JPH05271862A - Structural steel excellent in brittle fracture resistance and its production - Google Patents

Structural steel excellent in brittle fracture resistance and its production

Info

Publication number
JPH05271862A
JPH05271862A JP6751692A JP6751692A JPH05271862A JP H05271862 A JPH05271862 A JP H05271862A JP 6751692 A JP6751692 A JP 6751692A JP 6751692 A JP6751692 A JP 6751692A JP H05271862 A JPH05271862 A JP H05271862A
Authority
JP
Japan
Prior art keywords
point
rolling
surface layer
temp
brittle fracture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6751692A
Other languages
Japanese (ja)
Other versions
JP3359349B2 (en
Inventor
Tadashi Ishikawa
忠 石川
Yuji Nomiyama
裕治 野見山
Hiroshi Takezawa
博 竹澤
Toshiaki Haji
利昭 土師
Yuji Funatsu
裕二 船津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP06751692A priority Critical patent/JP3359349B2/en
Publication of JPH05271862A publication Critical patent/JPH05271862A/en
Application granted granted Critical
Publication of JP3359349B2 publication Critical patent/JP3359349B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a structural steel excellent in brittle fracture propagation arresting characteristic at a low cost by subjecting, after rough rolling, the surface layer part alone to cooling down to a specific temp. or below and performing rolling while exerting recuperation at the time of hot-rolling a steel slab. CONSTITUTION:A slab of carbon steel of about 0.02-0.20wt.% C content is hot-rolled at a temp. not lower than the Ac3 point. In the course of the hot rolling, the range of the surface layer part of >=2% of the thickness of the hot rolled plate is cooled rapidly down to a temp. not higher than the Ar1 point at >=5 deg.C/sec cooling rate. Successively, rolling is resumed at the point of time when the surface layer part reaches a temp. not lower than the Ar3 point and rolling is finished at a temp. in the range between (Ac3 point -50) deg.C and the Ac3 point, and then, cooling is done down to at least the Ar1 temp. at >=2 deg.C/sec cooling rate without recuperation up to the Ac3 point. By this method, the structural steel plate having brittle fracture resistance, which has a structure composed essentially of ferrite or bainite structure of <=3mum average circle equivalent grain diameter over the range of >=2% of the thickness from the surface of the steel plate and constituted of spheroidal carbide phase of <=0.6mum average circle equivalent diameter and where the aspect ratio of texture colony having the same crystal orientation in the surface layer part structure is regulated to >=4, can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、構造物の安全性を確保
するための鋼板の重要な性能の一つである脆性破壊伝播
停止(アレスト)性能をNi元素等の高価な合金元素の
添加に頼ることなく、飛躍的に向上させる鋼板およびそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a brittle fracture propagation arrest (arrest) performance, which is one of the important performances of a steel sheet for ensuring the safety of a structure, added with an expensive alloy element such as Ni element. The present invention relates to a steel sheet and a method for manufacturing the same, which dramatically improves the production efficiency without depending on the above.

【0002】[0002]

【従来の技術】脆性破壊伝播停止(アレスト)性能を向
上させる手段として、特開昭59−47323号公報に
記載されているような未再結晶域で十分に圧下する製造
方法、あるいは、積極的に脆性破壊を生じ易い第二相粒
子を分散させて脆性亀裂先端にマイクロクラックを多数
発生せしめ亀裂先端の応力状態を緩和させ、かつマイク
ロクラックと主亀裂間の合体時に生じる延性破壊により
亀裂停止を容易にさせる方法が提案されている。
2. Description of the Related Art As a means for improving the brittle fracture propagation stopping (arrest) performance, a manufacturing method described in Japanese Patent Laid-Open No. 59-47323, which is sufficiently reduced in a non-recrystallized region, or a positive method. The second phase particles, which tend to cause brittle fracture, are dispersed at the tip of the brittle crack to cause many microcracks at the tip to relax the stress state at the tip of the crack, and to prevent cracking by ductile fracture that occurs during coalescence between the microcrack and the main crack. A method of making it easier has been proposed.

【0003】しかし、それらの提案は、板厚中心部の組
織を改質し、脆性亀裂伝播停止性能を向上させるもので
あり、板厚表層部の組織で主として決定される落重試験
におけるNDT特性を必ずしも向上させるものではな
い。また、鋼板の板厚が増大すると上記のような板厚中
心部の組織細粒化が達成できないことがあり、とくに板
厚25mm以上の鋼板のアレスト性能向上技術の開発が望
まれている。
However, those proposals are for modifying the structure of the central part of the plate thickness and improving the brittle crack propagation stopping performance, and the NDT characteristic in the drop weight test mainly determined by the structure of the surface part of the plate thickness. Does not necessarily improve. In addition, when the plate thickness of the steel plate increases, the above-described grain refinement of the central portion of the plate thickness may not be achieved, and in particular, development of a technique for improving the arrest performance of the steel plate having a plate thickness of 25 mm or more is desired.

【0004】一方、鋼板表層部に細粒組織を有する鋼板
の製造方法が特開昭61−235534号公報に記載さ
れており、表層部を5μm以下の組織と規定している
が、鉄鋼協会:材料とプロセス,6(1990),p.
1796記載のように、3μm以下のフェライト粒でも
−120℃以下で容易に脆性破壊を生じてしまい、細粒
組織を表層部に形成せしめるアレスト性能向上方法には
限界がある。
On the other hand, a method for producing a steel sheet having a fine grain structure on the surface layer of the steel sheet is described in JP-A-61-235534, and the surface layer is defined as having a structure of 5 μm or less. Materials and Processes, 6 (1990), p.
As described in 1796, even a ferrite grain of 3 μm or less easily causes brittle fracture at −120 ° C. or less, and there is a limit to the method of improving the arrest performance for forming a fine grain structure in the surface layer portion.

