JPH05269507A - Manufacture of seamless steel tube of iron-based alloy containing chromium - Google Patents
Manufacture of seamless steel tube of iron-based alloy containing chromiumInfo
- Publication number
- JPH05269507A JPH05269507A JP6739592A JP6739592A JPH05269507A JP H05269507 A JPH05269507 A JP H05269507A JP 6739592 A JP6739592 A JP 6739592A JP 6739592 A JP6739592 A JP 6739592A JP H05269507 A JPH05269507 A JP H05269507A
- Authority
- JP
- Japan
- Prior art keywords
- scale
- rolling
- thickness
- rolled
- flaws
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Articles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、12wt%以上のCrを含有
するFe基合金から圧延法によって継目無鋼管を製造する
方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a seamless steel pipe from an Fe-based alloy containing 12 wt% or more of Cr by a rolling method.
【0002】[0002]
【従来の技術】従来、12wt%以上Crを含有するFe基合
金、例えばJIS-SUS304、SUS310S(オーステナイト系ステ
ンレス鋼) 、SUS430 (フェライト系ステンレス鋼) 、SU
S420J1 (マルテンサイト系ステンレス鋼) 、SUS329J2L
(2相ステンレス鋼) といったステンレス鋼から継目無
鋼管を製造する場合は、一般に熱間押出法が採用されて
いた。これらのステンレス鋼の変形抵抗が高く工具面圧
(負荷) が高くなる上に、熱間加工性が悪いことに起因
する。熱間押出法は、製管能率、すなわち単位時間当た
りの製管本数が少ないため生産性は悪いが、比較的加工
性の悪い材料でも加工できる利点がある。2. Description of the Related Art Conventionally, Fe-based alloys containing 12 wt% or more Cr, such as JIS-SUS304, SUS310S (austenitic stainless steel), SUS430 (ferritic stainless steel), SU
S420J1 (Martensitic stainless steel), SUS329J2L
In the case of producing a seamless steel pipe from stainless steel such as (duplex stainless steel), the hot extrusion method is generally adopted. The deformation resistance of these stainless steels is high and the tool surface pressure is high.
This is because the (load) becomes high and the hot workability is poor. The hot extrusion method is poor in productivity because the pipe manufacturing efficiency, that is, the number of pipes manufactured per unit time is small, but has an advantage that even a material having relatively poor workability can be processed.
【0003】ところが近年の工具材質および圧延技術の
進歩によって、上記熱間押出法よりも生産性の高い圧延
法を用いた上記ステンレス鋼の継目無製管が可能となり
つつある。継目無鋼管を製造する圧延法とは、マンネス
マン製管法に代表されるように、加熱した丸鋼片 (ビレ
ット) をピアサ、マンドレルミル、ストレッチレデュー
サ等の圧延機群で順に熱間圧延することによって最終製
品たる継目無鋼管を得る方法であり、従来より、炭素
鋼、低合金鋼の継目無鋼管の製造には広く採用されてい
る。However, recent advances in tool materials and rolling techniques have made it possible to produce seamless pipes of the above-mentioned stainless steel using a rolling method having higher productivity than the hot extrusion method. The rolling method for producing seamless steel pipes is, as typified by the Mannesmann pipe making method, hot rolling rolled round billets in a rolling mill group such as a piercer, a mandrel mill and a stretch reducer in order. Is a method of obtaining a seamless steel pipe as a final product, and has been widely used for the manufacture of seamless steel pipes of carbon steel and low alloy steel.
【0004】なお、素材として角鋼片 (ブルーム) を使
用し、PPM(プレス・ピアシングミル) によってこれを穿
孔した後、マンネスマン製管法と同様に圧延を継続 (た
だしピアサは除く) する方法も一部に適用されている。
また圧延工程の途中、例えばマンドレルミルとストレッ
チレデューサとの間に再加熱炉を配して圧延作業の安定
を図る場合もある。There is also a method in which a square steel slab (bloom) is used as a raw material, which is perforated by a PPM (press / piercing mill), and then the rolling is continued (except for the piercer) as in the Mannesmann pipe making method. Applied to the department.
Further, during the rolling process, for example, a reheating furnace may be arranged between the mandrel mill and the stretch reducer to stabilize the rolling work.
【0005】[0005]
【発明が解決しようとする課題】以上のように、高い生
産能率を活用し、より安価にステンレス鋼の継目無鋼管
を製造するべく圧延法が適用されつつあるが、12wt%以
上Crを含有するFe基合金(以下ステンレス鋼と総称する)
から圧延法によって継目無鋼管を製造する場合、従来
からの知見通り、工具との焼付疵が発生し易いのはもち
ろんであるが、これ以外にも、従来の炭素鋼等の製管時
には見られなかった特徴的な筋状の疵が発生することが
判明した。As described above, the rolling method is being applied to produce a seamless steel pipe of stainless steel at a low cost by utilizing the high production efficiency, but it contains 12 wt% or more of Cr. Fe-based alloy (hereinafter collectively referred to as stainless steel)
In the case of producing a seamless steel pipe by the rolling method from the above, it is of course that seizure flaws with tools are likely to occur according to the findings from the past, but in addition to this, it is also observed when producing conventional carbon steel etc. It was discovered that the characteristic streak-like flaws that did not occur occur.
