JPH05270966A - Device for measuring distribution of heat emission of heating coil in fz process - Google Patents

Device for measuring distribution of heat emission of heating coil in fz process

Info

Publication number
JPH05270966A
JPH05270966A JP9870892A JP9870892A JPH05270966A JP H05270966 A JPH05270966 A JP H05270966A JP 9870892 A JP9870892 A JP 9870892A JP 9870892 A JP9870892 A JP 9870892A JP H05270966 A JPH05270966 A JP H05270966A
Authority
JP
Japan
Prior art keywords
heating coil
heated
frequency induction
induction heating
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9870892A
Other languages
Japanese (ja)
Other versions
JP2500306B2 (en
Inventor
Masaki Kimura
雅規 木村
Hirotoshi Yamagishi
浩利 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP9870892A priority Critical patent/JP2500306B2/en
Publication of JPH05270966A publication Critical patent/JPH05270966A/en
Application granted granted Critical
Publication of JP2500306B2 publication Critical patent/JP2500306B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To obtain a device for measuring the distribution of the heat formed in a floating zone type heating coil and enabling the direct reflection of the results to the production of silicon single crystal by making the geometry of the substrate to be heated close to the actual one of the molten zone and fitting a plurality of temperature detectors on the surface of the substrate to be heated with high-frequency induction heating coils. CONSTITUTION:The substrate to be heated 14 is made close in the geometry to the actual molten zone, and a plurality of temperature detectors such as thermocouples 18,..., are fitted to the surface 16 on the coil side of the substrate 14 which is of symmetry of rotation and arranged coaxially with the high-frequency induction heating coil and opposing to each other in the close position. When grooves 17 are formed so as to surround the thermocouple 18 on the substrate surface 16 and an insulating material 19 such as a ceramic is embedded in the groove 17, the heat generated on the surface of the substrate does not dissipate in the sideways direction and the precise exothermic temperature can be measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、FZ法(浮遊帯域溶
融法)により原料シリコン多結晶棒を部分的に加熱溶融
する高周波誘導加熱コイルの実際の発熱分布を効果的に
測定することを可能としたFZ法加熱コイルの発熱分布
測定具に関するものである。
This invention can effectively measure the actual heat distribution of a high-frequency induction heating coil for partially heating and melting a raw material silicon polycrystalline rod by the FZ method (floating zone melting method). The present invention relates to a heat generation distribution measuring tool for an FZ method heating coil.

【0002】[0002]

【従来の技術】従来、FZ法によりシリコン単結晶を製
造する場合、垂直移動機能を有する上部駆動軸の下端部
に取付けられ、かつチャンバー内に位置する多結晶棒保
持具と、垂直移動機能を有する下部駆動軸の上端部に取
付けられ、かつ前記チャンバー内に位置する種結晶ホル
ダーと、該チャンバー内の中間部分に設けられた高周波
誘導加熱コイルとを有する装置を用い、前記多結晶棒保
持具に原料シリコン多結晶棒を保持せしめ、かつ種結晶
ホルダーにシリコン単結晶の種を保持せしめ、前記高周
波誘導加熱コイルによりシリコン多結晶棒の一端を溶融
し、該種結晶に融着して種付けした後、該高周波誘導加
熱コイルとシリコン多結晶棒を相対的に回転させ、かつ
軸線方向に相対移動させ、多結晶シリコン棒を軸方向に
順次帯域溶融しながらシリコン単結晶棒を製造すること
が一般的に行われている。
2. Description of the Related Art Conventionally, when a silicon single crystal is manufactured by the FZ method, a polycrystalline rod holder attached to the lower end of an upper drive shaft having a vertical movement function and located in a chamber, and a vertical movement function. A polycrystalline rod holder is provided which uses a device having a seed crystal holder attached to the upper end of a lower drive shaft and located in the chamber, and a high frequency induction heating coil provided in an intermediate portion of the chamber. To hold the raw material silicon polycrystal rod, and to hold the seed of the silicon single crystal in the seed crystal holder, melt one end of the silicon polycrystal rod by the high frequency induction heating coil, fused to the seed crystal and seeded After that, the high-frequency induction heating coil and the silicon polycrystalline rod are relatively rotated and relatively moved in the axial direction so that the polycrystalline silicon rod is not zone-melted in the axial direction in sequence. To produce the Luo silicon single crystal ingot it is generally performed.