【0005】また、特願平02−24509号明細書に
は、板厚の1/3までの表層部を冷却・復熱させ、表層
部の組織改善により高アレスト化を達成する技術が開示
されている。しかし、この方法では板厚の1/3にいた
る広い範囲にわたり、冷却復熱を実現させなければなら
ず、外部熱源なしには板厚中心部が加工フェライトが生
成して靭性が劣化してしまう可能性が大きい。また、か
ような製造方法でアレスト性能が向上できるものの、ア
レスト性能向上に必要な組織が明確でなく、効率的にア
レスト性能を向上するために必要な表層組織、およびそ
の必要厚みが不明である。
Further, Japanese Patent Application No. 02-24509 discloses a technique for cooling and reheating the surface layer portion up to ⅓ of the plate thickness and improving the structure by improving the structure of the surface layer portion. ing. However, with this method, it is necessary to realize cooling recuperation over a wide range of 1/3 of the plate thickness, and without an external heat source, work ferrite is generated in the center part of the plate thickness and the toughness deteriorates. There is a high possibility. Further, although the arrest performance can be improved by such a manufacturing method, the structure necessary for improving the arrest performance is not clear, and the surface structure necessary for efficiently improving the arrest performance and its necessary thickness are unknown. ..

【0006】[0006]

【発明が解決しようとする課題】本発明は、表層部の組
織改質によりアレスト性能であるKca特性とNDT特
性を向上させるために必要な所要組織と所要厚みを明確
化し、製造コストを大きく上昇させる高価なNi元素等
を添加することなく、アレスト性能の良好な鋼板および
その製造方法を提供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention clarifies the required structure and required thickness for improving the Kca property and NDT property which are the arrest performance by modifying the structure of the surface layer portion, and greatly increases the manufacturing cost. An object of the present invention is to provide a steel sheet having good arrestability and a method for manufacturing the steel sheet without adding expensive Ni element or the like.

【0007】[0007]

【課題を解決するための手段】本発明は、上記課題を達
成するために、(1)鋼板表面から少なくとも板厚の2
%以上の範囲にわたり、平均円相当粒径が3μm以下の
フェライト組織、もしくはベーナイト組織を主体とし、
平均円相当径が0.6μm以下の球状炭化物相より構成
される組織を有し、且つ、その表層部組織の同一結晶方
位を有する集合組織コロニーのアスペクト比(長径/短
径の比)が4以上であることを特徴とする鋼板を基本手
段とする。
In order to achieve the above object, the present invention provides (1) at least a plate thickness of 2 from the surface of the steel plate.
%, Mainly composed of a ferrite structure or bainite structure having an average equivalent-circle grain size of 3 μm or less,
An aspect ratio (ratio of major axis / minor axis) of a textured colony having a structure composed of a spheroidal carbide phase having an average equivalent circle diameter of 0.6 μm or less and having the same crystallographic orientation of its surface layer structure is 4 The basic means is a steel plate characterized by the above.

【0008】更に本発明は(2)Ac3 点以上の温度の
鋼片もしくは鋼板を、圧延中途中水冷時の板厚をt0
した時、表層から少なくとも板厚方向に0.02×t0
(mm)以上の領域を5℃/sec 以上の冷速でAr1 点以
下に急冷して、その後、当該表層部がAr3 点以上の温
度から圧延を開始もしくは再開し、(Ac3 点−50)
℃からAc3 ℃の範囲で圧延を終了させ、その後Ac3
点まで復熱させることなく、2℃/sec 以上の冷速で少
なくともAr1 点まで冷却とすることを特徴とすること
を第二の手段とし、(3)Ac3 点以上の温度の鋼片も
しくは鋼板を、圧延中途中水冷時の板厚をt0 とした
時、表層から少なくとも板厚方向に0.02×t0 (m
m)以上の領域を5℃/sec 以上の冷速でAr1 点以下
に急冷して、その後、当該表層部がAr3 点以上の温度
から圧延を開始もしくは再開し、(Ac3 −50)℃か
らAc3 ℃の範囲で圧延を終了させ、その後Ac3 点ま
で復熱させることなく冷却速度が5℃/sec 以上で加速
冷却して製造することを第三の手段とし、(4)550
℃以下で焼戻し熱処理を適用することを第四の手段とす
るものである。
Further, according to the present invention, (2) a steel slab or a steel plate having a temperature of Ac 3 or more is 0.02 × t from the surface layer at least in the plate thickness direction when the plate thickness during water cooling during rolling is t 0. 0
A region of (mm) or more is rapidly cooled to a temperature of Ar 1 point or less at a cooling rate of 5 ° C./sec or more, and then the surface layer portion starts or restarts rolling at a temperature of Ar 3 point or more, (Ac 3 point- 50)
Rolling is completed within the range of ℃ to Ac 3 ℃, then Ac 3
The second means is to cool at least the Ar 1 point at a cooling rate of 2 ° C./sec or more without recuperating to the point, and (3) a steel piece having a temperature of 3 Ac points or more. Alternatively, when the plate thickness of the steel plate during water cooling during rolling is t 0 , 0.02 × t 0 (m
m) The above area 5 ° C. / sec. or more cooling rate in quenching below a point Ar, then, the surface portion starts or resumes rolling from a temperature of more than 3 points Ar, (Ac 3 -50) The third means is to finish rolling in the range of ℃ to Ac 3 ℃, and then perform accelerated cooling at a cooling rate of 5 ℃ / sec or more without reheat to the Ac 3 point to manufacture (4) 550
The fourth means is to apply a tempering heat treatment at a temperature of not higher than ° C.