【0006】この筋状疵は管外表面のほぼ軸方向に鋭角
的あるいはカブレ状の断面を有しており、その内部にス
ケールを噛込んでいて、製管後の酸洗等によっても容易
には除去されずに残存し、最終製品の美観を大きく損な
う。ここに、本発明の目的は、ステンレス鋼から継目無
鋼管を圧延法で製造する場合に、焼付疵はもちろん筋状
疵も見られない製管方法を提供することである。[0006] The streak-like flaw has a sharp-angled or fog-like cross section on the outer surface of the pipe almost in the axial direction, and has a scale bite inside it, so that it can be easily washed by pickling after pipe making. Remains unremoved and greatly impairs the aesthetics of the final product. It is an object of the present invention to provide a pipe manufacturing method in which no seizure flaws or streak flaws are observed when a seamless steel tube is manufactured from stainless steel by a rolling method.
【0007】[0007]
【課題を解決するための手段】本発明者らは、かかる課
題を解決すべく研究開発の結果、次のような新たな知見
を得た。 (1)ステンレス鋼におけるスケール生成量は炭素鋼等に
比べれば少ないものの、加熱炉または再加熱炉にて 900
〜1300℃の高温雰囲気に最大数時間も露されると相当量
(例えば数100 μm 以上) のスケールを生成する。[Means for Solving the Problems] As a result of research and development for solving the problems, the present inventors have obtained the following new findings. (1) Although the amount of scale produced in stainless steel is less than that of carbon steel, etc., it is 900 in a heating furnace or reheating furnace.
A considerable amount when exposed to a high temperature atmosphere of ~ 1300 ° C for up to several hours
Generates a scale (for example, several 100 μm or more).
【0008】(2)ステンレス鋼に生成するスケールは炭
素鋼等の場合に比べて緻密であり、搬送中・圧延中の脱
落性が低いために圧延時に工具と被圧延材の間に噛込ま
れ易い。特に、ピアサまたPPM に供給されるビレットま
たはブルームの表面には他の圧延工程の場合に比して多
量のスケールが付着しており (前段の加熱炉で高温雰囲
気に長時間露されるため) 、例えば、ピアサにおけるス
テンレス鋼の圧延途中止メ材(圧延途中に圧延機を停止
することによって得られた被圧延材)を採取・観察する
と、噛込まれたスケールが粉砕されながら被圧延材外面
に押込まれたり、あるいはそのように粉砕されたスケー
ルによって被圧延材外面がひっかかれたりして生じたと
思われる特徴的な形態 (凹凸) が認められる場合があっ
た。このような形態の表面疵の発生は上記の筋状疵の発
生頻度と一致している。(2) The scale formed on stainless steel is denser than that of carbon steel, etc., and is less likely to fall off during transportation and rolling, so that it is caught between the tool and the material to be rolled during rolling. easy. In particular, a large amount of scale is attached to the surface of the billet or bloom supplied to the piercer or PPM as compared with other rolling processes (because it is exposed to a high temperature atmosphere in the preceding heating furnace for a long time). For example, when sampling and observing stainless steel rolling stop material (rolling material obtained by stopping the rolling mill during rolling) in piercer, when the bite scale is crushed, the outer surface of rolling material is crushed. In some cases, a characteristic morphology (unevenness) that was thought to have been caused by being pressed into the surface or being scratched on the outer surface of the rolled material by a scale crushed in this way was sometimes observed. The occurrence of surface flaws of such a form is consistent with the occurrence frequency of the above-mentioned streak-like flaws.
【0009】(3)筋状疵の発生には、被圧延材の酸化に
伴う内部酸化 (粒界酸化) の影響も懸念されたが、例え
ばSUS304ステンレス鋼について詳細に表面付近のミクロ
組織を調査したところ、加熱後のビレット表面において
さえ最大0.1 mm深さ程度のものしか認められず、ここで
問題とした疵には進展し得ないことが確認された。(3) The occurrence of streak defects was also concerned with the effect of internal oxidation (grain boundary oxidation) accompanying the oxidation of the material to be rolled. For example, the microstructure near the surface of SUS304 stainless steel was investigated in detail. As a result, it was confirmed that even the billet surface after heating only had a maximum depth of about 0.1 mm, and that the flaw in question could not progress.
【0010】(4)炭素鋼等の場合には、スケール噛込み
が全くないわけではないが、噛込みが発生した後での被
圧延材の2次酸化 (2次スケールの発生) が著しいため
に結局はスケール噛込み部自体が脱落し筋状疵としては
残存し得ないものと判断される。実際にピアサにおける
炭素鋼の圧延途中止メ材にも、上述のSUS304ステンレス
鋼に認められたものに酷似した表面形態 (凹凸) が観察
されたが最終的に筋状疵の残存はなかった。(4) In the case of carbon steel or the like, scale is not completely bitten, but secondary oxidation (generation of secondary scale) of the rolled material after biting is significant. In the end, it is judged that the scale biting part itself falls off and cannot remain as a streak. The surface morphology (irregularities) that was very similar to that observed in the above-mentioned SUS304 stainless steel was actually observed on the carbon steel half-rolled material in the piercer, but finally no streaky flaw remained.