【0003】ところで、高周波誘導加熱コイルによりシ
リコン多結晶棒の一部を加熱溶融する際、適性な加熱分
布状態であるか否かがわからず、欠陥のある高周波誘導
加熱コイルにより溶融すれば、均一な単結晶化が得られ
ないばかりでなく、FZ操作の続行が不可能となる場合
もあるという問題点を有している。
By the way, when a part of a silicon polycrystalline rod is heated and melted by a high frequency induction heating coil, it is not known whether or not it is in an appropriate heating distribution state, and if it is melted by a defective high frequency induction heating coil, it becomes uniform. In addition to failing to obtain a good single crystallization, there are cases in which the FZ operation cannot be continued.

【0004】[0004]

【発明が解決しようとする課題】この問題に対し、あら
かじめ高周波誘導加熱コイルの発熱温度分布を測定でき
るようにすることにより、シリコン単結晶棒の断面抵抗
率分布を予測することもできる。そこで、前記高周波誘
導加熱コイルの上方又は下方に熱電対を配置し、該熱電
対に生ずる熱起電力を測定すればよいと一見思われる
が、熱電対のみを配置する方法には二つの大きな欠点が
ある。先ず、第一は、前記高周波誘導加熱コイルによっ
て形成される高周波磁界と結合する導体が熱電対のみで
あるから、該高周波磁界は結晶成長中における該磁界の
形状とは甚だ掛け離れたものとなり、その結果、測定さ
れた発熱分布を単結晶製造に反映させることは甚だ困難
となる。第二に前記高周波誘導加熱コイルが形成する高
周波磁界の空間的広がりによって、前記熱電対の高温接
点以外の部分も加熱され、該高温接点における温度を正
確に得ることはできない。従って、上記の方法では前記
目的を達成することができない。
To solve this problem, the cross-sectional resistivity distribution of the silicon single crystal ingot can be predicted by making it possible to measure the heat generation temperature distribution of the high frequency induction heating coil in advance. Therefore, it seems that a thermocouple may be arranged above or below the high frequency induction heating coil and the thermoelectromotive force generated in the thermocouple may be measured, but there are two major drawbacks in the method of arranging only the thermocouple. There is. First, since the conductor coupled to the high-frequency magnetic field formed by the high-frequency induction heating coil is only a thermocouple, the high-frequency magnetic field is far from the shape of the magnetic field during crystal growth. As a result, it becomes very difficult to reflect the measured heat generation distribution in the production of single crystals. Secondly, due to the spatial expansion of the high-frequency magnetic field formed by the high-frequency induction heating coil, the parts of the thermocouple other than the high-temperature contact are also heated, and the temperature at the high-temperature contact cannot be obtained accurately. Therefore, the above method cannot achieve the above object.

【0005】そこで、本発明は、シリコン単結晶の製造
に直接反映させることのできる高周波誘導加熱コイルの
発熱温度分布を測定する測定具を提供することを目的と
するものである。
Therefore, an object of the present invention is to provide a measuring tool for measuring the heat generation temperature distribution of a high frequency induction heating coil that can be directly reflected in the production of a silicon single crystal.

【0006】[0006]

【課題を解決するための手段】上記課題を解消するため
本発明は、高周波誘導加熱コイルによって加熱される該
コイルと同軸且つ近接対峙位置に配置された回転対称形
の被加熱体のコイル側表面部分に複数の温度検知手段を
設けるようにしたFZ法加熱コイルの発熱分布測定具と
した。
In order to solve the above-mentioned problems, the present invention provides a coil-side surface of a rotationally symmetrical object to be heated which is coaxial with the coil to be heated by a high-frequency induction heating coil and which is arranged in a close confrontation position. The heat generation distribution measuring tool of the FZ method heating coil is provided with a plurality of temperature detecting means in its part.

【0007】前記温度検知手段としては、熱電対等が好
ましく用いられるが、何も本発明においてはこれに限定
されるものではなく、加熱される該被加熱体表面部分の
温度を正確に検知できる手段であればよいことは勿論の
ことである。また、熱電対の周囲を断熱にするような構
造にすれば、発生した熱が横方向に逃げることがなく、
それだけ発熱状態を正確に測定することができるので好
ましい。
A thermocouple or the like is preferably used as the temperature detecting means, but the present invention is not limited to this, and means for accurately detecting the temperature of the surface portion of the heated object to be heated. Of course, it is good if it is. Also, if the structure around the thermocouple is insulated, the generated heat will not escape laterally,
This is preferable because the heat generation state can be measured accurately.

