JPH03252127A - Temperature control method for vapor growth device - Google Patents

Temperature control method for vapor growth device

Info

Publication number
JPH03252127A
JPH03252127A JP5029590A JP5029590A JPH03252127A JP H03252127 A JPH03252127 A JP H03252127A JP 5029590 A JP5029590 A JP 5029590A JP 5029590 A JP5029590 A JP 5029590A JP H03252127 A JPH03252127 A JP H03252127A
Authority
JP
Japan
Prior art keywords
susceptor
temperature distribution
vapor phase
phase growth
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5029590A
Other languages
Japanese (ja)
Inventor
Masahiko Matsuda
松田 正彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU ELECTRON METAL CO Ltd
Osaka Titanium Co Ltd
Original Assignee
KYUSHU ELECTRON METAL CO Ltd
Osaka Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU ELECTRON METAL CO Ltd, Osaka Titanium Co Ltd filed Critical KYUSHU ELECTRON METAL CO Ltd
Priority to JP5029590A priority Critical patent/JPH03252127A/en
Publication of JPH03252127A publication Critical patent/JPH03252127A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To correct the nonuniformity of temperature distribution on a susceptor with high accuracy, and to control the temperature correction of a wafer precisely by burying a thermocouple sealed by an insulator into a susceptor, measuring temperature distribution in the susceptor, changing the calorific values of the lamps of each group of a heat source and equalizing temperature distribution. CONSTITUTION:In a vapor growth device in which semiconductor substrates 21 are heated by lamps 23 and vapor growth is conducted, thermocouples 24 sealed by insulators are buried into a susceptor 22 supporting or heating the semiconductor substrates 21, temperature distribution in the susceptor 22 is measured, a large number of the lamps 23 in a heat source are divided and set previously to a required number of groups, and the calorific values of each group of the lamps 23 are changed according to temperature distribution measured and temperature distribution in the susceptor 22 is equalized. The thermocouples 24 are buried to each section of the upper section, intermediate section and lower section of the susceptor 22, temperature distribution is determined, the heating and cooling of the required region of the susceptor 22 are decided on the bases of the temperature distribution, an output to the heating lamp faced oppositely to a section, which must be heated, is increased, and an output to the heating lamp faced oppositely to a section, which must be cooled, is reduced.

Description

【発明の詳細な説明】 利用産業分野 この発明は、半導体基板上に気相成長を行ない薄膜を成
長させる気相成長装置のサセプターの加熱温度の制御方
法に係り、半導体基板を支持しまたは加熱するサセプタ
ーに熱電対を埋め込み、これを直接温度計測して加熱源
を調整し、温度分布を均一にして、同一装置内および装
置間のウェーハの温度更正を正確に制御する気相成長装
置の温度制御方法に関する。
[Detailed Description of the Invention] Field of Application This invention relates to a method of controlling the heating temperature of a susceptor of a vapor phase growth apparatus for growing a thin film by vapor phase growth on a semiconductor substrate, and the invention relates to a method for controlling the heating temperature of a susceptor for supporting or heating the semiconductor substrate. Temperature control of vapor phase growth equipment by embedding a thermocouple in the susceptor, directly measuring the temperature, adjusting the heating source, making the temperature distribution uniform, and accurately controlling the temperature correction of wafers within the same equipment and between equipment. Regarding the method.

従来の技術 今日、半導体基板にエピタキシャル成長させる気相成長
装置には、横型炉、縦型炉、バレル型炉が代表的であり
、加熱源には抵抗体、高周波コイル、赤外線ランプ等が
使用されている。
Conventional technology Today, horizontal furnaces, vertical furnaces, and barrel furnaces are typical for vapor phase growth equipment used for epitaxial growth on semiconductor substrates, and resistors, high-frequency coils, infrared lamps, etc. are used as heating sources. There is.