【0011】(5) したがって、被圧延材外表面に緻密か
つ多量に付着したスケール層がロール等の外面工具によ
って噛込まれ、粉砕されつつ被圧延材外表面に押込ま
れ、被圧延材の変形とともに延伸されたりあるいは粉砕
されたスケール粒が外面工具と被圧延材の相対すべりに
よって、被圧延材外表面に摺動疵を発生することによっ
て、被圧延材外表面に凹凸形態を生成する。そしてこの
スケールを噛込んだ凹凸形態が以後の圧延工程で押しつ
ぶされ延伸されながら最終製品にまで残留し、酸洗等に
よっても除去されず筋状疵として残存するのである。(5) Therefore, the scale layer densely and in large quantity adhered to the outer surface of the material to be rolled is bitten by the outer surface tool such as a roll and pressed into the outer surface of the material to be rolled while being crushed, so that the material to be rolled is deformed. At the same time, the scale grains stretched or pulverized generate sliding flaws on the outer surface of the material to be rolled due to the relative slip between the outer surface tool and the material to be rolled, so that an uneven shape is generated on the outer surface of the material to be rolled. Then, the concavo-convex shape in which the scale is bitten remains in the final product while being crushed and stretched in the subsequent rolling step, and remains as streak defects without being removed even by pickling or the like.
【0012】(6)上述の如き筋状疵は管内面には観察さ
れない。この理由について、順に製管工程を追って考え
ると、まずピアサまたはPPM において新生面として内面
が形成される際には、スケール生成はほとんど無視し得
るものであること、続くエロンゲータ、マンドレルミル
等の延伸圧延あるいはこれに至るまでの搬送中での内面
2次スケール生成量が少量であること、およびストレッ
チレデューサ等の定径圧延ではその直前に再加熱炉が配
された場合、管内面に多量のスケールが生成され易い
が、圧延時に内面工具が使用されないこと等によって、
いずれの工程においても管内面に有害なスケール噛込み
が発生しないことに起因するのである。(6) The above-mentioned streaky flaws are not observed on the inner surface of the tube. Regarding this reason, considering the pipe manufacturing process in order, first, when the inner surface is formed as a new surface in the piercer or PPM, the scale formation is almost negligible, and then the elongation rolling of the elongator, mandrel mill, etc. Alternatively, the amount of secondary scale generated on the inner surface during transportation up to this point is small, and when constant-temperature rolling such as a stretch reducer is equipped with a reheating furnace immediately before that, a large amount of scale is formed on the inner surface of the pipe. It is easily generated, but due to the fact that the inner surface tool is not used during rolling,
This is because no harmful scale bite is generated on the inner surface of the pipe in any of the steps.
【0013】(7)ただし工具と被圧延材の焼付きを防ぐ
ために必要最小量のスケール層厚さの確保は必須であ
る。したがって、以上より焼付ならびに筋状疵の発生を
防止するには次のような手段を講じればよいことが判明
し、本発明を完成した。(7) However, in order to prevent seizure between the tool and the material to be rolled, it is essential to secure the minimum required scale layer thickness. Therefore, it has been revealed from the above that the following means should be taken to prevent the occurrence of seizure and streak defects, and the present invention has been completed.
【0014】圧延に供される被圧延材外表面のスケー
ル層厚さを10〜100 μm という適正範囲内とすること。 圧延中、搬送中に生成する2次スケールの影響は無視
できるから、加熱炉または再加熱炉の次工程に配された
圧延工程の入側において上記が満足されれば必要かつ
十分である。 粒界酸化の影響がないから、加熱炉または再加熱炉で
のスケール生成厚さを調節するか、あるいは炉出側かつ
次の圧延機入側までの間で、スケール厚さを調節すれば
よい。The thickness of the scale layer on the outer surface of the material to be rolled used for rolling should be within an appropriate range of 10 to 100 μm. Since the influence of the secondary scale generated during rolling and transportation can be ignored, it is necessary and sufficient if the above is satisfied on the inlet side of the rolling process arranged in the next process of the heating furnace or the reheating furnace. Since there is no effect of grain boundary oxidation, it is sufficient to adjust the scale formation thickness in the heating furnace or reheating furnace, or to adjust the scale thickness between the furnace exit side and the next rolling mill entrance side. ..
【0015】ここに、本発明の要旨とするところは、12
wt%以上のCrを含有するFe基合金から圧延法によって継
目無鋼管を製造する方法において、加熱炉に続く圧延工
程または加熱炉に続く圧延工程および再加熱炉に続く圧
延工程の各入側において、被圧延材たる中実の鋼片また
は中空の素管の外表面に付着するスケール層の厚さを10
〜100 μm とすることを特徴とする継目無製管の方法で
ある。The gist of the present invention is as follows.
In a method for producing a seamless steel pipe from a Fe-based alloy containing wt% or more of Cr by a rolling method, at each inlet side of the rolling process following the heating furnace or the rolling process following the heating furnace and the rolling process following the reheating furnace. , The thickness of the scale layer that adheres to the outer surface of the solid steel slab or hollow shell that is the material to be rolled is 10
This is a method for seamless pipes, which is characterized in that the thickness is set to -100 μm.
【0016】[0016]
【作用】次に、実際の製管工程に沿って本発明を詳細に
説明する。ここでは、圧延法による継目無製管工程のう
ち、マンネスマン・マンドレルミルラインを例にとって
説明する。図1に示すように、かかる継目無製管工程で
は、図中、白抜き矢印で示す順に加工が行われ、まず、
素材たる丸鋼片 (ビレット) 10を回転炉床式加熱炉12
(以下、単に加熱炉と称する) にて約1200〜1300℃に加
熱した後、ピアサ14で穿孔し厚肉のホローピース15とす
る。Next, the present invention will be described in detail along with the actual pipe manufacturing process. Here, of the seamless pipe manufacturing process by the rolling method, a Mannesmann mandrel mill line will be described as an example. As shown in FIG. 1, in the seamless pipe manufacturing step, processing is performed in the order shown by white arrows in the figure.