【0009】本発明において、対象とする構造用鋼は、
例えば前記した特公昭58−14849号公報に記載さ
れ、次記するように、通常の構造用鋼が所要の材質を得
るために、従来から当業分野での活用で確認されている
作用・効果の関係を基に定めている添加元素の種類と量
を同様に使用して同等の作用と効果が得られる。従って
これ等の元素を含む鋼を本発明は対象鋼とするものであ
る。
In the present invention, the target structural steel is
For example, as described in JP-B-58-14849 mentioned above, as will be described below, in order to obtain the required material for the ordinary structural steel, the actions and effects that have been conventionally confirmed in the utilization in the field of the art. The same action and effect can be obtained by similarly using the types and amounts of the additional elements defined based on the relationship of. Therefore, the present invention is intended for steels containing these elements.

【0010】これ等の各成分元素とその添加理由と量は
以下の通りである。Cは鋼の強度を向上する有効な成分
として0.02%以上添加するものであるが、0.20
%を超える過剰な含有量では、2相域圧延時の変形抵抗
を増して圧延を困難にするばかりか、溶接部に島状マル
テンサイトを析出し、鋼の靭性を著しく劣化させるの
で、0.02%〜0.20%に規制する。
The respective constituent elements, the reasons for their addition and the amounts thereof are as follows. C is an effective component for improving the strength of steel and is added in an amount of 0.02% or more.
If the content exceeds 0.1%, not only does the deformation resistance during the two-phase region rolling increase and rolling becomes difficult, but island martensite precipitates in the welded portion, significantly degrading the toughness of the steel. It is regulated to 02% to 0.20%.

【0011】Siは溶鋼の脱酸元素として必要であり、
強度増加元素として有用であるが、1.0%を超えると
鋼の加工性が低下し、溶接部の靭性が劣化し、0.01
%未満では脱酸効果が不十分なため、添加量を0.01
〜1.0%に規制する。
Si is necessary as a deoxidizing element for molten steel,
Although it is useful as a strength increasing element, if it exceeds 1.0%, the workability of the steel is deteriorated and the toughness of the welded portion is deteriorated.
%, The deoxidizing effect is insufficient, so the addition amount is 0.01
Regulate to ~ 1.0%.

【0012】Mnは鋼材の強度を向上する成分として
0.3%以上の添加が必要であるが、Mnの添加は変態
温度を下げるので、過剰の添加は2相域圧延温度を下げ
すぎ変形抵抗が上昇するので2.0%を上限とする。
Although Mn must be added in an amount of 0.3% or more as a component for improving the strength of the steel material, the addition of Mn lowers the transformation temperature. Therefore, the upper limit is 2.0%.

【0013】AlおよびNはAl窒化物による鋼の微細
化の他、圧延過程での固溶、析出による鋼の結晶方位の
整合および再結晶のために添加するが、添加量が少ない
時は効果がなく、過剰の添加は鋼の靭性を劣化させるの
で、Alは0.001〜0.20%に、Nは0.020
%以下とする。
Al and N are added not only for refining steel by Al nitride but also for solid solution during rolling process, matching of crystal orientation of steel due to precipitation and recrystallization, but when the addition amount is small, it is effective. However, since the addition of an excessive amount deteriorates the toughness of steel, Al is 0.001 to 0.20% and N is 0.020.
% Or less.

【0014】PおよびSは、母材の靭性確保のため、そ
れぞれ0.01%以下、0.01%以下とする。以上
が、本発明の対象とする鋼の基本成分であるが、母材強
度の上昇或いは、継手靭性の向上の目的のため、要求さ
れる性質に応じて、合金元素を添加する場合は、変態温
度を下げ過ぎると2相域での変形抵抗が増し、圧延が困
難になるので、添加する合金としてはNi,Cr,M
o,Cu,W,P,Co,V,Nb,Ti,Zr,T
a,Hf,希土類元素,Y,Ca,Mg,Te,Se,
Bの1種類以上が使用できるが、その添加量は合計で
4.5%以下に規制する。尚、平均円相当粒径とは、該
当する組織の個別の粒に注目して、その面積が等しくな
るように想定した円の直径を求め、平均したものであ
る。
P and S are 0.01% or less and 0.01% or less, respectively, in order to secure the toughness of the base material. The above is the basic composition of the steel to be the subject of the present invention, for the purpose of increasing the base metal strength or improving the joint toughness, depending on the properties required, when adding an alloying element, transformation If the temperature is lowered too much, the deformation resistance in the two-phase region increases and rolling becomes difficult, so the alloys to be added are Ni, Cr, M.
o, Cu, W, P, Co, V, Nb, Ti, Zr, T
a, Hf, rare earth element, Y, Ca, Mg, Te, Se,
One or more types of B can be used, but the total addition amount is restricted to 4.5% or less. Note that the average circle-equivalent grain diameter is obtained by focusing on individual grains of a corresponding tissue, obtaining the diameters of circles assumed to have equal areas, and averaging the diameters.