例えば、赤外線ランプを加熱源とした縦型炉の気相成長
装置は、ドーム型反応室内に半導体基板を載置して回転
させる円板状のサセプターを配置する構成で、ドーム外
面に沿って配置された赤外線ランプで反応室内のサセプ
ター全体を輻射加熱する。
For example, a vertical furnace vapor phase growth apparatus that uses an infrared lamp as a heating source has a structure in which a semiconductor substrate is placed inside a dome-shaped reaction chamber and a disk-shaped susceptor is placed along the outer surface of the dome. The entire susceptor inside the reaction chamber is heated by radiation using an infrared lamp.

サセプターは、カーボン基材に炭化硅素をコートしたも
のが主に用いられ、前記加熱源により直接あるいは輻射
熱で加熱する。
The susceptor is mainly made of a carbon base coated with silicon carbide, and is heated directly by the heating source or by radiant heat.

気相成長には反応室内の温度分布、特に、サセプター内
の温度分布を均一にすることが要求され、サセプターの
温度は反応室を取り巻くメタルチャンバーに装着された
放射温度針で測定され、加熱源への出力調整などを行い
反応温度の制御を行なっている。
Vapor phase growth requires uniform temperature distribution within the reaction chamber, especially within the susceptor, and the temperature of the susceptor is measured with a radiant temperature needle attached to a metal chamber surrounding the reaction chamber. The reaction temperature is controlled by adjusting the output to the reactor.

また、サセプターの回りにサセプターと同じ材質からな
る温度測定用の基材を設けて該基材の温度を熱電対によ
って測定し、サセプターの温度を制御するなどの手段が
採られていた。
Additionally, measures have been taken in which a temperature measuring base made of the same material as the susceptor is provided around the susceptor and the temperature of the base is measured with a thermocouple to control the temperature of the susceptor.

しかし、要求される半導体基板上の薄膜の特性が高い場
合には、反応室内の温度の均一性に高精度が要求される
が、従来方法では対応が困難であった。
However, if the characteristics of the thin film on the semiconductor substrate are required to be high, high precision is required for temperature uniformity within the reaction chamber, which has been difficult to meet with conventional methods.

上記のように放射温度計を用いてサセプターの温度を測
定し、制御する方法では、反応容器の外側から計測して
いるため、反応容器が汚れて光の透過率が低下すればす
るほど測定誤差が大きくなったり、また、反応装置内の
光の外乱により、正確な計測が困難になる問題がある。
In the method described above, in which the temperature of the susceptor is measured and controlled using a radiation thermometer, the temperature is measured from outside the reaction vessel, so the more the reaction vessel becomes dirty and the light transmittance decreases, the more the measurement error occurs. There is a problem in that accurate measurement becomes difficult due to the increase in the amount of light and disturbance of light within the reaction apparatus.

さらに、放射温度計では室温から十数百度までの温度領
域を正確に計測することができない。
Furthermore, radiation thermometers cannot accurately measure the temperature range from room temperature to several hundred degrees.

サセプターの回りに設けた温度計測用の基材の温度を測
定する方法では、実際のサセプターの温度とは異なる温
度を測定しており、半導体基板の支持されているサセプ
ター上の温度分布を測定できず、サセプター内の温度分
布を高精度で均一化できない。
The method of measuring the temperature of the temperature measurement base material placed around the susceptor measures a temperature different from the actual temperature of the susceptor, and cannot measure the temperature distribution on the susceptor that supports the semiconductor substrate. First, the temperature distribution within the susceptor cannot be made uniform with high precision.

従って、各基板内温度分布の不均一性に起因してスリッ
プが発生したり、同一サセプター上での温度分布の不均
一性からウェーハ間に薄膜の品質差を生じたり、あるい
は気相成長装置間の温度更正が取れないなどの問題があ
った。
Therefore, slips may occur due to non-uniformity in the temperature distribution within each substrate, differences in thin film quality between wafers may occur due to non-uniformity in temperature distribution on the same susceptor, or differences in thin film quality between wafers or between vapor phase growth equipment. There were problems such as not being able to correct the temperature.