Rotating hearth type heating furnace 12
After heating to about 1200 to 1300 ° C. (hereinafter, simply referred to as a heating furnace), it is perforated by a piercer 14 to obtain a thick hollow piece 15.
【0017】続いてマンドレル16を挿入したままマンド
レルミル18にて延伸圧延することによって薄肉のホロー
シェル20とし、次いで再加熱炉22にてこれらのホローシ
ェル20を約1000℃に昇温後、ストレッチレデューサ26に
よって外径絞り圧延を実施することによって最終製品を
得る。Then, the mandrel 16 with the mandrel 16 inserted therein is stretch-rolled by a mandrel mill 18 to form a thin hollow shell 20. Then, the hollow shell 20 is heated in a reheating furnace 22 to about 1000 ° C., and then a stretch reducer 26 is used. The final product is obtained by carrying out outer diameter drawing rolling according to.
【0018】以上の各工程の中で、被圧延材表面に最も
厚いスケール層が生成しているのは加熱炉12、再加熱炉
22であり、被圧延材をステンレス鋼に限定して考えれ
ば、圧延中および搬送中に生成するスケールの量は僅か
である。本発明においては、被圧延材の外表面に生成す
るスケール層の厚さは、被圧延材と工具の焼付きを極力
防止するためには10μm 以上、筋状疵を残存させないた
めには100 μm 以下として、加熱後および再加熱後の製
管圧延をそれぞれ実施する。In the above steps, the thickest scale layer formed on the surface of the material to be rolled is the heating furnace 12 or the reheating furnace.
Therefore, if the material to be rolled is limited to stainless steel, the amount of scale produced during rolling and transportation is small. In the present invention, the thickness of the scale layer formed on the outer surface of the rolled material is 10 μm or more in order to prevent seizure of the rolled material and the tool as much as possible, and 100 μm in order not to leave streaky defects. As described below, pipe rolling after heating and after reheating is performed.
【0019】具体的には、加熱炉12および再加熱炉22の
次工程たるピアサ14およびストレッチレデューサ26にそ
れぞれ供給するビレット10およびホローシェル20の外表
面に付着するスケール層の厚さを、10〜100 μm の範囲
内に制限する。マンドレルミル18に供給するホローピー
ス15のスケール層厚さを問題としないのは、ピアサ14に
おいて適正スケール層厚さが満足されれば、マンドレル
ミル18にても結果的に適正なスケール厚さでの圧延が実
現されるからである。Specifically, the thickness of the scale layer attached to the outer surfaces of the billet 10 and the hollow shell 20 supplied to the piercer 14 and the stretch reducer 26, which are the next steps of the heating furnace 12 and the reheating furnace 22, respectively, is set to 10 to 10. Limit within 100 μm. The reason why the scale layer thickness of the hollow piece 15 supplied to the mandrel mill 18 is not a problem is that if the appropriate scale layer thickness is satisfied in the piercer 14, the mandrel mill 18 will eventually have an appropriate scale layer thickness. This is because rolling is realized.
【0020】ピアサ14に供給するビレット表面に付着す
るスケール厚さを10〜100 μm とするには、加熱炉12で
の雰囲気調整、温度調整によってスケール生成厚さを10
〜100 μm とするか、あるいは加熱炉12でのスケール生
成厚さが100 μm 超となることを許容した上で、加熱炉
出側〜ピアサ入側で高圧水噴射あるいは各種の表面加工
と、水またはエアー噴射との組み合わせ等による適当な
デスケール (スケール除去作業) を行うことによって10
〜100 μm とすればよい。このように本発明によれば、
スケール厚さを10〜100 μm とすることにより、圧延中
における焼付はもちろん筋状疵の発生も効果的に防止で
きるのである。In order to set the scale thickness attached to the billet surface supplied to the piercer 14 to 10 to 100 μm, the scale generation thickness is adjusted to 10 by adjusting the atmosphere and temperature in the heating furnace 12.
~ 100 μm or allow the scale formation thickness in the heating furnace 12 to exceed 100 μm, and then perform high-pressure water injection or various surface treatments on the heating furnace outlet side to the piercer inlet side and water surface. Or by performing an appropriate descale (scale removal work) by combining with air injection, etc.
It should be ~ 100 μm. Thus, according to the present invention,
By setting the scale thickness to 10 to 100 μm, it is possible to effectively prevent not only seizure during rolling but also generation of streak defects.
【0021】また、加熱炉内で被圧延材の表面に生成す
るスケールは、その生成温度、炉内の各ゾーン温度設
定、雰囲気 (酸素、CO、H2O 等の濃度等) 、被圧延材の
組成 (材質) 、加熱前の被圧延材表面性状 (圧延まま、
機械加工仕上げ等) によって異なる場合があるが、本発
明において問題にしている筋状疵に関しては、後述の実
施例にても確認されるように、ステンレス鋼に生成する
スケールの範囲では大きな相違はなく、スケール層の厚
ささえ適正とすれば防止可能である。The scale formed on the surface of the material to be rolled in the heating furnace is determined by the temperature at which it is produced, the temperature settings in each zone of the furnace, the atmosphere (concentration of oxygen, CO, H 2 O, etc.), the material to be rolled. Composition (material) of the rolled material before heating (as-rolled,
Although it may vary depending on the machining finish etc.), regarding the streak defect which is a problem in the present invention, as will be confirmed in Examples described later, there is no significant difference in the range of scales produced in stainless steel. However, it can be prevented if the thickness of the scale layer is proper.