【0015】[0015]

【作用】Ni元素を含有しないフェライト・パーライト
鋼板のフェライト粒径を5μm以下に細粒化しても、図
1に示すように母材靭性であるvTrsは殆ど向上しな
かった。そこで、そのメカニズムについて詳細に調査す
るため、下記に示すような化学成分を有する一般的な構
造用鋼を用いて、種々の実験を行った。 C :0.04〜0.15% Si:0.15〜
0.25% Mn:0.4〜1.6% Al:0.01〜
0.05% P :0.005〜0.008% S :0.001
〜0.003% その結果、フェライト粒径が5μm以下の組織の脆性破
壊が、パーライトコロニーから発生しており、フェライ
ト粒径が5μm〜1.4μmでパーライトコロニー相の
寸法は殆ど変わってはいなかった。そこで、焼入れ・焼
戻し熱処理により炭化物相の形態を変化させて、炭化物
相の平均寸法と脆性破壊を発生させるのに必要な微視的
限界破壊応力の関係を調査した結果、図2に示すように
炭化物相の寸法のみならずその形態によっても脆性破壊
発生特性が大きく変化することが判明した。
[Function] Even if the ferrite grain size of the ferrite / pearlite steel sheet containing no Ni element is reduced to 5 μm or less, the vTrs, which is the toughness of the base material, is hardly improved as shown in FIG. Therefore, in order to investigate the mechanism in detail, various experiments were conducted using a general structural steel having the following chemical composition. C: 0.04 to 0.15% Si: 0.15 to
0.25% Mn: 0.4 to 1.6% Al: 0.01 to
0.05% P: 0.005-0.008% S: 0.001
As a result, brittle fracture of the structure with a ferrite grain size of 5 μm or less occurred from the pearlite colony, and the size of the pearlite colony phase was almost unchanged at the ferrite grain size of 5 μm to 1.4 μm. It was Therefore, as a result of investigating the relationship between the average size of the carbide phase and the microscopic critical fracture stress necessary to cause brittle fracture by changing the morphology of the carbide phase by quenching and tempering heat treatment, as shown in FIG. It was found that the brittle fracture initiation characteristics greatly changed not only by the size of the carbide phase but also by its morphology.

【0016】−165℃にて脆性破壊を生じさせないた
めには、亀裂先端での応力集中を考慮すると、−165
℃での降伏強度の少なくとも3倍以上の微視的限界破壊
応力が必要となるので、フェライト・パーライト鋼で達
成可能な−165℃における降伏強度が100kg/mm2
程度であることから微視的限界破壊応力は300kg/mm
2 以上必要となる。従って、この微視的限界破壊応力レ
ベルを達成するためには、炭化物相の寸法を限定するだ
けでは不十分で、形態を球状化させて、かつ寸法を円相
当径0.6μm以下とする必要のあることを知見した。
In order to prevent brittle fracture at -165 ° C., considering the stress concentration at the crack tip, -165
Since the microscopic limit fracture stress of at least 3 times the yield strength at ℃ is required, the yield strength at -165 ℃ which can be achieved with ferritic / pearlitic steel is 100 kg / mm 2
The microscopic limit fracture stress is 300kg / mm
2 or more is required. Therefore, in order to achieve this microscopic limit fracture stress level, it is not enough to limit the size of the carbide phase, and it is necessary to make the morphology spherical and to make the size equivalent to a circle equivalent diameter of 0.6 μm or less. It was discovered that

【0017】図3に、フェライト粒径と脆性破壊発生特
性を示す破壊靭性値Kcとの関係を示す。フェライト粒
径が2μm以下で、炭化物相が球状のものは、−165
℃でも500kg/mm2 以上の優れた破壊靭性値を示す。
FIG. 3 shows the relationship between the ferrite grain size and the fracture toughness value Kc showing the brittle fracture initiation characteristic. If the ferrite grain size is 2 μm or less and the carbide phase is spherical,
Excellent fracture toughness value of 500 kg / mm 2 or more even at ℃.

【0018】本発明者らは、さらに低温でも脆性破壊を
生じさせないことを目的として、以下の検討を実施し
た。亀裂、あるいは切欠の先端における局部応力が鋼板
の組織によって決定される限界微視的破壊応力以上にな
ると、脆性破壊が発生することが既に知られている。す
なわち、鋼板の靭性を向上させるためには、鋼板の持
つ限界微視的破壊応力を向上させる方法と、亀裂ある
いは切欠先端の応力をなんらかの手段で低下させる方法
が考えられる。
The present inventors have conducted the following studies for the purpose of preventing brittle fracture even at lower temperatures. It is already known that brittle fracture occurs when the local stress at the tip of the crack or notch exceeds the critical microscopic fracture stress determined by the structure of the steel sheet. That is, in order to improve the toughness of the steel sheet, a method of improving the critical microscopic fracture stress of the steel sheet and a method of reducing the stress of the crack or the notch tip by some means are considered.

【0019】上記の方法としては、集合組織を発達さ
せて、鋼板の板厚と平行方向にセパレーションという縦
割れを生じさせ、結果的に亀裂あるいは切欠先端の拘束
を解放し、応力を低下させる現象が知られている。すな
わち、限界微視的破壊応力に局所応力が達する以前に、
必ずセパレーションが発生すればよいことがわかる。そ
のためには、鋼板の限界破壊応力がセパレーション発生
応力に比べ高いことが必要である。しかし、実際のフェ
ライト−オーステナイト2相域で圧延された鋼板では、
塑性変形の支配的な温度では、破壊に先立ちセパレーシ
ョンを発生するが、低温では脆性破壊を呈する。
As the above method, a phenomenon in which a texture is developed to cause vertical cracks called separation in the direction parallel to the plate thickness of the steel sheet, and as a result, cracks or notch tips are released and stress is reduced. It has been known. That is, before the local stress reaches the critical microscopic fracture stress,
It turns out that it suffices that separation occurs. For that purpose, it is necessary that the critical fracture stress of the steel sheet is higher than the separation generation stress. However, in the actual steel sheet rolled in the ferrite-austenite two-phase region,
Separation occurs prior to fracture at the temperature at which plastic deformation prevails, but brittle fracture occurs at low temperatures.