【0008】温度検知手段の配列としては、高周波誘導
加熱コイルの発熱分布を均一的にむらなく測定できるよ
うに配列されるのが好ましく、例えば、一文字状、十字
状、リング状、渦巻き状の他、あらゆる配列を含むもの
である。
The temperature detecting means is preferably arranged so that the heat generation distribution of the high frequency induction heating coil can be measured uniformly and evenly. For example, one-letter shape, cross shape, ring shape, spiral shape, etc. , Including all sequences.

【0009】前記被加熱体としては、加熱されるその表
面側が前記高周波誘導加熱コイルに向かって山形状とな
るよう傾斜しているのが好ましく、この傾斜角度として
は、シリコン多結晶棒の溶融帯域の傾斜角度に近い角度
が好ましい。特に、該被加熱体中央部が高周波誘導加熱
コイル間に位置するよう突出させるようにしておけば、
実際のFZ法による単結晶の製造に近い状態となるので
好ましい。
It is preferable that the surface to be heated of the object to be heated is inclined so as to form a mountain shape toward the high-frequency induction heating coil, and the inclination angle is the melting zone of the silicon polycrystalline rod. An angle close to the inclination angle of is preferable. In particular, if the central portion of the object to be heated is projected so as to be located between the high frequency induction heating coils,
This is preferable because the state is close to that of actual production of a single crystal by the FZ method.

【0010】該被加熱体の材質としては、物性的に電気
伝導率と熱伝導率が原料シリコン多結晶棒の溶融帯域に
近い物質であればよく、例えば、ステンレス等が挙げら
れる。逆に適さない例としては、銅などの熱伝導率の非
常に高いものやセラミックスのような絶縁体である。前
者の場合は熱伝導率が高いために発熱分布が平均化され
てしまう欠点がある。また、後者の場合は誘導結合され
ないので、高周波磁界が透過してしまい必要な磁界の形
状を得られないという欠点を有する。
The material of the object to be heated may be any material having physical properties that are close to the melting zone of the raw material polycrystalline silicon rod, such as stainless steel. On the contrary, examples that are not suitable are those having extremely high thermal conductivity such as copper and insulators such as ceramics. In the former case, there is a drawback that the heat generation distribution is averaged because of high thermal conductivity. Further, in the latter case, since the inductive coupling is not performed, a high frequency magnetic field is transmitted and there is a drawback that a required magnetic field shape cannot be obtained.

【0011】[0011]

【作用】高周波誘導加熱コイル(12)が発生する高周
波磁界と被加熱体(14)とは相互作用し、その結果と
して、該被加熱体表面部(16)は加熱され、該被加熱
体表面部(16)に配された複数の熱電対(18)によ
り該被加熱体表面部(16)の温度分布状態を知ること
により、高周波誘導加熱コイル(12)の発熱分布状態
を測定することができる。ここで、各熱電対の示す温度
変動率が、例えば、0.5%以下になった場合に測定系
がほぼ熱平衡に達したとみなし、発熱温度分布を得るこ
とができる。
The high frequency magnetic field generated by the high frequency induction heating coil (12) interacts with the object to be heated (14), and as a result, the surface part (16) of the object to be heated is heated and the surface of the object to be heated is heated. The heat distribution state of the high frequency induction heating coil (12) can be measured by knowing the temperature distribution state of the surface part (16) to be heated by the plurality of thermocouples (18) arranged in the part (16). it can. Here, when the temperature fluctuation rate indicated by each thermocouple becomes, for example, 0.5% or less, it is considered that the measurement system has almost reached thermal equilibrium, and the heat generation temperature distribution can be obtained.

【0012】[0012]

【実施例】以下、本発明を添付図面に示す実施例に基づ
いて詳細に説明する。図1及び図2は本発明に係る発熱
分布測定具(10)の一実施例を示す概略断面図及びそ
の上面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on the embodiments shown in the accompanying drawings. 1 and 2 are a schematic cross-sectional view and a top view showing one embodiment of a heat distribution measuring tool (10) according to the present invention.