この発明は、気相成長装置において、サセプター上の温
度分布の不均一性を高精度で是正でき、同一気相成長装
置内および他装置間のウェーハの温度更正を正確に制御
できる温度制御方法の提供を目的としている。
The present invention provides a temperature control method that can correct non-uniformity of temperature distribution on a susceptor with high accuracy in a vapor phase growth apparatus, and that can accurately control temperature correction of wafers within the same vapor phase growth apparatus and between other apparatuses. intended to provide.

発明の概要 この発明は、サセプター上の温度分布の不均一性を高精
度で是正できる温度制御方法を目的に、温度測定方法と
加熱源の制御について種々検討した結果、サセプターの
中へ絶縁体で密閉された熱電対を埋め込み、サセプター
内の温度分布を直接測定し、これを加熱源の発熱量制御
にフィードバックさせることにより、気相成長する半導
体基板に最も近い部分で温度を測定できるため、高精度
の温度制御が可能になり、同一装置内および装置間のウ
ェーハの温度更正を正確に制御できることを知見し、こ
の発明を完成した。
Summary of the Invention The present invention was developed as a result of various studies on temperature measurement methods and heating source control, with the aim of creating a temperature control method that can correct the non-uniformity of temperature distribution on a susceptor with high precision. By embedding a sealed thermocouple to directly measure the temperature distribution inside the susceptor and feeding this back to control the heat output of the heating source, the temperature can be measured at the point closest to the semiconductor substrate being vapor-phase grown. This invention was completed based on the finding that accurate temperature control is now possible, and that temperature correction of wafers within the same device and between devices can be accurately controlled.

すなわち、この発明は、 半導体基板をランプにて加熱して気相成長を行なう横型
炉、縦型炉、バレル型炉の気相成長装置において、 半導体基板を支持もしくは加熱を行なうサセプターに絶
縁体で密閉された熱電対を埋め込み、サセプター内の温
度分布を測定し、 加熱源の多数のランプを予め所要数の群に分割設定し、
測定した温度分布に従い、各群のランプの発熱量を変え
てサセプター内の温度分布を均一化することを特徴とす
る気相成長装置の温度制御方法である。
That is, the present invention provides a vapor phase growth apparatus such as a horizontal furnace, a vertical furnace, or a barrel furnace that performs vapor phase growth by heating a semiconductor substrate with a lamp, in which a susceptor that supports or heats the semiconductor substrate is made of an insulator. A sealed thermocouple is embedded to measure the temperature distribution inside the susceptor, and the numerous lamps serving as the heating source are divided into the required number of groups in advance.
This is a temperature control method for a vapor phase growth apparatus, characterized in that the heat generation amount of each group of lamps is changed in accordance with the measured temperature distribution to make the temperature distribution in the susceptor uniform.

また、この発明は、 回転テーブル型のサセプターの裏面側に高周波誘導コイ
ルを配設して半導体基板を加熱し気相成長を行なう縦型
気相成長装置において、 前記サセプターの中へ絶縁体で密閉された熱電対を埋め
込み、サセプター内の温度分布を測定し、複数の高周波
誘導コイルを個別にサセプターに近接離反可能にし、測
定した温度分布に従い、各コイルとサセプター間の距離
を変えてサセプター内の温度分布を均一化することを特
徴とする縦型気相成長装置の温度制御方法である。
The present invention also provides a vertical vapor phase growth apparatus in which a high frequency induction coil is disposed on the back side of a rotary table type susceptor to heat a semiconductor substrate and perform vapor phase growth, wherein the inside of the susceptor is sealed with an insulator. The temperature distribution inside the susceptor is measured by embedding a thermocouple in the susceptor, allowing multiple high-frequency induction coils to approach and leave the susceptor individually, and changing the distance between each coil and the susceptor according to the measured temperature distribution. This is a temperature control method for a vertical vapor phase growth apparatus characterized by making the temperature distribution uniform.