【0020】これは、低温になると鋼材の降伏点が上昇
し、亀裂先端の塑性域が小さくなるためにセパレーショ
ンの発生に必要な結晶方位の異なるコロニー間での塑性
異方性による局部変形が生じにくいため、セパレーショ
ンの発生するまえに亀裂先端で鋼板の限界破壊応力に達
してしまい、脆性破壊を呈するためであると考えられ
る。そこで下記の実験を行った。
This is because at low temperature, the yield point of the steel material rises and the plastic region at the crack tip becomes smaller, so that local deformation due to plastic anisotropy occurs between colonies with different crystal orientations necessary for the occurrence of separation. It is considered that this is because it is difficult, and the critical fracture stress of the steel sheet is reached at the crack tip before the occurrence of separation, resulting in brittle fracture. Therefore, the following experiment was conducted.

【0021】まず、集合組織によりセパレーションを発
生させるために必要な組織形態を定量化するため、種々
2相域圧延条件を変化させて集合組織レベルの異なる鋼
板を製造した。集合組織を組織上で定量化するために、
結晶方位によって酸化皮膜の厚みの変化を利用したテン
パーカラー法を適用して同一結晶方位を有するコロニー
を現出させ、そのアスペクト比(長径/短径の比)と板
厚方向の限界破壊応力を評価した。その結果、図4に示
すようにアスペクト比が4以上であれば板厚方向の限界
破壊応力は集合組織のないアスペクト比約1の場合の1
/2以下となることを知見した。
First, in order to quantify the structure morphology required for generating separation by the texture, various two-phase rolling conditions were changed to manufacture steel sheets having different texture levels. In order to quantify the texture on the organization,
By applying the temper color method that utilizes the change in the thickness of the oxide film depending on the crystal orientation, colonies with the same crystal orientation are revealed, and the aspect ratio (ratio of major axis / minor axis) and the critical fracture stress in the plate thickness direction are calculated. evaluated. As a result, as shown in FIG. 4, when the aspect ratio is 4 or more, the critical fracture stress in the plate thickness direction is 1 when the aspect ratio is about 1 without texture.
It was found that it would be less than / 2.

【0022】次にアスペクト比が4以上となるように2
相域圧延を実施した鋼板を用いてセパレーションの発生
限界温度に及ぼすフェライト粒径の関係を調査した。そ
の結果を図5に示す。−170℃以下の低温域でもセパ
レーションを生じさせるためにはフェライト粒径が3μ
m以下であることを知見した。
Next, the aspect ratio is set to 4 or more by 2
The relationship between the ferrite grain size and the critical temperature at which separation occurs was investigated using a steel sheet subjected to phase rolling. The result is shown in FIG. In order to cause the separation even in the low temperature range of -170 ° C or less, the ferrite grain size is 3μ.
It was found to be m or less.

【0023】目的とする脆性破壊伝播停止性能は、伝播
中の亀裂先端でのミクロ的な発生特性であると考えられ
るので、図6に、アスペクト比の異なるフェライト粒径
と−196℃での衝撃荷重による脆性破壊発生靭性Ki
dとの関係を示す。すなわち、集合組織を発達させ、且
つセパレーションを極低温でも発生させるようにフェラ
イト粒径を3μm以下に細粒化することが脆性破壊の伝
播抵抗を向上させる決め手となる。これは、マトリック
ス組織であるフェライトを超細粒化し限界微視的破壊応
力を高め、かつセパレーションを発生可能な集合組織を
発達させたためである。さらに、炭化物相を球状化して
且つ平均円相当径を0.6μm以下に制御した組織では
飛躍的にKid値の向上が確認された。
Since the intended brittle fracture propagation stopping performance is considered to be a microscopic generation characteristic at the crack tip during propagation, FIG. 6 shows the ferrite grain sizes with different aspect ratios and the impact at -196 ° C. Brittle fracture initiation toughness Ki under load
The relationship with d is shown. That is, it is a decisive factor to improve the propagation resistance of brittle fracture by developing the texture and reducing the ferrite grain size to 3 μm or less so that the separation is generated even at an extremely low temperature. This is because ferrite, which is a matrix structure, was made into ultrafine grains to enhance the critical microscopic fracture stress and to develop a texture structure capable of generating separation. Further, it was confirmed that the Kid value was dramatically improved in the structure in which the carbide phase was spheroidized and the average equivalent circle diameter was controlled to be 0.6 μm or less.

【0024】本発明の組織を実現するためには、圧延中
に鋼板表面を5℃/sec 以上の冷却速度で冷却し、Ar
1 点以下とすることで一旦フェライト(ベーナイト)変
態させてしまい、表層部急冷によっても殆ど温度の低下
しない板厚中心部の顕熱を利用して、表層部のフェライ
ト(ベーナイト)組織を炭化物を粗大化させない程度に
速い昇温速度で復熱させながら更に圧延を行った。
In order to realize the structure of the present invention, the surface of the steel sheet is cooled at a cooling rate of 5 ° C./sec or more during rolling, and Ar is cooled.
By setting it to 1 point or less, ferrite (bainite) transformation is once performed, and the sensible heat of the center part of the plate thickness where the temperature hardly decreases even if the surface layer is rapidly cooled is used to convert the ferrite (bainite) structure of the surface layer into carbides. Further rolling was performed while recuperating at a high rate of temperature so as not to cause coarsening.

【0025】圧延終了後、空冷させた組織を観察したと
ころ、炭化物は球状化しているものの一部0.6μm以
上の粗大な相が存在しており、かつフェライト粒にも粗
大化しているものがあった。そこで、圧延後フェライト
変態が完全に終了するAr1点まで冷速を変えて実験を
実施したところ、2℃/sec 以上の冷却速度が当該表層
部で確保できればフェライト粒、および炭化物の粗大化
を抑制し、目的の所要組織を実現できることが確認され
た。
When the air-cooled structure was observed after completion of rolling, some carbides were spheroidized, but some coarse phases of 0.6 μm or more were present, and ferrite grains were also coarsened. there were. Therefore, an experiment was carried out by changing the cooling rate up to Ar 1 point where the ferrite transformation after rolling was completely completed, and when the cooling rate of 2 ° C./sec or more could be secured in the surface layer portion, coarsening of ferrite grains and carbides was observed. It was confirmed that it was possible to suppress and realize the desired organization.