【0013】図において、(12)は高周波誘導加熱コ
イルであって、高周波磁界を発生する。(14)は該高
周波磁界によって加熱される被加熱体であり、該高周波
誘導加熱コイル(12)と同軸且つ近接対峙位置に配置
された回転対称形である。該被加熱体(14)の材質と
しては、物性的に電気伝導率と熱伝導率が原料シリコン
多結晶棒の溶融帯域に近い物質であればよく、例えば、
ステンレス等が好ましい。
In the figure, (12) is a high frequency induction heating coil for generating a high frequency magnetic field. Reference numeral (14) is a body to be heated which is heated by the high frequency magnetic field, and has a rotationally symmetric shape which is coaxial with the high frequency induction heating coil (12) and is arranged in a close-to-face position. The material of the object to be heated (14) may be any material having physical properties such that the electrical conductivity and the thermal conductivity are close to the melting zone of the raw material polycrystalline silicon rod.
Stainless steel or the like is preferable.

【0014】前記被加熱体(14)は、高周波誘導加熱
コイル(12)の下側に配置され、該高周波誘導加熱コ
イル(12)と向かい合う表面部(16)の中央が高く
なるようゆるやかな山状に傾斜した形状となっている。
この傾斜角度としては、シリコン多結晶棒の溶融帯域の
傾斜角度に近い角度が好ましく、この形状により、前記
高周波誘導加熱コイル(12)により発生する高周波磁
界は、該被加熱体表面部(16)の中央部から外方向に
向けて通過し、実際のFZ時に近い状態の磁界の流れと
なる。そして、該高周波磁界は、該被加熱体表面部(1
6)に近いところしか透過せず、これにより、該被加熱
体表面部(16)に近い部分において加熱される。
The object to be heated (14) is arranged below the high frequency induction heating coil (12), and a gentle mountain is formed so that the center of the surface portion (16) facing the high frequency induction heating coil (12) is high. It has a slanted shape.
As this inclination angle, an angle close to the inclination angle of the melting zone of the polycrystalline silicon rod is preferable, and due to this shape, the high frequency magnetic field generated by the high frequency induction heating coil (12) causes the surface portion (16) of the body to be heated to be heated. The magnetic field passes outward from the center of the magnetic field and the magnetic field flows in a state close to that during the actual FZ. The high frequency magnetic field is applied to the surface part (1
Only the portion near 6) is transmitted, and as a result, it is heated in the portion near the surface portion (16) of the body to be heated.

【0015】(18)は温度検出手段である熱電対であ
り、その先端部が該被加熱体表面部(16)に達するよ
うに溶接(20)され、該被加熱体(14)に埋め込み
配置されている。該熱電対(18)は、前記高周波誘導
加熱コイル(12)の加熱分布状態が均一かどうかを知
る必要があるため、単一ではなく、複数配されている。
Reference numeral (18) is a thermocouple which is a temperature detecting means, and is welded (20) so that its tip reaches the surface (16) of the object to be heated and embedded in the object (14) to be heated. Has been done. Since it is necessary to know whether or not the heating distribution state of the high frequency induction heating coil (12) is uniform, a plurality of thermocouples (18) are arranged instead of a single one.

【0016】この熱電対(18)の配列は、該被加熱体
表面部(16)の中央部を中心にして対称的となるよう
複数配するようにするのが好ましいが、特に厳密に対称
となる必要はなく、要は温度検出分布状態があまり偏る
ことがないようにすればよく、例えば、図2に示される
ように十文字状としてもよく、一文字状、リング状、そ
の他あらゆる配列状態を含むものである。また、該被加
熱体(14)を高周波誘導加熱コイル(12)の底面に
垂直な軸の周りに回転移動させて測定すれば、さらに高
密度な測定が可能になる。
It is preferable that a plurality of the thermocouples (18) are arranged symmetrically with respect to the central portion of the surface portion (16) of the body to be heated. The temperature detection distribution state need not be biased so much. For example, the temperature detection distribution state may be a cross shape as shown in FIG. 2, a single letter shape, a ring shape, or any other arrangement state. It is a waste. Further, if the object to be heated (14) is rotationally moved around an axis perpendicular to the bottom surface of the high frequency induction heating coil (12) for measurement, higher density measurement is possible.

【0017】図3に示すように該被加熱体表面部(1
6)に熱電対(18)の周囲を囲むように溝(17)を
形成し、該溝(17)に例えばセラミック粉等の断熱材
(19)を埋め込むようにすれば、被加熱体表面部に発
熱した熱が横方向に逃げることがなく、正確な発熱温度
を測定することができる。
As shown in FIG. 3, the surface portion (1
If a groove (17) is formed in 6) so as to surround the periphery of the thermocouple (18) and a heat insulating material (19) such as ceramic powder is embedded in the groove (17), the surface of the heated object The generated heat does not escape laterally, and the accurate heat generation temperature can be measured.

