段】この目的を達成するた
め、本発明は、発生器から吸収器に送られた希薄溶液と
の接触及び吸収器の内の吸収熱により加熱され内部の作
動流体を液体状態から蒸気状態にする、吸収器内に形成
されたGAX−吸収器部と、上記GAX−吸収器部によ
って蒸発させられた作動流体と吸収器から発生器に送ら
れた濃厚溶液とが熱交換して濃厚溶液の温度を上昇させ
作動流体を凝縮させる、発生器の内に形成されたGAX
−発生器手段と、上記GAX−吸収器部からGAX−発
生器部に連結され前記作動流体を循環させる熱伝達手段
とを備えることを特徴とする。
To achieve this object, the present invention provides a working fluid inside which is heated by the contact with the dilute solution sent from the generator to the absorber and the heat of absorption inside the absorber. The GAX-absorber section formed in the absorber, which changes the liquid state to the vapor state, the working fluid evaporated by the GAX-absorber section and the concentrated solution sent from the absorber to the generator heat. GAX formed inside the generator to exchange and raise the temperature of the concentrated solution to condense the working fluid
-Generator means and heat transfer means connected to the GAX-absorber section to the GAX-generator section for circulating the working fluid.

【0012】[0012]

【発明の実施の形態】本発明の1実施形態によるアンモ
ニア吸収式冷暖房機の発生器−吸収器熱交換機と周辺部
の構成を図2に示す。発生器101は、従来同様、濃度
の高いアンモニア水溶液、すなわち濃厚溶液111から
冷媒のアンモニアを蒸発させてアンモニア冷媒蒸気を得
てそれを冷媒蒸気流出管109へ送り出すとともに、ア
ンモニア蒸発によって生じた濃度が低くなったアンモニ
ア水溶液(以下希薄溶液という)を作る。冷媒蒸気流出
管109は上記発生器1で蒸発されたアンモニア冷媒蒸
気を凝縮器(図示せず)に導くために発生器101の上
段に形成されている。発生器101で生成された希薄溶
液は発生器1内に設けられた希薄溶液コイル103を通
して吸収器102へ導かれる。
FIG. 2 shows the configuration of a generator-absorber heat exchanger and its peripheral portion of an ammonia absorption type air conditioner according to an embodiment of the present invention. As in the conventional case, the generator 101 evaporates ammonia as a refrigerant from a high-concentration aqueous ammonia solution, that is, the concentrated solution 111 to obtain ammonia refrigerant vapor and sends it out to the refrigerant vapor outflow pipe 109. Make a lowered aqueous ammonia solution (hereinafter referred to as a dilute solution). The refrigerant vapor outflow pipe 109 is formed in the upper stage of the generator 101 for guiding the ammonia refrigerant vapor evaporated in the generator 1 to a condenser (not shown). The dilute solution generated in the generator 101 is guided to the absorber 102 through the dilute solution coil 103 provided in the generator 1.

【0013】周知のように、凝縮器へ送られたアンモニ
ア蒸気はそこで凝縮され、図示しない蒸発器へ送られ、
蒸発器で再び蒸発させられ、冷媒蒸気流入管110から
吸収器102へ流入させられるようになっている。吸収
器102は、そのアンモニア蒸気を発生器101から送
られてきた希薄溶液に吸収させて溶解させ、その際発生
する熱を冷却水112で冷却し、希薄溶液にアンモニア
を吸収させて濃厚溶液を形成するようになっている。ポ
ンプ105によりその濃厚溶液を再び発生器101へ戻
す。
As is well known, the ammonia vapor sent to the condenser is condensed there and sent to an evaporator (not shown),
It is made to evaporate again in the evaporator and flow into the absorber 102 from the refrigerant vapor inflow pipe 110. The absorber 102 absorbs the ammonia vapor in the dilute solution sent from the generator 101 and dissolves it, cools the heat generated at that time with cooling water 112, and absorbs ammonia in the dilute solution to form a concentrated solution. To form. The concentrated solution is returned to the generator 101 again by the pump 105.