【0026】この組織はAc3 点以下で圧延を終了して
いるため集合組織を有しており、表層部に集合組織を有
する3μm以下の超細粒組織と、0.6μm以下の微細
な球状炭化物よりなる組織が形成された。
This structure has a texture because the rolling is completed at the Ac 3 point or less, and an ultrafine grain structure of 3 μm or less having a texture in the surface layer portion and a fine spherical shape of 0.6 μm or less. A structure composed of carbide was formed.

【0027】圧延中の水冷条件等を変化させて、その表
層改質組織の厚みを変化させた鋼板のKca性能を調査
した結果、表層改質組織の厚み増大によってKca特性
が向上し、鋼板に要求されるKca性能に応じて必要な
表層改質組織の厚みが存在することが知見された。
As a result of investigating the Kca performance of the steel sheet in which the thickness of the surface layer modified structure was changed by changing the water cooling conditions during rolling, the Kca property was improved by increasing the thickness of the surface layer modified structure and It has been found that there is a required thickness of the surface layer modified structure depending on the required Kca performance.

【0028】[0028]

【実施例】実施例の供試鋼の成分を表1に、製造条件お
よび得られた材質を表2に比較例と共に示す。
[Examples] Table 1 shows the components of the sample steels of Examples, and Table 2 shows the manufacturing conditions and the obtained materials together with Comparative Examples.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】本発明例の試験番号1〜12および比較例
の試験番号13〜16,21,22,24は、粗圧延後
に冷却を適用し、鋼板表層部をAr1 点以下にしてフェ
ライト変態させたものであるが、比較例の試験番号1
4,21,22は冷却速度が遅かったため、鋼板全体の
温度が低下し、冷却後の圧延が昇温加工とはならなかっ
た。また、比較例の試験番号24は、冷却後経過時間が
長すぎて冷却後の圧延の所要条件を満たすことができな
かった。そのため、比較例である試験番号14,21,
22,24の表層部の組織は細粒化しなかった。
In Test Nos. 1 to 12 of the present invention and Test Nos. 13 to 16, 21, 22, and 24 of Comparative Examples, cooling is applied after rough rolling, and the steel sheet surface layer portion is made to have Ar 1 point or less to undergo ferrite transformation. Test No. 1 of Comparative Example
Since Nos. 4, 21 and 22 had a low cooling rate, the temperature of the entire steel sheet was lowered, and the rolling after cooling was not the temperature rising working. Moreover, in the test number 24 of the comparative example, the elapsed time after cooling was too long to satisfy the requirements for rolling after cooling. Therefore, test numbers 14, 21, which are comparative examples,
The textures of the surface layers of Nos. 22 and 24 were not finely divided.

【0033】これらの比較例の材質は、板厚全体が2相
域圧延となってしまい、母材靭性であるvTrsも劣化
し、NDT特性、アレスト特性ともに劣化した。また、
比較例13,16は所定の冷却・圧延を実施しているも
のの、圧延終了後空冷したため、フェライト粒径が3μ
m以下にならず、比較例15,16は圧延後の復熱過程
でAc3 以上に復熱したので部分的に粒成長を生じ、所
定の組織が得られなかった。したがって、これらの比較
例である試験番号13〜20,23はアレスト性能とし
てKca=600kgf/mm1.5 を示す温度、NDT特性共
に−60℃には達しなかった。
In the materials of these comparative examples, the entire plate thickness was rolled in the two-phase region, the base material toughness vTrs was deteriorated, and both the NDT characteristics and the arrest characteristics were deteriorated. Also,
In Comparative Examples 13 and 16, although predetermined cooling / rolling was carried out, the ferrite grain size was 3 μm due to air cooling after completion of rolling.
Since it was not less than m, Comparative Examples 15 and 16 reheated to Ac 3 or more in the recuperating process after rolling, so that grain growth partially occurred and a predetermined structure could not be obtained. Therefore, in Comparative Examples, Test Nos. 13 to 20 and 23, both the temperature and the NDT characteristic showing Kca = 600 kgf / mm 1.5 as the arrest performance did not reach -60 ° C.

【0034】これに対し、本発明例の試験番号1〜12
の材質は、表2に示す通り、所要の製造条件を満足し、
目標の強度・靭性を満足すると共に、本発明の狙いであ
るNDT温度が−80℃以上を示し、アレスト性能であ
るKca=600kgf/mm1.5を示す温度も十分な特性で
あった。
On the other hand, test numbers 1 to 12 of the examples of the present invention
The material of the material satisfies the required manufacturing conditions, as shown in Table 2,
In addition to satisfying the target strength and toughness, the NDT temperature, which is the aim of the present invention, was -80 ° C. or higher, and the temperature at which the arrest performance, Kca = 600 kgf / mm 1.5 , was also a sufficient characteristic.

【0035】[0035]

【発明の効果】本発明は上記した手段を用いて上記した
作用を利用したので、粗圧延後、表層部のみ冷却してA
1 点以下とした後板厚内部の顕熱により復熱しながら
圧延を実施すれば、NDT特性を劣化させる表層部の脆
化組織を生成させることなく、板厚中心部に十分な未再
結晶域圧延を実施したため、アレスト性能であるNDT
特性とKca特性を両立することを可能とするもので、
当業分野はもちろん、関連分野にもたらす効果が大き
い。
Since the present invention utilizes the above-mentioned action by using the above-mentioned means, after the rough rolling, only the surface layer portion is cooled to
If rolling is performed while recovering heat by sensible heat inside the plate thickness after r 1 point or less, sufficient unrecrystallized crystal is not formed in the center part of the plate thickness without generating an embrittlement structure in the surface layer portion that deteriorates NDT characteristics. NDT, which has arrest performance due to the area rolling
It is possible to achieve both characteristics and Kca characteristics,
It has a great effect not only in the field of art but also in related fields.