【0018】このように測定具(10)を構成すること
により、高周波誘導加熱コイル(12)が発生する高周
波磁界と該被加熱体(14)とは相互作用し、その結果
として、該被加熱体表面部(16)は加熱され、該被加
熱体表面部(16)に配された熱電対(18)により該
被加熱体表面部(16)の温度分布状態を知ることによ
り、高周波誘導加熱コイル(12)の発熱分布状態を測
定することができる。(22)は該被加熱体(14)の
支持台であって、(24)はその支持棒である。
By configuring the measuring tool (10) in this way, the high-frequency magnetic field generated by the high-frequency induction heating coil (12) interacts with the object to be heated (14), and as a result, the object to be heated is heated. The body surface portion (16) is heated, and high-frequency induction heating is performed by knowing the temperature distribution state of the body surface portion (16) to be heated by the thermocouple (18) arranged on the body surface portion (16) to be heated. The heat generation distribution state of the coil (12) can be measured. Reference numeral (22) is a support base for the body to be heated (14), and reference numeral (24) is a support rod thereof.

【0019】図4は被加熱体(14)の他の実施例を示
す発熱分布測定具(10)の概略断面図であり、実際の
シリコン多結晶棒の加熱状態に近い例を示すものであ
る。
FIG. 4 is a schematic cross-sectional view of a heat distribution measuring tool (10) showing another embodiment of the object to be heated (14), showing an example close to the actual heating state of a silicon polycrystalline rod. ..

【0020】すなわち、FZ中のシリコン多結晶棒の溶
融帯域の下半分の形状に合わせるため、被加熱体(1
4)の表面部(16)の中央部分が高周波誘導加熱コイ
ル(12)間に位置するように突出部(26)が形成さ
れている。
That is, in order to match the shape of the lower half of the melting zone of the silicon polycrystalline rod in the FZ, the object to be heated (1
The protrusion (26) is formed so that the central portion of the surface portion (16) of 4) is located between the high frequency induction heating coils (12).

【0021】従って、高周波誘導加熱コイル(12)よ
り発生する高周波磁界の流れが実際のFZ中の高周波磁
界の流れに酷似することとなり、現実の高周波誘導加熱
コイル(12)による発熱分布の測定が得られる。この
ようにして、種々の高周波誘導加熱コイル(12)の形
状について、帯域溶融の結果、例えば原料多結晶棒下端
周辺部の溶け方、成長結晶の結晶性と本願発明の発熱分
布とを比較することによって、理想的な当該発熱分布が
得られるので、日常における高周波誘導加熱コイル(1
2)の工程管理は勿論のこと、2重コイル、コイル導電
部断面形状の異型化など新しいコイルを設計する時に、
帯域溶融を具体的に実施しなくても新しいコイルの条件
が得られる。
Therefore, the flow of the high-frequency magnetic field generated from the high-frequency induction heating coil (12) becomes very similar to the actual flow of the high-frequency magnetic field in the FZ, and the actual heat generation distribution measured by the high-frequency induction heating coil (12) can be measured. can get. In this way, for various shapes of the high-frequency induction heating coil (12), as a result of zone melting, for example, the melting method at the lower end peripheral portion of the raw material polycrystalline rod, the crystallinity of the grown crystal, and the heat generation distribution of the present invention are compared. As a result, the ideal heat generation distribution can be obtained, so that the high frequency induction heating coil (1
In addition to the process control of 2), when designing a new coil such as a double coil or a different shape of the coil conductive section,
New coil conditions can be obtained without specific zone melting.

【0022】以上の実施例においては、被加熱体(1
4)を高周波誘導加熱コイル(12)の下側に位置する
例を示したが、本発明においてはこれに限定されるもの
でなく、図5に示したように高周波誘導加熱コイル(1
2)の上側に該被加熱体(14)を配置せしめて測定す
るようにしても、同様の作用効果が得られる。
In the above embodiments, the object to be heated (1
4) is located below the high frequency induction heating coil (12), the present invention is not limited to this, and as shown in FIG.
Even if the object to be heated (14) is placed on the upper side of 2) and the measurement is performed, the same effect can be obtained.