【0022】換言すれば、それらを勘案して主として鋼
材の昇温パターンもしくは炉内雰囲気を調節することに
よって10〜100 μm のスケール厚さを実現すればよい。
実際の製管作業においてはトラブルが発生、ラインが一
時期停止することがあり、加熱炉内における適正スケー
ル厚さの実現が困難となる場合がある。この場合はビレ
ット表面には過剰なスケール層が形成されるから、加熱
炉から抽出したビレットに対してピアサに供給する以前
にデスケールを実施することが必要となる。In other words, the scale thickness of 10 to 100 μm may be realized mainly by adjusting the temperature rising pattern of the steel material or the atmosphere in the furnace in consideration of them.
Trouble may occur in the actual pipe manufacturing work, the line may be temporarily stopped, and it may be difficult to achieve an appropriate scale thickness in the heating furnace. In this case, since an excessive scale layer is formed on the billet surface, it is necessary to perform descaling on the billet extracted from the heating furnace before supplying it to the piercer.
【0023】一般にステンレス鋼表面に形成されるスケ
ールは緻密かつ密着性が強く、炭素鋼や低合金鋼に比較
して剥離性が低いから、マンネスマン製管ラインに通常
付設されているような150 〜200 kg/cm2程度の高圧水デ
スケーラではスケール層厚さの調節、つまりスケールの
除去作業は不可能であり、少なくとも300 kg/cm2以上の
高圧水デスケーラを使用する必要がある。この際、デス
ケーラによるスケール除去厚さは、デスケーラのノズル
圧力・高圧水の噴射面積、ノズルに対するビレットの移
動速度、噴射流量等のデスケール条件およびビレット材
質等に応じてビレット表面に生成するスケールの種類に
よって求められるから、デスケールの対象となるビレッ
トの加熱履歴から予想されるデスケール直前の初期スケ
ール厚さを勘案してスケール除去必要量およびこれに伴
うデスケール条件を決定すればよい。Generally, the scale formed on the surface of stainless steel is dense and has strong adhesion, and the peelability is lower than that of carbon steel and low alloy steel. Therefore, the scale of 150 to 150 that is usually attached to a Mannesmann pipe line is used. It is not possible to adjust the scale layer thickness, that is, scale removal work with a high-pressure water descaler of about 200 kg / cm 2 , and it is necessary to use a high-pressure water descaler of at least 300 kg / cm 2 . At this time, the scale removal thickness by the descaler is the type of scale generated on the billet surface according to the descaler nozzle pressure, high-pressure water jet area, billet moving speed with respect to the nozzle, descaling conditions such as jet flow rate, and billet material. Therefore, the required amount of scale removal and the descaling conditions associated therewith may be determined in consideration of the initial scale thickness immediately before descaling expected from the heating history of the billet to be descaled.
【0024】高圧水によるデスケールは噴射水をビレッ
ト表面に1度のみ走射する方法でもよいし、複数回走射
する方法でも構わない。高圧水噴射に先立って圧延、鍛
造、ダイス引き、スピニング加工、ショット加工等によ
ってビレット表面を軽圧下加工して、ビレット表面スケ
ールを部分粉砕しておくこともデスケールを容易とする
効果がある。ただし、加工量を過大とするとかえってス
ケールを押込んでしまい、次のデスケールを困難にした
り、筋状疵の原因となり得るからせいぜい3%程度の圧
下で十分である。なお、ここに例示したデスケーラ直前
の加工工程は、その目的および加工度の観点から本発明
クレーム中の『加熱炉または再加熱炉に続く圧延工程』
には包含されない。要するに、ピアサでの圧延が開始さ
れる以前にデスケールを実施してスケール層厚さを10〜
100 μm とすればよい。Descaling with high-pressure water may be carried out by spraying the jetted water onto the billet surface only once, or by spraying the jetted water a plurality of times. It is also effective to facilitate descaling by lightly reducing the billet surface by rolling, forging, die drawing, spinning, shot processing, or the like prior to high-pressure water jetting to partially crush the billet surface scale. However, if the amount of processing is too large, the scale will be pushed in rather, and the next descaling may become difficult, or streak defects may be caused. Therefore, a reduction of about 3% is sufficient at most. The processing step immediately before the descaler illustrated here is the "rolling step following the heating furnace or reheating furnace" in the claims of the present invention from the viewpoint of its purpose and processing degree.
Is not included in. In short, descaling is performed to reduce the scale layer thickness from 10 to
It should be 100 μm.
【0025】以上の方法は全く同様の背景によって再加
熱炉およびこれに続く圧延工程たるストレッチレデュー
サによる外径絞り工程においても成立する。ただし、加
熱炉に比較して再加熱炉での加熱温度は低く、在炉時間
も短いから、Cr含有量が18%を超えるステンレス鋼にお
いては、操業上再加熱炉においてスケール層厚さが100
μm を超えることはほとんどなく、再加熱炉以降の工程
に関する本発明の適用範囲はCr含有量12%以上18%以下
のFe基合金だけを考えればよい。次に、実施例によって
本発明の作用についてさらに具体的に説明する。The above method can be applied to the reheating furnace and the subsequent rolling step, ie, the outer diameter drawing step by the stretch reducer, in the completely same background. However, since the heating temperature in the reheating furnace is lower than that in the heating furnace and the in-house time is short, the stainless steel with a Cr content of more than 18% has a scale layer thickness of 100% in the reheating furnace during operation.