【図面の簡単な説明】[Brief description of drawings]

【図1】フェライト粒径と母材靭性を示すvTrsの関
係を示す図表である。
FIG. 1 is a chart showing a relationship between a ferrite grain size and vTrs indicating a base material toughness.

【図2】炭化物相の平均円相当粒径と微視的限界破壊応
力との関係を示す図表である。
FIG. 2 is a table showing the relationship between the average equivalent circular grain size of a carbide phase and the microscopic limit fracture stress.

【図3】フェライト粒径と−165℃における脆性破壊
発生靭性であるKc値との関係を示す図表である。
FIG. 3 is a chart showing the relationship between the ferrite grain size and the Kc value, which is the toughness at which brittle fracture occurs at −165 ° C.

【図4】(a)はテンパーカラー法で現出させた組織の
同一方位を有するコロニーの長径/短径の比(アスペク
ト比)と板厚方向の限界破壊応力の関係を示す図表であ
る。(b)はアスペクト比の模式図である。
FIG. 4 (a) is a chart showing the relationship between the ratio of major axis / minor axis (aspect ratio) of colonies having the same orientation of the tissue revealed by the temper color method and the critical fracture stress in the plate thickness direction. (B) is a schematic diagram of an aspect ratio.

【図5】フェライト粒径とセパレーション発生限界温度
との関係を示す図表である。
FIG. 5 is a chart showing a relationship between a ferrite grain size and a separation generation limit temperature.

【図6】フェライト粒径と−196℃における脆性破壊
発生靭性であるKc値との関係を示す図表である。
FIG. 6 is a chart showing the relationship between the ferrite grain size and the Kc value, which is the brittle fracture initiation toughness at −196 ° C.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年12月4日[Submission date] December 4, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0031[Correction target item name] 0031

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0031】[0031]

【表3】 [Table 3]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0034[Correction target item name] 0034

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0034】これに対し、本発明例の試験番号1〜12
の材質は、表2に示す通り、所要の製造条件を満足し、
目標の強度・靭性を満足すると共に、本発明の狙いであ
るNDT温度が−80℃以上を示し、アレスト性能であ
るKca=600kgf/mm1.5を示す温度も十分な特性で
あった。また、疲労特性も本発明例は良好であった。
On the other hand, test numbers 1 to 12 of the examples of the present invention
The material of the material satisfies the required manufacturing conditions, as shown in Table 2,
In addition to satisfying the target strength and toughness, the NDT temperature, which is the aim of the present invention, was -80 ° C. or higher, and the temperature at which the arrest performance, Kca = 600 kgf / mm 1.5 , was also a sufficient characteristic. The fatigue characteristics of the inventive examples were also good.

フロントページの続き (72)発明者 土師 利昭 大分市大字西ノ洲1番地 新日本製鐵株式 会社大分製鐵所内 (72)発明者 船津 裕二 大分市大字西ノ洲1番地 新日本製鐵株式 会社大分製鐵所内Front page continuation (72) Inventor Toshiaki Hajishi Oita-shi, Nishinosu 1 Otsu Works, Nippon Steel Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 鋼板の表層部に板厚の2%以上の範囲に
わたって平均円相当粒径が3μm以下のフェライト組
織、もしくはベーナイト組織を主体とし、平均円相当径
が0.6μm以下の球状炭化物相より構成される組織を
有し、且つ、その表層部組織の同一結晶方位を有する集
合組織コロニーのアスペクト比(長径/短径の比)が4
以上であることを特徴とする耐脆性破壊特性の優れた構
造用鋼。
1. A spherical carbide having a ferrite structure having an average equivalent-circle grain size of 3 μm or less or a bainite structure as a main component in a surface layer portion of a steel sheet and having a mean equivalent circle diameter of 0.6 μm or less over a range of 2% or more of the plate thickness. The aspect ratio (ratio of major axis / minor axis) of a texture colony having a structure composed of phases and having the same crystal orientation of the surface layer structure is 4
A structural steel having excellent brittle fracture resistance characterized by the above.
【請求項2】 Ac3 点以上の温度の鋼片もしくは鋼板
を、圧延中途中水冷時の板厚をt0 とした時、表層から
少なくとも板厚方向に0.02×t0 (mm)以上の領域
を5℃/sec 以上の冷速でAr1 点以下に急冷して、そ
の後、当該表層部がAr3 点以上の温度から圧延を開始
もしくは再開し、(Ac3 点−50)点℃からAc3
の範囲で圧延を終了し、その後Ac3 点以上に復熱させ
ることなく少なくともAr1 点迄を当該表層部を2℃/
sec 以上の冷速で冷却し、表層部から少なくとも板厚の
2%以上の範囲にわたって平均円相当粒径が3μm以下
のフェライト組織、もしくはベーナイト組織を主体と
し、平均円相当径が0.6μm以下の球状炭化物相より
構成される組織を有し、且つ、その表層部組織の同一結
晶方位を有する集合組織コロニーのアスペクト比(長径
/短径の比)を4以上とすることを特徴とする耐脆性破
壊特性の優れた構造用鋼板の製造方法。
2. A steel plate or a steel plate having a temperature of Ac 3 points or more is 0.02 × t 0 (mm) or more from the surface layer at least in the plate thickness direction when the plate thickness during water cooling during rolling is t 0. Region is rapidly cooled to a temperature of Ar 1 point or lower at a cooling rate of 5 ° C./sec or higher, and then the surface layer portion starts or restarts rolling at a temperature of Ar 3 point or higher, and (Ac 3 point −50) point C To the Ac 3 point, the rolling is completed, and then the surface layer portion is kept at 2 ° C./at least until the Ar 1 point without reheating to the Ac 3 point or more.
Cooled at a cooling rate of sec or more, and mainly composed of a ferrite structure or bainite structure with an average circle-equivalent grain size of 3 μm or less over at least 2% of the plate thickness from the surface layer, and an average circle-equivalent diameter of 0.6 μm or less. Of the textured colony having the same crystallographic orientation of the surface layer structure, and having an aspect ratio (major axis / minor axis ratio) of 4 or more. A method for manufacturing a structural steel sheet having excellent brittle fracture characteristics.
【請求項3】 圧延を終了後Ac3 点以上に復熱させる
ことなく冷却速度が5℃/sec 以上で加速冷却すること
を特徴とする請求項2記載の耐脆性破壊特性の優れた構
造用鋼板の製造方法。
3. A structural material with excellent brittle fracture resistance according to claim 2, wherein after the rolling is completed, accelerated cooling is performed at a cooling rate of 5 ° C./sec or more without reheating to Ac 3 point or more. Steel plate manufacturing method.
【請求項4】 圧延を終了後Ac3 点以上に復熱させる
ことなく冷却速度が5℃/sec 以上で加速冷却し、さら
に焼戻し熱処理をすることを特徴とする請求項2記載の
耐脆性破壊特性の優れた構造用鋼板の製造方法。
4. The embrittlement-resistant fracture according to claim 2, wherein after the rolling is finished, accelerated cooling is performed at a cooling rate of 5 ° C./sec or more without reheating to Ac 3 point or more, and further tempering heat treatment is performed. A method for manufacturing a structural steel sheet having excellent characteristics.
JP06751692A 1992-03-25 1992-03-25 Structural steel with excellent brittle fracture resistance Expired - Lifetime JP3359349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06751692A JP3359349B2 (en) 1992-03-25 1992-03-25 Structural steel with excellent brittle fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06751692A JP3359349B2 (en) 1992-03-25 1992-03-25 Structural steel with excellent brittle fracture resistance