【0023】次に、本発明に係る被加熱体(14)を用
いて実際に高周波誘導加熱コイル(12)の温度分布を
測定した例を示す。ここで重要なことは、発熱分布測定
用被加熱体(14)をセッテイングするときは、測定す
る全ての高周波誘導加熱コイル(12)と該被加熱体
(14)との距離や配置を統一し固定することである。
Next, an example in which the temperature distribution of the high frequency induction heating coil (12) is actually measured using the object to be heated (14) according to the present invention will be shown. What is important here is that when setting the heated object (14) for measuring heat distribution, all the high-frequency induction heating coils (12) to be measured and the heated object (14) should have the same distance and arrangement. It is to fix.

【0024】測定例1 図6に示されるような寸法の被加熱体(14)を用い
て、図6に示したような上面が平らな高周波誘導加熱コ
イル(12)を図に示したような配置でその温度分布を
測定した。その結果を図7のグラフに示した。このグラ
フによれば、前記上面が平らな高周波誘導加熱コイル
(12)の温度分布は、該コイル(12)の周辺部に行
くほど温度が低下している。従って、原料シリコン多結
晶棒を充分に溶融できず、FZ操作の続行が不可能とな
ることが予想される。実際、前記上面が平らな高周波誘
導加熱コイル(12)を用いて原料多結晶棒を溶融する
と、図8に示されるように原料多結晶棒の周辺部が溶け
にくく、最終的には前記コイル(12)に接触してしま
った。
Measurement Example 1 A high frequency induction heating coil (12) having a flat upper surface as shown in FIG. 6 is prepared by using a heated body (14) having a size as shown in FIG. The temperature distribution was measured by the arrangement. The results are shown in the graph of FIG. According to this graph, the temperature distribution of the high frequency induction heating coil (12) having a flat upper surface is such that the temperature decreases toward the periphery of the coil (12). Therefore, it is expected that the raw material polycrystalline silicon rod cannot be melted sufficiently and the FZ operation cannot be continued. In fact, when the raw material polycrystalline rod is melted using the high frequency induction heating coil (12) having a flat upper surface, the peripheral portion of the raw material polycrystalline rod is hard to melt as shown in FIG. I have come into contact with 12).

【0025】測定例2 次に、同様の被加熱体(14)を用い、図9に示したよ
うなパンケーキ型の高周波誘導加熱コイル(12)を図
に示したような配置でその温度分布を測定した。その結
果を図10のグラフに示した。このグラフによれば、前
記パンケーキ型の高周波誘導加熱コイル(12)の温度
分布は測定例1と異なり、周辺方向への低下は急激では
なかった。従って、原料多結晶棒を充分に溶融すること
ができ、FZ法による操作が可能であることが期待され
る。実際、前記パンケーキ型の高周波誘導加熱コイル
(12)を用いて原料多結晶棒を溶融すると、図11に
示されるように原料多結晶棒は順調に溶融され、トラブ
ルなくFZ操作を続行することができた。
Measurement Example 2 Next, using the same object (14) to be heated, the pancake type high frequency induction heating coil (12) as shown in FIG. 9 was arranged in the temperature distribution as shown in FIG. Was measured. The results are shown in the graph of FIG. According to this graph, the temperature distribution of the pancake type high frequency induction heating coil (12) was different from that in Measurement Example 1 and did not decrease sharply in the peripheral direction. Therefore, it is expected that the raw material polycrystalline rod can be sufficiently melted and the operation by the FZ method can be performed. Actually, when the raw material polycrystalline rod is melted by using the pancake type high frequency induction heating coil (12), the raw material polycrystalline rod is smoothly melted as shown in FIG. 11, and the FZ operation can be continued without any trouble. I was able to.

【0026】[0026]

【発明の効果】以上説明したように本発明によれば、被
加熱体の形状を実際のFZ中の溶融帯域の形状に近い状
態とし、高周波誘導加熱コイルにより加熱される該被加
熱体表面部分に複数の熱電対等からなる温度検知手段を
配するようにしたので、実際のFZ時における高周波誘
導加熱コイルの発熱分布状態をあらかじめ測定すること
ができ、高周波誘導加熱コイルの検定ともなり、また、
シリコン単結晶棒の断面抵抗率分布を予測することもで
きるという本発明特有の効果を奏する。
As described above, according to the present invention, the shape of the object to be heated is brought into a state close to the shape of the actual melting zone in the FZ, and the surface portion of the object to be heated which is heated by the high frequency induction heating coil. Since the temperature detecting means composed of a plurality of thermocouples and the like is arranged in the above, the heat generation distribution state of the high frequency induction heating coil at the time of actual FZ can be measured in advance, which also serves as a certification of the high frequency induction heating coil.
The effect peculiar to the present invention that the cross-sectional resistivity distribution of the silicon single crystal ingot can be predicted can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る発熱分布測定具の一実施例を示す
概略断面図である。
FIG. 1 is a schematic sectional view showing an embodiment of a heat generation distribution measuring instrument according to the present invention.