発明の図面に基づく開示 第1図はこの発明を適用した縦型気相成長装置の概略説
明図であり、第2図はサセプターの要部縦断説明図であ
る。
DISCLOSURE OF THE INVENTION BASED ON DRAWINGS FIG. 1 is a schematic explanatory diagram of a vertical vapor phase growth apparatus to which the present invention is applied, and FIG. 2 is a longitudinal cross-sectional explanatory diagram of a main part of a susceptor.

第3図はこの発明を適用したバレル型気相成長装置の概
略説明図である。
FIG. 3 is a schematic explanatory diagram of a barrel type vapor phase growth apparatus to which the present invention is applied.

傳屋1 縦型気相成長装置は、第1図に示す如く、ドーム型の反
応容器(1)内に半導体基板(3)を載置するテーブル
型のサセプター(2)を回転可能に配置し、サセプター
(2)の下方に加熱用の高周波発振コイル(4)を設け
、サセプター(2)の中央に貫通配置した半導体ガスの
噴射ノズル(5)より半導体ガスが導入噴出され、基板
(3)上で気相成長反応が行なわれた後、反応ガスは下
方に設けられたガス排気口(6)より排出される構成か
らなる。
Denya 1 As shown in Figure 1, the vertical vapor phase growth apparatus has a table-shaped susceptor (2) on which a semiconductor substrate (3) is placed in a dome-shaped reaction vessel (1) rotatably arranged. A high-frequency oscillation coil (4) for heating is provided below the susceptor (2), and a semiconductor gas is introduced and ejected from a semiconductor gas injection nozzle (5) disposed through the center of the susceptor (2). After the vapor phase growth reaction is performed at the top, the reaction gas is discharged from a gas exhaust port (6) provided at the bottom.

サセプター(2)には、第2図に示す如く、複数個の熱
電対(10)が絶縁体(11)にて密閉されて埋設しで
ある。
As shown in FIG. 2, a plurality of thermocouples (10) are embedded in the susceptor (2) and sealed with an insulator (11).

熱電対(10)の個数や埋設箇所は、サセプター(2)
の形状寸法や半導体基板(3)の載置箇所に応じて適宜
選定され、埋設に際して、例えば熱電対(10)の接点
部を除く配線部を絶縁管で被覆し、さらに全体をチュー
ブ状の絶縁体(11)で密閉し、外部の雰囲気ノ影響を
受けないようにしてこれを埋設する。
The number of thermocouples (10) and the location where they are buried are determined by the susceptor (2).
When burying, for example, the wiring part of the thermocouple (10) except the contact part is covered with an insulating tube, and the whole is covered with a tube-shaped insulating tube. It is sealed with a body (11) and buried so as not to be affected by the external atmosphere.

サセプター(2)は回転するため、熱電対(10)と外
部の計測器や演算器との電気的接続は、密閉されたロー
タリージヨイントで行う。
Since the susceptor (2) rotates, electrical connections between the thermocouple (10) and external measuring instruments and computing units are made through a sealed rotary joint.

一方、サセプター(2)の下方に設けた高周波発振コイ
ル(4)は、図示しないが、複数のコイルの各々が個別
に上下動可能に構成してあり、サセプター(2)に近接
離反させて対向間隔を任意に調整できる。
On the other hand, although not shown, the high-frequency oscillation coils (4) provided below the susceptor (2) are configured so that each of the plurality of coils can be moved up and down individually, and are opposed to each other by approaching and away from the susceptor (2). The interval can be adjusted arbitrarily.

作用効果 半導体基板(3)は、サセプター(2)に支持されて高
周波発振コイル(4)により、サセプターごと加熱され
る。気相成長中、サセプター(2)に埋設した複数個の
熱電対(10)がサセプター(2)内の温度を測定し、
計測信号が制御演算器に入力され、常時、サセプター(
2)内の温度分布が把握される。
Effect: The semiconductor substrate (3) is supported by the susceptor (2) and heated together with the susceptor by the high frequency oscillation coil (4). During the vapor phase growth, a plurality of thermocouples (10) embedded in the susceptor (2) measure the temperature inside the susceptor (2),
The measurement signal is input to the control calculator, and the susceptor (
2) The temperature distribution within can be grasped.