It rarely exceeds μm, and the application range of the present invention regarding the steps after the reheating furnace may be considered only for the Fe-based alloy having a Cr content of 12% or more and 18% or less. Next, the operation of the present invention will be described more specifically with reference to Examples.
【0026】[0026]
【実施例】種々の条件にて加熱ビレットを用意し、図1
に示すマンネスマン・マンドレルミルラインにて圧延
し、筋状疵の発生状況を比較した。[Example] A heating billet was prepared under various conditions.
Rolling was carried out on the Mannesmann mandrel mill line shown in, and the occurrence of streak defects was compared.
【0027】[0027]
【実施例1】 ビレット:直径143 mm×長さ1800 mm(表面機械加工仕上
げ) を電気式加熱炉にて大気中加熱した後、ピアサおよ
びマンドレルミルにて圧延し、直径110 mm×肉厚3.5 mm
×長さ25m のホローシェルとした後に酸洗し、外表面の
目視検査を行った。[Example 1] Billet: Diameter 143 mm x length 1800 mm (surface machining finish) was heated in an electric heating furnace in the atmosphere, and then rolled with a piercer and a mandrel mill, diameter 110 mm x wall thickness 3.5. mm
C. After forming a hollow shell having a length of 25 m, it was pickled and the outer surface was visually inspected.
【0028】使用したビレット材質および加熱温度は下
記の通りであり、在炉時間を変更することによって加熱
炉内での生成スケール層厚さを、平均値で、10、50、10
0 、150 、200 μm とした。なお、Arガス雰囲気加熱に
よりスケール層厚さをほぼ0μm とした供試材も用意し
たので、スケール層厚さは6水準となった。The billet material used and the heating temperature are as follows, and the thickness of the generated scale layer in the heating furnace is changed to 10, 50, 10 as an average value by changing the time in the furnace.
It was set to 0, 150, and 200 μm. In addition, since a test material having a scale layer thickness of approximately 0 μm prepared by heating in an Ar gas atmosphere was prepared, the scale layer thickness became 6 levels.
【0029】[0029]
【表1】 [Table 1]
【0030】目視検査においては、焼付疵および筋状疵
の発生程度を評価した。結果を表2に示す。In the visual inspection, the degree of occurrence of seizure flaws and streak flaws was evaluated. The results are shown in Table 2.
【0031】[0031]
【表2】 [Table 2]
【0032】表2の結果の通り、スケール層厚さを10〜
100 μm とすることによって焼付疵、筋状疵のない製管
作業が可能であった。As shown in Table 2, the scale layer thickness is 10 to
By setting the thickness to 100 μm, it was possible to perform pipe manufacturing work without seizure flaws or streak-like flaws.
【0033】[0033]
【実施例2】実施例1と同様に、表1に示す5種の材質
のビレットを同じく表1の加熱温度にまで電気式加熱炉
にて大気中加熱し、約200 〜500 μm のスケール層を形
成せしめた後、直ちにノズル圧力500 kg/cm2の高圧水デ
スケーラによって表面スケールの一部を除去し、残留ス
ケール厚さを約20〜70μm とした。その後は実施例1と
同様の圧延、酸洗、目視検査を実施した。結果は全て良
好であり、一旦過剰なスケール層が形成されてもデスケ
ールによって圧延前に適正なスケール層厚さに調節すれ
ば焼付疵、筋状疵のない製管作業が可能であることを確
認した。[Example 2] As in Example 1, billets of the five materials shown in Table 1 were heated in the atmosphere to the heating temperature shown in Table 1 in an electric heating furnace to obtain a scale layer of about 200 to 500 µm. Immediately after the formation, the surface scale was partially removed by a high-pressure water descaler with a nozzle pressure of 500 kg / cm 2 , and the residual scale thickness was adjusted to about 20 to 70 μm. After that, the same rolling, pickling and visual inspection as in Example 1 were performed. The results are all good, and it was confirmed that even if an excessive scale layer is formed, if the scale layer is adjusted to an appropriate scale layer thickness before rolling by descaling, pipe manufacturing work without seizure flaws and streak flaws is possible. did.
【0034】[0034]
【実施例3】重油燃焼炉において在炉時間および空燃比
(燃料/空気混合比)によって加熱炉でのスケール層厚
さを調節して実施例1と同様の実験を行った。ただし、
スケール厚さ0μm の場合は実施しなかった。結果は表
2とほぼ同様であり、燃焼方式が異なってもスケール層
の厚さを適正範囲とすることによって焼付疵、筋状疵の
ない製管作業が可能であることを確認した。Example 3 In a heavy oil combustion furnace, the same experiment as in Example 1 was conducted by adjusting the scale layer thickness in the heating furnace according to the in-furnace time and the air-fuel ratio (fuel / air mixing ratio). However,
It was not carried out when the scale thickness was 0 μm. The results are almost the same as in Table 2, and it was confirmed that the pipe manufacturing work without seizure flaws and streak flaws is possible by setting the thickness of the scale layer to an appropriate range even if the combustion method is different.