【図2】図1におけるII−II線から見た発熱分布測
定具の上面図である。
FIG. 2 is a top view of the heat generation distribution measuring tool viewed from the line II-II in FIG.

【図3】熱電対の周囲を断熱した構造の例を示した詳細
断面図である。
FIG. 3 is a detailed cross-sectional view showing an example of a structure in which the periphery of a thermocouple is thermally insulated.

【図4】被加熱体の形状を変えた発熱分布測定具の他の
実施例を示す概略断面図である。
FIG. 4 is a schematic cross-sectional view showing another embodiment of a heat generation distribution measuring tool in which the shape of the object to be heated is changed.

【図5】被加熱体を高周波誘導加熱コイルの上側に位置
せしめた状態の発熱分布測定具の概略断面図である。
FIG. 5 is a schematic cross-sectional view of the heat generation distribution measuring tool with the object to be heated positioned above the high frequency induction heating coil.

【図6】本発明の被加熱体を用いて上面が平らな高周波
誘導加熱コイルの温度分布を測定するための配置図であ
る。
FIG. 6 is a layout diagram for measuring a temperature distribution of a high frequency induction heating coil having a flat upper surface using the object to be heated of the present invention.

【図7】図6による温度分布の測定結果を示すグラフで
ある。
7 is a graph showing the measurement result of the temperature distribution according to FIG.

【図8】上面が平らな高周波誘導加熱コイルを用いて原
料多結晶棒を溶融した状態の概略図である。
FIG. 8 is a schematic view of a raw material polycrystalline rod melted using a high-frequency induction heating coil having a flat upper surface.

【図9】本発明の被加熱体を用いてパンケーキ型の高周
波誘導加熱コイルの温度分布を測定するための配置図で
ある。
FIG. 9 is an arrangement view for measuring a temperature distribution of a pancake type high frequency induction heating coil using the object to be heated of the present invention.

【図10】図9による温度分布の測定結果を示すグラフ
である。
10 is a graph showing the measurement results of the temperature distribution according to FIG.

【図11】パンケーキ型の高周波誘導加熱コイルを用い
て原料多結晶棒を溶融した状態の概略図である。
FIG. 11 is a schematic view of a raw material polycrystalline rod melted using a pancake type high frequency induction heating coil.

【符号の説明】[Explanation of symbols]

10 発熱分布測定具 12 高周波誘導加熱コイル 14 被加熱体 16 被加熱体表面部 17 溝 18 熱電対 19 断熱材 20 溶接部 24 支持棒 26 突出部 10 Heat Generation Distribution Measuring Tool 12 High Frequency Induction Heating Coil 14 Heated Body 16 Surface of Heated Body 17 Groove 18 Thermocouple 19 Heat Insulating Material 20 Welding Part 24 Supporting Rod 26 Projecting Part