Publications (2)

Publication Number Publication Date
JPH05271862A true JPH05271862A (en) 1993-10-19
JP3359349B2 JP3359349B2 (en) 2002-12-24

Family

ID=13347232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06751692A Expired - Lifetime JP3359349B2 (en) 1992-03-25 1992-03-25 Structural steel with excellent brittle fracture resistance

Country Status (1)

Country Link
JP (1) JP3359349B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995026424A1 (en) * 1994-03-29 1995-10-05 Nippon Steel Corporation Steel plate excellent in prevention of brittle crack propagation and low-temperature toughness and process for producing the plate
JP2008202119A (en) * 2007-02-22 2008-09-04 Sumitomo Metal Ind Ltd High-tensile steel having excellent ductile crack initiation resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995026424A1 (en) * 1994-03-29 1995-10-05 Nippon Steel Corporation Steel plate excellent in prevention of brittle crack propagation and low-temperature toughness and process for producing the plate
US6090226A (en) * 1994-03-29 2000-07-18 Nippon Steel Corporation Steel plate excellent in brittle crack propagation arrest characteristics and low temperature toughness and process for producing same
JP2008202119A (en) * 2007-02-22 2008-09-04 Sumitomo Metal Ind Ltd High-tensile steel having excellent ductile crack initiation resistance

Also Published As

Publication number Publication date
JP3359349B2 (en) 2002-12-24

Similar Documents

Publication Publication Date Title
JP3990726B2 (en) High strength duplex steel sheet with excellent toughness and weldability
JPH08295982A (en) Thick steel plate excellent in toughness at low temperature and its production
JPH10298645A (en) Manufacture of hot rolled high tensile strength steel plate
JPH08176659A (en) Production of high tensile strength steel with low yield ratio
JPS62174322A (en) Manufacture of low yield ratio high tension steel plate superior in cold workability
JP2007302937A (en) Steel plate for hardened member, hardened member and manufacturing methods thereof
JP3812488B2 (en) High-strength steel with excellent workability and material uniformity and method for producing the same
JPH10237547A (en) Cold rolled steel sheet with high ductility and high strength, and its production
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP3348359B2 (en) Structural steel with excellent arrest performance and its manufacturing method
JPH05271862A (en) Structural steel excellent in brittle fracture resistance and its production
JP2807592B2 (en) Method for producing structural steel sheet with good brittle fracture resistance
JP6673320B2 (en) Thick steel plate and method for manufacturing thick steel plate
JPS6144123B2 (en)
JPH05271861A (en) Structural steel for welding excellent in brittle fracture propagation arresting characteristic
JPS6320414A (en) Production of high-toughness high-tensile steel plate
JP2662485B2 (en) Steel sheet having good low-temperature toughness and method for producing the same
JPH07242944A (en) Production of sour resistant high strength steel plate having excellent low temperature toughness
JPS5952207B2 (en) Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate
JP3009568B2 (en) Manufacturing method of high strength steel sheet with excellent hydrogen induced cracking resistance and low temperature toughness
JP2971401B2 (en) Structural steel plate with good brittle fracture resistance
JPH0688161A (en) Steel sheet excellent in brittle fracture property and fatigue property and its production
JPH06256842A (en) Production of light-gaged high-strength steel sheet having excellent sour resistance
JPS5821008B2 (en) Greta
JPH05148544A (en) Production of high-strength high-toughness steel plate having uniform hardness distribution in thickness direction

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071011

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111011

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111011

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121011

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121011

Year of fee payment: 10