【0014】吸収器102内の上段部にはGAX−吸収
器部107を形成させてある。従来同様、このGAX−
吸収器部107は、107発生器101からの希薄溶液
との接触及び吸収熱による熱伝達によって内部の作動流
体の温度を上昇させる。同様に、発生器101の上段部
に、吸収器102から発生器101に流入される濃厚溶
液と熱交換してその濃厚溶液の温度を上昇させえるGA
X−発生器部106が配置されている。これらのGAX
−発生器部106とGAX−吸収器部107との間に作
動流体の毛細管現象による移動で熱伝達が行われるヒー
トパイプ108が配置されている。すなわちこの実施形
態においては、アンモニア吸収式冷暖房機の発生器−吸
収器熱交換機を伝熱性能が優秀で外部駆動力の必要ない
ヒートパイプで構成している。
A GAX-absorber section 107 is formed in the upper part of the absorber 102. As in the past, this GAX-
The absorber section 107 raises the temperature of the working fluid inside by contact with the dilute solution from the 107 generator 101 and heat transfer by absorption heat. Similarly, in the upper part of the generator 101, a GA that can exchange heat with the concentrated solution flowing from the absorber 102 into the generator 101 to raise the temperature of the concentrated solution.
An X-generator section 106 is arranged. These GAX
A heat pipe 108 is arranged between the generator unit 106 and the GAX-absorber unit 107 to transfer heat by the movement of the working fluid by the capillary phenomenon. That is, in this embodiment, the generator-absorber heat exchanger of the ammonia absorption cooling and heating machine is configured by a heat pipe that has excellent heat transfer performance and does not require external driving force.

【0015】以下、上記構成の実施形態の動作を説明す
る。まず、発生器101にGAX発生器部106で熱を
加えると、発生器101の内部の濃厚溶液111のアン
モニアが蒸発し、冷媒蒸気を生成して希薄溶液になる。
アンモニア冷媒蒸気は発生器101上段に形成された冷
媒蒸気流出管109を通じて凝縮機に送出される。一
方、発生器101で生成された希薄溶液は濃厚溶液より
比重が高いので発生器101内の下段部に下降し、その
下降した希薄溶液は希薄溶液コイル103に流入されて
吸収器102内に移送される。
The operation of the embodiment having the above configuration will be described below. First, when heat is applied to the generator 101 by the GAX generator unit 106, ammonia in the concentrated solution 111 inside the generator 101 is evaporated and a refrigerant vapor is generated to become a dilute solution.
The ammonia refrigerant vapor is delivered to the condenser through the refrigerant vapor outflow pipe 109 formed in the upper stage of the generator 101. On the other hand, since the dilute solution generated in the generator 101 has a higher specific gravity than the concentrated solution, the dilute solution descends to the lower part of the generator 101, and the descended dilute solution is introduced into the dilute solution coil 103 and transferred into the absorber 102. To be done.

【0016】吸収器102には、その下段部に設置され
た冷媒蒸気流入管110を通じて蒸発機で蒸発したアン
モニア冷媒蒸気が流入する。冷媒蒸気流入管110を通
じて流入されたアンモニア冷媒蒸気は吸収器102上段
部から流入する希薄溶液に吸収され、それに溶解する。
従って希薄溶液の濃度が高くなり、冷却水112で冷却
され濃厚溶液となって吸収器102の下段部に集まる。
その下段部に集まった濃厚溶液は溶液ポンプ105によ
って熱交換機104を通過し発生器101へ送られる。
その際、熱交換機104を通るときにアンモニアガスが
吸収されるときの吸収熱の一部を受けて濃厚溶液の温度
が上昇する。
The ammonia refrigerant vapor evaporated in the evaporator flows into the absorber 102 through the refrigerant vapor inflow pipe 110 installed in the lower part thereof. The ammonia refrigerant vapor that has flowed in through the refrigerant vapor inflow pipe 110 is absorbed by the diluted solution that flows in from the upper part of the absorber 102, and dissolves in it.
Therefore, the concentration of the dilute solution becomes high, and the diluted solution is cooled by the cooling water 112 to become a concentrated solution and collect in the lower part of the absorber 102.
The concentrated solution collected in the lower part passes through the heat exchanger 104 by the solution pump 105 and is sent to the generator 101.
At that time, the temperature of the concentrated solution rises by receiving a part of the absorption heat when the ammonia gas is absorbed while passing through the heat exchanger 104.

【0017】同時に、ヒートパイプで形成された発生器
−吸収器熱交換機(GAX)内の作動流体は、吸収器1
02内の上段部に形成されたGAX−吸収器部107で
加熱され、液体状態から蒸気状態に蒸発される。この加
熱は発生器101内に形成された希薄溶液コイル103
内を流れて吸収器102内に流入した希薄溶液との接触
及び吸収熱による熱交換による。
At the same time, the working fluid in the generator-absorber heat exchanger (GAX) formed by the heat pipe is absorbed by the absorber 1
It is heated by the GAX-absorber section 107 formed in the upper stage of 02 and evaporated from the liquid state to the vapor state. This heating is performed by the dilute solution coil 103 formed in the generator 101.
This is due to contact with the dilute solution flowing inside and flowing into the absorber 102 and heat exchange due to absorption heat.