得られたサセプター(2)内の温度分布に基ツI/1て
、サセプター(2)の所要域の加熱、冷却を決定し、こ
れに従い加熱すべき部位の近傍の高周波発振コイル(4
)をサセプター(2)に近接させ、逆に冷却すべき部位
から高周波発振コイル(4)を離反させることにより、
サセプター(2)内の温度分布を均一化できる。
Based on the obtained temperature distribution inside the susceptor (2), the heating and cooling of the required area of the susceptor (2) is determined, and the high frequency oscillation coil (4) near the area to be heated is determined accordingly.
) close to the susceptor (2), and conversely, by moving the high frequency oscillation coil (4) away from the area to be cooled,
The temperature distribution within the susceptor (2) can be made uniform.

気相成長時の所定温度に保持する際も、温度上昇中、降
温中のいずれにおいても、サセプター(2)内の温度均
一性を1〜3℃の偏差に保つことができる。
Even when maintaining the predetermined temperature during vapor phase growth, the temperature uniformity within the susceptor (2) can be maintained within a deviation of 1 to 3° C. whether the temperature is rising or falling.

惺屋λ 第3図に示すバレル型気相成長装置は、円筒状の反応室
(20)内に、多数の半導体基板(21)を載置して回
転させる例えば、略多角錐状のサセプター(22)を垂
架して収納し、反応ガスを反応室(20)の上部円周側
から導入して下部中央から導出する構成であり、反応室
(20)の円筒部外周に赤外線ランプ(23)を層配置
し、サセプター(22)を輻射加熱する。
The barrel-type vapor phase growth apparatus shown in FIG. 3 includes, for example, a substantially polygonal pyramid-shaped susceptor ( 22) are housed vertically, and the reaction gas is introduced from the upper circumferential side of the reaction chamber (20) and led out from the lower center, and an infrared lamp (23 ) are arranged in layers, and the susceptor (22) is heated by radiation.

サセプター(22)の外周面に、温度センサーとして熱
電対(24)を絶縁体で密閉して埋設してあり、ここで
はサセプター(22)の上部、中部、下部の各部に埋設
しである。
A thermocouple (24) as a temperature sensor is sealed with an insulator and buried in the outer peripheral surface of the susceptor (22), and here, it is buried in each of the upper, middle, and lower parts of the susceptor (22).

加熱源の赤外線ランプ(23)は、予め所要数の群に分
割設定し、例えば、各群毎にランプドライバーを電圧制
御または電流制御して加熱ランプの出力制御可能に構成
しである。
The infrared lamp (23) serving as the heat source is divided into a required number of groups in advance, and the output of the heating lamp can be controlled by, for example, controlling the voltage or current of the lamp driver for each group.

作用効果 構成1と同様にζ埋設した熱電対(24)により、常時
、サセプター(22)内の温度分布が把握される。
As in Effect Configuration 1, the temperature distribution within the susceptor (22) is always grasped by the embedded thermocouple (24).

該温度分布に基づいて、サセプター(22)の所要域の
加熱、冷却を決定し、加熱を要する部位に対向している
加熱ランプへの出力を増大させ、又、冷却を要する部位
に対向している加熱ランプへの出力を減少させることに
より、サセプター(22)内の温度分布を均一化できる
Based on the temperature distribution, heating or cooling of the required area of the susceptor (22) is determined, and the output to the heating lamp facing the area requiring heating is increased, and the output to the heating lamp facing the area requiring cooling is increased. By reducing the power output to the heat lamps present, the temperature distribution within the susceptor (22) can be equalized.