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 高周波誘導加熱コイルによって加熱され
る該コイルと同軸且つ近接対峙位置に配置された回転対
称形の被加熱体のコイル側表面部分に複数の温度検知手
段を設けるようにしたことを特徴とするFZ法加熱コイ
ルの発熱分布測定具。
1. A plurality of temperature detecting means is provided on a coil-side surface portion of a rotationally symmetrical object to be heated, which is coaxially arranged with the high-frequency induction heating coil and is disposed at a position close to and facing the coil. Characteristic tool for measuring heat distribution of FZ heating coil.
【請求項2】 前記温度検知手段が熱電対からなること
を特徴とする請求項1に記載のFZ法加熱コイルの発熱
分布測定具。
2. The heat generation distribution measuring tool for the FZ method heating coil according to claim 1, wherein the temperature detecting means is a thermocouple.
【請求項3】 前記熱電対の周囲の請求項1の該被加熱
体表面部に溝を形成し、該溝に断熱材を埋め込むように
したことを特徴とする請求項2に記載のFZ法加熱コイ
ルの発熱分布測定具。
3. The FZ method according to claim 2, wherein a groove is formed in the surface portion of the object to be heated according to claim 1 around the thermocouple, and a heat insulating material is embedded in the groove. Measuring tool for heat distribution of heating coil.
【請求項4】 前記被加熱体は、前記高周波誘導加熱コ
イルに向かい合う表面部が山状に傾斜していることを特
徴とする請求項1、2又は3に記載のFZ法加熱コイル
の発熱分布測定具。
4. The heat generation distribution of the FZ method heating coil according to claim 1, 2 or 3, wherein a surface portion of the object to be heated facing the high frequency induction heating coil is inclined in a mountain shape. Measuring tool.
【請求項5】 前記被加熱体の中央部が前記高周波誘導
加熱コイル間に位置するよう突出していることを特徴と
する請求項1、2又は3に記載のFZ法加熱コイルの発
熱分布測定具。
5. The heat generation distribution measuring tool for the FZ method heating coil according to claim 1, 2 or 3, wherein a central portion of the object to be heated is projected so as to be located between the high frequency induction heating coils. ..
【請求項6】 請求項1〜5に記載された発熱分布測定
具を高周波誘導加熱コイルの上又は下側に位置せしめて
該高周波誘導加熱コイルの発熱分布を測定するようにし
たことを特徴とするFZ法加熱コイルの発熱分布測定
法。
6. The heat generation distribution measuring tool according to any one of claims 1 to 5 is positioned above or below a high frequency induction heating coil to measure the heat generation distribution of the high frequency induction heating coil. FZ method A method for measuring the heat distribution of a heating coil.
JP9870892A 1992-03-24 1992-03-24 FZ method heating coil measuring tool Expired - Lifetime JP2500306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9870892A JP2500306B2 (en) 1992-03-24 1992-03-24 FZ method heating coil measuring tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9870892A JP2500306B2 (en) 1992-03-24 1992-03-24 FZ method heating coil measuring tool

Publications (2)

Publication Number Publication Date
JPH05270966A true JPH05270966A (en) 1993-10-19
JP2500306B2 JP2500306B2 (en) 1996-05-29

Family

ID=14227017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9870892A Expired - Lifetime JP2500306B2 (en) 1992-03-24 1992-03-24 FZ method heating coil measuring tool

Country Status (1)

Country Link
JP (1) JP2500306B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112921394A (en) * 2019-12-06 2021-06-08 胜高股份有限公司 Induction heating coil and single crystal manufacturing apparatus using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112921394A (en) * 2019-12-06 2021-06-08 胜高股份有限公司 Induction heating coil and single crystal manufacturing apparatus using the same
CN112921394B (en) * 2019-12-06 2023-10-27 胜高股份有限公司 Induction heating coil and single crystal manufacturing apparatus using the same

Also Published As

Publication number Publication date
JP2500306B2 (en) 1996-05-29

Similar Documents

Publication Publication Date Title
JP6013467B2 (en) Heating parts for crystal growth equipment
JP2500306B2 (en) FZ method heating coil measuring tool
JPH08268792A (en) High-frequency induction heater
US4510609A (en) Furnace for vertical solidification of melt
JP2985040B2 (en) Single crystal manufacturing apparatus and manufacturing method
US5944903A (en) Effusion cell crucible with thermocouple
JP3612788B2 (en) Heater heater temperature control device
KR19990063097A (en) Method and apparatus for producing single crystal
KR960006261B1 (en) Method of growing silicon dendritic-web crystal from deep melts
US9422636B2 (en) Method and apparatus for producing single crystals composed of semiconductor material
JP2005162507A (en) Polycrystal semiconductor ingot and its manufacturing device and method
JP2004342450A (en) High frequency induction heating device and semiconductor fabrication device
JP2004123510A (en) Apparatus for manufacturing single crystal and method for manufacturing the same
JP2778431B2 (en) Induction heating coil
JP2914077B2 (en) High frequency induction heating coil
JPH11189487A (en) Production apparatus for oxide single crystal
JP2609712B2 (en) Single crystal manufacturing method and temperature measuring jig therefor
JP2864466B2 (en) Diamond production equipment
JP2836438B2 (en) Induction heating coil
JPH03252127A (en) Temperature control method for vapor growth device
JP2713986B2 (en) Oxide single crystal manufacturing equipment
JPH04214093A (en) Manufacture of single crystal and apparatus therefor
JPH0443849B2 (en)
JP2991585B2 (en) Single crystal growing apparatus and single crystal manufacturing method
CN117721515A (en) Growth method of tellurium-zinc-cadmium crystal