【0018】上記GAX−吸収器部107内で蒸発した
作動流体は発生器101内に形成されたGAX−発生器
部106に移動し、ポンプ105によって発生器101
に流入される濃厚溶液と熱交換する。したがって、濃厚
溶液は温度が上昇してアンモニアが蒸発するとともに、
GAX−発生器部106内では蒸発した作動流体が液体
に凝縮する。
The working fluid evaporated in the GAX-absorber section 107 moves to the GAX-generator section 106 formed in the generator 101, and the generator 105 is generated by the pump 105.
Heat exchange with the concentrated solution flowing into. Therefore, as the temperature of the concentrated solution rises and ammonia evaporates,
In the GAX-generator section 106, the evaporated working fluid is condensed into a liquid.

【0019】凝縮した液体はヒートパイプ108内壁に
設置されているウイックによる毛細管現象でGAX−吸
収器部107に移動し、熱交換を通じて再び蒸気状態に
蒸発される。この循環を繰り返す。発生器101と吸収
器102の高さ方向の温度勾配は互いに反対であるから
(吸収器102では上段部から下段部方向に温度が低下
して、発生器101では下段部から上段部方向に温度が
低下する)、吸収器102から発生器101への円滑な
熱伝達のために発生器−吸収器熱交換機(GAX)のヒ
ートパイプ108は、図2に示すように、一方の下側の
ものが他方の上側へ及びその逆へ連結される構造として
いる。すなわち、本実施例においては、発生器−吸収器
熱交換機のヒートパイプを熱伝達媒体(すなわち濃厚溶
液と希薄溶液)と逆流構造に形成させ、それにより熱伝
達効率を高めている。
The condensed liquid moves to the GAX-absorber section 107 by a capillary phenomenon by the wick installed on the inner wall of the heat pipe 108, and is evaporated again into a vapor state through heat exchange. This cycle is repeated. Since the temperature gradients in the height direction of the generator 101 and the absorber 102 are opposite to each other (in the absorber 102, the temperature decreases from the upper stage portion to the lower stage portion, and in the generator 101, the temperature decreases from the lower stage portion to the upper stage portion). The heat pipe 108 of the generator-absorber heat exchanger (GAX) for smooth heat transfer from the absorber 102 to the generator 101, as shown in FIG. Is connected to the upper side of the other side and vice versa. That is, in this embodiment, the heat pipe of the generator-absorber heat exchanger and the heat transfer medium (that is, the concentrated solution and the dilute solution) are formed in a reverse flow structure to enhance the heat transfer efficiency.

【0020】即ち、吸収器102の高温部と発生器10
1の高温部が連結されて、吸収器102の低温部と発生
器101の低温部が連結されている。本実施例はヒート
パイプは3本使用して、中間部分を連結するものは同じ
高さに配置している。必要に応じてヒートパイプをさら
に多く配置してもよい。
That is, the high temperature part of the absorber 102 and the generator 10
The high temperature part of 1 is connected, and the low temperature part of the absorber 102 and the low temperature part of the generator 101 are connected. In this embodiment, three heat pipes are used, and those connecting the intermediate portions are arranged at the same height. More heat pipes may be arranged if necessary.

【0021】[0021]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、発生器−吸収器熱交換機(GAX)をヒートパ
イプで構成させたので、作動流体を循環させるためのポ
ンプは必要でなく、余分なエネルギーを必要としないの
でエネルギーの利用効率を高めることができる。また、
ポンプが必要ないので製造原価が減少する。
As described above in detail, according to the present invention, since the generator-absorber heat exchanger (GAX) is composed of a heat pipe, a pump for circulating the working fluid is not necessary. Since no extra energy is required, the efficiency of energy use can be improved. Also,
Manufacturing costs are reduced because no pump is required.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来のアンモニア吸収式冷暖房機の発生器−
吸収器熱交換機(GAX)の構造図。
FIG. 1 A generator of a conventional ammonia absorption type air conditioner-
Structural drawing of absorber heat exchanger (GAX).

【図2】 本発明のアンモニア吸収式冷暖房機の発生器
−吸収器熱交換機(GAX)の構造図。
FIG. 2 is a structural diagram of a generator-absorber heat exchanger (GAX) of the ammonia absorption type air conditioner according to the present invention.

【符号の説明】[Explanation of symbols]