発明の効果 この発明の温度制御方法によれば、従来の放射温度計の
如き装置内の光の外乱や、反応容器の汚れ等によって、
測定温度が不正確になることがなく、加熱の初期から定
常温度まで温度を監視することもできる。
Effects of the Invention According to the temperature control method of the present invention, it is possible to prevent damage caused by light disturbance in a device such as a conventional radiation thermometer, dirt in a reaction vessel, etc.
The measured temperature does not become inaccurate, and the temperature can be monitored from the initial stage of heating to the steady state temperature.

また、気相成長を行なう半導体基板の近傍の分布が正確
にわかるため、温度分布による成長の制御が容易にでき
る。
Furthermore, since the distribution in the vicinity of the semiconductor substrate on which vapor phase growth is to be performed can be accurately determined, growth can be easily controlled based on temperature distribution.

さらに、同一気相成長装置内および装置間のウェーハの
温度更正を正確に制御できる。
Furthermore, temperature correction of wafers within the same vapor phase growth apparatus and between apparatuses can be accurately controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明を適用した縦型気相成長装置の概略説
明図であり、第2図はサセプターの要部縦断説明図であ
る。 第3図はこの発明を適用したバレル型気相成長装置の概
略説明図である。 1・・・反応容器、2・・・サセプター、3・・・半導
体基板、4・・・高周波発振コイル、5・・・噴射ノズ
ル、6・・・ガス排気口、10・・・熱電対、11・・
・絶縁体、20・・・反応室、21・・・半導体基板、
22・・・サセプター23・・・赤外線ランプ、24・
・・熱電対。
FIG. 1 is a schematic explanatory view of a vertical vapor phase growth apparatus to which the present invention is applied, and FIG. 2 is a longitudinal cross-sectional view of the main part of a susceptor. FIG. 3 is a schematic explanatory diagram of a barrel type vapor phase growth apparatus to which the present invention is applied. DESCRIPTION OF SYMBOLS 1... Reaction container, 2... Susceptor, 3... Semiconductor substrate, 4... High frequency oscillation coil, 5... Injection nozzle, 6... Gas exhaust port, 10... Thermocouple, 11...
- Insulator, 20... Reaction chamber, 21... Semiconductor substrate,
22... Susceptor 23... Infrared lamp, 24...
··thermocouple.

Claims (1)

【特許請求の範囲】 1 半導体基板をランプにて加熱して気相成長を行なう気相
成長装置において、 半導体基板を支持もしくは加熱を行なうサセプターに絶
縁体で密閉された熱電対を埋め込み、サセプター内の温
度分布を測定し、 加熱源の多数のランプを予め所要数の群に分割設定し、
測定した温度分布に従い、各群のランプの発熱量を変え
てサセプター内の温度分布を均一化することを特徴とす
る気相成長装置の温度制御方法。 2 回転テーブル型のサセプターの裏面側に高周波誘導コイ
ルを配設して半導体基板を加熱し気相成長を行なう縦型
気相成長装置において、 前記サセプターの中へ絶縁体で密閉された熱電対を埋め
込み、サセプター内の温度分布を測定し、複数の高周波
誘導コイルを個別にサセプターに近接離反可能にし、測
定した温度分布に従い、各コイルとサセプター間の距離
を変えてサセプター内の温度分布を均一化することを特
徴とする縦型気相成長装置の温度制御方法。
[Claims] 1. In a vapor phase growth apparatus that performs vapor phase growth by heating a semiconductor substrate with a lamp, a thermocouple sealed with an insulator is embedded in a susceptor that supports or heats the semiconductor substrate, and a thermocouple sealed with an insulator is embedded in the susceptor. The temperature distribution of the heating source is measured, the numerous lamps of the heating source are divided into the required number of groups, and
A temperature control method for a vapor phase growth apparatus, characterized in that the temperature distribution within a susceptor is made uniform by changing the amount of heat generated from each group of lamps according to the measured temperature distribution. 2. In a vertical vapor phase growth apparatus that heats a semiconductor substrate and performs vapor phase growth by disposing a high frequency induction coil on the back side of a rotary table type susceptor, a thermocouple sealed with an insulator is inserted into the susceptor. Embedded, measures the temperature distribution inside the susceptor, allows multiple high-frequency induction coils to move closer to and away from the susceptor individually, and equalizes the temperature distribution inside the susceptor by changing the distance between each coil and the susceptor according to the measured temperature distribution. A temperature control method for a vertical vapor phase growth apparatus, characterized in that:
JP5029590A 1990-02-28 1990-02-28 Temperature control method for vapor growth device Pending JPH03252127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5029590A JPH03252127A (en) 1990-02-28 1990-02-28 Temperature control method for vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5029590A JPH03252127A (en) 1990-02-28 1990-02-28 Temperature control method for vapor growth device