【0035】[0035]
【実施例4】実施例3において、SUS420J1とSUS430につ
いてピアサ入側で適正スケール厚さ10〜100 μm を満足
して良好なホローシェルが得られる条件でマンドレルミ
ルまで製管した後、ホローシェルを直ちに再加熱炉 (10
00℃、重油加熱) に挿入し、在炉時間およびストレッチ
レデューサ入側でのデスケール条件の変更によってスケ
ール厚さを50〜200 μm の間で調節した後、ストレッチ
レデューサによって直径34mm×厚さ3mm ×長さ96m に外
径絞り圧延を行った。[Example 4] In Example 3, for SUS420J1 and SUS430, pipes were piped up to the mandrel mill under the condition that a proper hollow shell was obtained on the piercer entrance side with a proper scale thickness of 10 to 100 µm, and then the hollow shell was immediately reused. Heating furnace (10
Temperature (50 ° C, heating with heavy oil) and adjusting the scale thickness between 50 and 200 μm by changing the in-furnace time and descaling conditions on the stretch reducer inlet side, and then using a stretch reducer, a diameter of 34 mm × a thickness of 3 mm × Outer diameter reduction rolling was performed to a length of 96 m.
【0036】得られたホローシェルを酸洗後、目視検査
したところ、スケール厚さ100 μm以下のホローシェル
には筋状疵は一切見られなかったが、100 μm を超える
ものについては程度の差はあるものの筋状疵の発生が確
認された。つまり、圧延形式が傾斜圧延 (ピアサ) から
孔型圧延 (ストレッチレデューサ) と異なっても筋状疵
防止に必要な適正範囲が存在し、本発明が有効であるこ
とを確認した。When the obtained hollow shells were pickled and visually inspected, no streaky flaws were observed in the hollow shells having a scale thickness of 100 μm or less, but those having a scale thickness of more than 100 μm differed to some extent. However, the occurrence of streak defects was confirmed. That is, it was confirmed that the present invention is effective because there is an appropriate range necessary for preventing streak defects even when the rolling method is different from tilt rolling (piercer) to hole rolling (stretch reducer).
【0037】なお、以上の例にあっては、いずれも製管
方法としてマンネスマン・マンドレルミルラインを例に
とって説明したが、ピアサをPPM(プレスピアシングミ
ル) とする方法、あるいは、ピアサ、エロンゲータ、プ
ラグミル、リーラ、サイザを主として有するマンネスマ
ン・プラグミルライン等の他の圧延法による場合にあっ
ても本発明が有効であることは言うまでもない。In all of the above examples, the Mannesmann mandrel mill line was used as an example of the pipe making method. However, the piercer is a PPM (press piercing mill), or the piercer, elongator, and plug mill. Needless to say, the present invention is effective even in the case of other rolling methods such as a Mannesmann plug mill line mainly having a reel, a reeler, and a sizer.
【0038】[0038]
【発明の効果】以上のように、本発明によれば、12wt%
以上のCrを含有するFe基合金から圧延法によって継目無
鋼管を製造する際に発生する焼付疵および筋状疵を防止
することが可能となり、良好な表面性状を有する製品が
得られる。As described above, according to the present invention, 12 wt%
It becomes possible to prevent seizure flaws and streak flaws that occur when producing a seamless steel pipe from the Fe-based alloy containing Cr by the rolling method, and a product having good surface properties can be obtained.
【図1】圧延法による継目無製管工程 (マンネスマン・
マンドレルミルライン) を示す模式図である。[Figure 1] Seamless pipe manufacturing process by rolling method (Mannesmann
FIG. 3 is a schematic view showing a mandrel mill line).
12 : 回転炉床式加熱炉 14 : ピアサ 18 : マンドレルミル 22 : 再加熱炉 26 : ストレッチレデューサ 12: Rotary hearth type heating furnace 14: Piercer 18: Mandrel mill 22: Reheating furnace 26: Stretch reducer
Claims (1)
圧延法によって継目無鋼管を製造する方法において、加
熱炉に続く圧延工程または加熱炉に続く圧延工程および
再加熱炉に続く圧延工程の各入側において、被圧延材た
る中実の鋼片または中空の素管の外表面に付着するスケ
ール層の厚さを10〜100 μm とすることを特徴とする継
目無鋼管の製造方法。1. A method for producing a seamless steel pipe from a Fe-based alloy containing 12 wt% or more of Cr by a rolling method, which comprises a rolling step following a heating furnace or a rolling step following a heating furnace and a rolling step following a reheating furnace. The method for producing a seamless steel pipe, wherein the thickness of the scale layer adhering to the outer surface of the solid steel slab or the hollow shell, which is the material to be rolled, is 10 to 100 μm on each inlet side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4067395A JP2586274B2 (en) | 1992-03-25 | 1992-03-25 | Method for manufacturing seamless steel pipe of chromium-containing iron-based alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4067395A JP2586274B2 (en) | 1992-03-25 | 1992-03-25 | Method for manufacturing seamless steel pipe of chromium-containing iron-based alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05269507A true JPH05269507A (en) | 1993-10-19 |
JP2586274B2 JP2586274B2 (en) | 1997-02-26 |
Family
ID=13343743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4067395A Expired - Lifetime JP2586274B2 (en) | 1992-03-25 | 1992-03-25 | Method for manufacturing seamless steel pipe of chromium-containing iron-based alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2586274B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0743106A1 (en) * | 1995-05-19 | 1996-11-20 | Nkk Corporation | Method for manufacturing seamless pipe |
JP2001096304A (en) * | 1999-07-26 | 2001-04-10 | Nippon Steel Corp | Method of manufacturing martensitic stainless seamless tubes |