101 発生器、102 吸収器、104 熱交換機、
105 ポンプ、106 GAX−発生器部、107
GAX−吸収器部。
101 generator, 102 absorber, 104 heat exchanger,
105 pump, 106 GAX-generator section, 107
GAX-absorber section.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 発生器から吸収器に送られた希薄溶液と
の接触及び吸収器の内の吸収熱により加熱され内部の作
動流体を液体状態から蒸気状態にする、吸収器内に形成
されたGAX−吸収器部と、 上記GAX−吸収器部によって蒸発させられた作動流体
と吸収器から発生器に送られた濃厚溶液とが熱交換して
濃厚溶液の温度を上昇させ作動流体を凝縮させる、発生
器の内に形成されたGAX−発生器手段と、 上記GAX−吸収器部からGAX−発生器部に連結され
前記作動流体を循環させる熱伝達手段とを備えることを
特徴とするアンモニア吸収式冷暖房機の発生器−吸収器
熱交換機。
1. Formed in the absorber, which is heated by the contact with the dilute solution sent from the generator to the absorber and the heat of absorption in the absorber to change the working fluid therein from the liquid state to the vapor state. The GAX-absorber section exchanges heat between the working fluid evaporated by the GAX-absorber section and the concentrated solution sent from the absorber to the generator to raise the temperature of the concentrated solution and condense the working fluid. An ammonia absorption means comprising: a GAX-generator means formed in the generator; and a heat transfer means connected from the GAX-absorber section to the GAX-generator section for circulating the working fluid. Type air conditioner generator-absorber heat exchanger.
【請求項2】 上記熱伝達手段はGAX−吸収器部とG
AX−発生器部との間を熱交換作動流体が毛細管現象に
よって熱伝達が行われるヒートパイプで形成したことを
特徴とする請求項1記載のアンモニア吸収式冷暖房機の
発生器−吸収器熱交換機。
2. The heat transfer means comprises a GAX-absorber section and a G
The generator-absorber heat exchanger according to claim 1, wherein a heat exchange working fluid is formed between the AX-generator part and a heat pipe in which heat is transferred by a capillary phenomenon. .
【請求項3】 上記ヒートパイプは発生器の上側に配置
されたものが吸収器の下側に、吸収器の上側に配置され
たものが発生器の下側に交差して配置したことを特徴と
する請求項2記載のアンモニア吸収式冷暖房機の発生器
−吸収器熱交換機。
3. The heat pipe is characterized in that one disposed above the generator is disposed below the absorber and one disposed above the absorber intersects with the lower side of the generator. The generator-absorber heat exchanger of the ammonia absorption type air conditioner according to claim 2.
JP8307548A 1995-11-02 1996-11-05 Generator-absorber heat exchanger for ammonia absorption type air conditioner Pending JPH09138028A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019950039339A KR970028251A (en) 1995-11-02 1995-11-02 GAX of ammonia absorption type air conditioner
KR39339/1995 1995-11-02

Publications (1)

Publication Number Publication Date
JPH09138028A true JPH09138028A (en) 1997-05-27

Family

ID=19432710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8307548A Pending JPH09138028A (en) 1995-11-02 1996-11-05 Generator-absorber heat exchanger for ammonia absorption type air conditioner

Country Status (4)

Country Link
JP (1) JPH09138028A (en)
KR (1) KR970028251A (en)
CN (1) CN1152220C (en)
DE (1) DE19645422A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294241A (en) * 2002-04-01 2003-10-15 Matsushita Electric Ind Co Ltd Heating cooker

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280820A (en) * 1992-03-30 1993-10-29 Daikin Ind Ltd Absorption refrigeration system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280820A (en) * 1992-03-30 1993-10-29 Daikin Ind Ltd Absorption refrigeration system

Also Published As

Publication number Publication date
KR970028251A (en) 1997-06-24
DE19645422A1 (en) 1997-05-28
CN1152220C (en) 2004-06-02
CN1159547A (en) 1997-09-17

Similar Documents

Publication Publication Date Title
KR0177719B1 (en) Gax absorptive type cycle apparatus
JPS5849781B2 (en) Absorption heat pump
JP2824639B2 (en) Ammonia GAX absorption cycle
KR20000064967A (en) Generator-absorber-heat exchange heat transfer device and method and heat pump using them
JPH0446339B2 (en)
JPH09138028A (en) Generator-absorber heat exchanger for ammonia absorption type air conditioner
KR100213780B1 (en) Water supply system of absortion type cooler
CN219141149U (en) Single-stage cascade series single-effect lithium bromide absorption refrigeration heat pump unit
JP6647765B1 (en) Cooling and air conditioning systems
KR0139349Y1 (en) Circulation of condensed water of evaporator for absorption type refrigerator
KR100360449B1 (en) The brazed heat exchanger unit for absorption heating and cooling system
JPS61122428A (en) Floor heater using 2-stage absorbing heat pump
KR0184216B1 (en) Ammonia absorptive refrigerator
JPS6113885Y2 (en)
KR200143517Y1 (en) Absorber and evaporator of absorptive refrigerator
JPH0350373Y2 (en)
KR100213794B1 (en) Ammonia absorption type cooler
JPS62200149A (en) Air heat source type absorption air conditioner
KR100307392B1 (en) The desorber column of ammonia absorption heat pump
JPH0354378Y2 (en)
KR0147458B1 (en) Regenerating apparatus for absorptive airconditioner for small heat assembling power generator
JP2899645B2 (en) Absorption refrigerator
JPH0325258A (en) Air cooled absorption type cold and hot water supplier
JPS5913666B2 (en) heat pump system
JPS5849780B2 (en) Absorption heat pump

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980407