Publications (1)

Publication Number Publication Date
JPH03252127A true JPH03252127A (en) 1991-11-11

Family

ID=12854911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5029590A Pending JPH03252127A (en) 1990-02-28 1990-02-28 Temperature control method for vapor growth device

Country Status (1)

Country Link
JP (1) JPH03252127A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5809211A (en) * 1995-12-11 1998-09-15 Applied Materials, Inc. Ramping susceptor-wafer temperature using a single temperature input
JP2001257169A (en) * 2000-02-01 2001-09-21 Asm America Inc Temperature control method of machining chamber, semiconductor machining device, and sensor calibration method
KR100374369B1 (en) * 1997-06-12 2003-04-21 닛뽕덴끼 가부시끼가이샤 Method and apparatus for lamp anneal
WO2006046308A1 (en) * 2004-10-29 2006-05-04 Cxe Japan Co., Ltd. Support for semiconductor substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5809211A (en) * 1995-12-11 1998-09-15 Applied Materials, Inc. Ramping susceptor-wafer temperature using a single temperature input
KR100374369B1 (en) * 1997-06-12 2003-04-21 닛뽕덴끼 가부시끼가이샤 Method and apparatus for lamp anneal
JP2001257169A (en) * 2000-02-01 2001-09-21 Asm America Inc Temperature control method of machining chamber, semiconductor machining device, and sensor calibration method
WO2006046308A1 (en) * 2004-10-29 2006-05-04 Cxe Japan Co., Ltd. Support for semiconductor substrate

Similar Documents

Publication Publication Date Title
TWI406323B (en) Multi-zone resistive heater
US6703592B2 (en) System of controlling the temperature of a processing chamber
JP4970683B2 (en) Apparatus and method for epitaxially treating a substrate
JP4495340B2 (en) Method and apparatus for controlling radial temperature gradient of wafer during wafer temperature ramping
CN101231941A (en) Temperature measurement and control of wafer support in thermal processing chamber
TWI676704B (en) Substrate processing apparatus and method
US9892941B2 (en) Multi-zone resistive heater
KR100402299B1 (en) Arrangement for processing a substrate wafer, and method for operating it
JPH03252127A (en) Temperature control method for vapor growth device
JPH118204A (en) High speed lamp-heating processor
JP3074312B2 (en) Vapor growth method
CN113846376B (en) Temperature adjusting method for epitaxial growth apparatus and epitaxial growth apparatus
JPH0451538A (en) Temperature measuring instrument for plate like object
JPH06151322A (en) Heating device for thin-film manufacturing apparatus
JP2579809Y2 (en) Single wafer CVD system
JP2004342450A (en) High frequency induction heating device and semiconductor fabrication device
JPH04359125A (en) Temperature measuring device for heated body
JP3612788B2 (en) Heater heater temperature control device
JP2005327846A (en) Substrate heating apparatus
JPWO2003003432A1 (en) Vapor phase growth method and vapor phase growth apparatus
JPH04157717A (en) Wafer heating apparatus for vapor growth use
JPH04206943A (en) Susceptor temperature equalizing method
JP2003249456A (en) Substrate treating apparatus
JPS636627B2 (en)
JPH01161827A (en) Heat treating apparatus