JP2003053403A (en) * | 2001-08-10 | 2003-02-26 | Sumitomo Metal Ind Ltd | Method for manufacturing seamless tube |
EP1795274A1 (en) * | 2004-07-20 | 2007-06-13 | Sumitomo Metal Industries, Ltd. | METHOD FOR HOT WORKING OF Cr-CONTAINING STEEL |
US7485197B2 (en) | 2003-10-10 | 2009-02-03 | Sumitomo Metal Industries, Ltd. | Method for manufacturing martensitic stainless steel tube |
JP2018510964A (en) * | 2015-02-17 | 2018-04-19 | サンドヴィック マテリアルズ テクノロジー ドイチュラント ゲーエムベーハー | Stainless steel strand manufacturing method and stainless steel strand |
-
1992
- 1992-03-25 JP JP4067395A patent/JP2586274B2/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0743106A1 (en) * | 1995-05-19 | 1996-11-20 | Nkk Corporation | Method for manufacturing seamless pipe |
US5778714A (en) * | 1995-05-19 | 1998-07-14 | Nkk Corporation | Method for manufacturing seamless pipe |
US6073331A (en) * | 1995-05-19 | 2000-06-13 | Nkk Corporation | Method for manufacturing seamless pipe |
JP2001096304A (en) * | 1999-07-26 | 2001-04-10 | Nippon Steel Corp | Method of manufacturing martensitic stainless seamless tubes |
JP2003053403A (en) * | 2001-08-10 | 2003-02-26 | Sumitomo Metal Ind Ltd | Method for manufacturing seamless tube |
US7485197B2 (en) | 2003-10-10 | 2009-02-03 | Sumitomo Metal Industries, Ltd. | Method for manufacturing martensitic stainless steel tube |
EP1795274A1 (en) * | 2004-07-20 | 2007-06-13 | Sumitomo Metal Industries, Ltd. | METHOD FOR HOT WORKING OF Cr-CONTAINING STEEL |
EP1795274A4 (en) * | 2004-07-20 | 2009-03-18 | Sumitomo Metal Ind | METHOD FOR HOT WORKING OF Cr-CONTAINING STEEL |
JP2018510964A (en) * | 2015-02-17 | 2018-04-19 | サンドヴィック マテリアルズ テクノロジー ドイチュラント ゲーエムベーハー | Stainless steel strand manufacturing method and stainless steel strand |
Also Published As
Publication number | Publication date |
---|---|
JP2586274B2 (en) | 1997-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2247612C2 (en) | Method for making hot deformed and conversion mean- and large-diameter tubes of corrosion resistant hard-to-form steels and alloys in tube rolling aggregate with pilger mills | |
JP4853515B2 (en) | Stainless steel pipe manufacturing method | |
JP2586274B2 (en) | Method for manufacturing seamless steel pipe of chromium-containing iron-based alloy | |
JP3307294B2 (en) | Manufacturing method of seamless steel pipe with excellent surface properties and equipment for manufacturing seamless steel pipe | |
JPH09271811A (en) | Method for manufacturing seamless steel pipe made of duplex stainless steel | |
JPH04168221A (en) | Manufacture of austenitic stainless seamless steel tube | |
JP2867910B2 (en) | How to prevent carburization of seamless steel pipes | |
JP2590595B2 (en) | Manufacturing method of seamless stainless steel pipe | |
JPH04111907A (en) | Production of austenitic stainless seamless steel pipe | |
JPH06198310A (en) | Manufacture of seamless stainless steel tube | |
JP2705499B2 (en) | Manufacturing method of hot seamless carbon steel pipe | |
JP3451917B2 (en) | Method for manufacturing seamless steel pipe having excellent surface properties without surface hardened layer | |
RU2788284C1 (en) | Method for the production of seamless hot-formed corrosion-resistant pipes from austenitic steel | |
JP3596449B2 (en) | Hot rolled steel sheet manufacturing method | |
RU2638264C1 (en) | METHOD OF PRODUCTION OF SEAMLESS MACHINED PIPES WITH SIZE OF 610×15-20 mm FROM STEEL TO 08Cr18N10T-S GRADE | |
JP4655379B2 (en) | Surface care method for billets | |
JP4688037B2 (en) | Seamless steel pipe manufacturing method and oxidizing gas supply device | |
JP2000343107A (en) | Method of manufacturing high-alloy seamless steel pipe | |
JPH06198311A (en) | Piercing method and piercing mill | |
JPH06240357A (en) | Production of high toughness and high strength steel pipe | |
JPH1015604A (en) | Method for rolling high alloy seamless steel tube | |
Kümmerling et al. | Pipe Manufacture—Seamless Tube and Pipe | |
JPH09201604A (en) | Manufacture of seamless steel tube | |
JPH0994610A (en) | Production of butt-welded steel tube and equipment line | |
JPH10305306A (en) | Mandrel bar for hot rolling of seamless pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19961008 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071205 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081205 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091205 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101205 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101205 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111205 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111205 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121205 Year of fee payment: 16 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121205 Year of fee payment: 16 |