JPH0526895A - Piezoelectric acceleration sensor - Google Patents

Piezoelectric acceleration sensor

Info

Publication number
JPH0526895A
JPH0526895A JP20379591A JP20379591A JPH0526895A JP H0526895 A JPH0526895 A JP H0526895A JP 20379591 A JP20379591 A JP 20379591A JP 20379591 A JP20379591 A JP 20379591A JP H0526895 A JPH0526895 A JP H0526895A
Authority
JP
Japan
Prior art keywords
piezoelectric film
support plate
acceleration sensor
joined
directly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20379591A
Other languages
Japanese (ja)
Inventor
Satoshi Kunimura
智 國村
Shiro Nakayama
四郎 中山
Katsuhiko Takahashi
克彦 高橋
Takayuki Imai
隆之 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP20379591A priority Critical patent/JPH0526895A/en
Publication of JPH0526895A publication Critical patent/JPH0526895A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)

Abstract

PURPOSE:To remove the dispersion of output per sensor caused by the thickness of an adhesive agent layer and improve impact resistance, by joining directly a supporting plate made up of conductive plastics and a piezoelectric film with ultrasonic waves. CONSTITUTION:Supporting plates 2 made up of conductive plastics are directly joined to both inside and outside surfaces of a piezoelectric film 1. The supporting plate 2 can be joined with the piezoelectric film 1 by applying ultrasonic waves, because the plate 2 are made of plastics. Therefore, the dispersion of sensor output caused by the thickness of an adhesive agent layer 3 does not occur because the piezoelectric film 1 and the supporting plate 2 can directly be joined without putting the adhesive agent layer 3 between the film 1 and the plate 2. Both are incorporated in one and very firmly joined because joined directly with the ultrasonic waves. Therefore, it does not occur that the both scale off, and consequently the impact resistance is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は加速度センサに係り、
特に接着剤に起因したセンサ毎の出力のばらつきが少な
く、かつ耐衝撃性が向上した加速度センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor,
In particular, the present invention relates to an acceleration sensor in which there is little variation in the output of each sensor due to the adhesive and the impact resistance is improved.

【0002】[0002]

【従来の技術】図2は、従来の加速度センサを示す断面
図である。このものは一般に充分な剛性を有する材料か
らなる台座5上に検知部4,さらにその上に慣性質量部
として機能する剛体からなる荷重体7が設けられたもの
である。
2. Description of the Related Art FIG. 2 is a sectional view showing a conventional acceleration sensor. This is generally a pedestal 5 made of a material having sufficient rigidity, on which a detection unit 4 and a load body 7 made of a rigid body functioning as an inertial mass unit are provided.

【0003】前記検知部4は台座5の検知軸に垂直な測
定面に固着されている。この加速度センサの検知部4
は、図3に示すように、圧電フィルム1の表裏両面側に
それぞれ、電極6と支持板2とがエポキシ系などの接着
剤によって固着されたサンドイッチ構造である。前記圧
電フィルム1の平面形状は検知軸Gを中心として点対称
に構成されている。この加速度センサの検知部4では、
支持板2と圧電フィルム1との平面形状が同一となって
いる。前記荷重体7の前記検知部4との接触面の形状
は、前記検知軸Gを中心とする点対称である。この荷重
体7は、前記測定面の検知軸Gを中心にして点対称であ
り、図4に示すように、検知軸Gを含む平面、例えば平
面Sで荷重体7の断面Mを取った場合、この断面Mは検
知軸Gに対して必ず線対称である。このように荷重体7
を、検知軸Gを中心として対称な立体形状に形成する
と、センサ出力のクロストークを低減できる。
The detector 4 is fixed to a measurement surface of the pedestal 5 which is perpendicular to the detection axis. Detection unit 4 of this acceleration sensor
3 has a sandwich structure in which the electrode 6 and the support plate 2 are fixed to both front and back sides of the piezoelectric film 1 by an adhesive such as an epoxy-based adhesive, as shown in FIG. The planar shape of the piezoelectric film 1 is formed point-symmetrically with respect to the detection axis G. In the detection unit 4 of this acceleration sensor,
The support plate 2 and the piezoelectric film 1 have the same planar shape. The shape of the contact surface of the load body 7 with the detection unit 4 is point-symmetrical about the detection axis G. This load body 7 is point-symmetric with respect to the detection axis G of the measurement surface, and as shown in FIG. 4, when the cross section M of the load body 7 is taken on a plane including the detection axis G, for example, plane S. The cross section M is always line-symmetric with respect to the detection axis G. In this way, the load body 7
Is formed in a three-dimensional shape symmetrical with respect to the detection axis G, the crosstalk of the sensor output can be reduced.

【0004】[0004]

【発明が解決しようとする課題】このような従来の加速
度センサにあっては、次のような課題があった。検知部
4を工業的に製造する場合、まず大型の圧電フィルム
1、支持板2、電極6を各々接着剤を用いて接着して検
知部4を製造し、それをカットして加速度センサに合う
大きさのものを製造する。しかしこの時、各層の間に設
けられた接着剤層3の厚さは、制御が非常に困難なの
で、マクロ的にみた場合、その厚さには当然ばらつきが
でてくる。従って、従来の加速度センサでは、センサ毎
に上記接着剤層3の厚さに起因したセンサ出力のばらつ
きが生じる。また検知部の各構成部品は接着剤で固着さ
れているので、特に横方向から強烈な衝撃をうけると接
着剤が剥がれ易く、例えば、圧電フィルム1と支持板2
とが剥離してしまう。
The conventional acceleration sensor as described above has the following problems. When manufacturing the detection unit 4 industrially, first, the large piezoelectric film 1, the support plate 2, and the electrode 6 are bonded to each other with an adhesive to manufacture the detection unit 4, which is cut to fit the acceleration sensor. Manufacture the size. However, at this time, since the thickness of the adhesive layer 3 provided between the respective layers is very difficult to control, the thickness naturally varies when viewed macroscopically. Therefore, in the conventional acceleration sensor, the sensor output varies due to the thickness of the adhesive layer 3 for each sensor. Further, since the respective components of the detection section are fixed by the adhesive, the adhesive is easily peeled off particularly when a strong impact is applied from the lateral direction. For example, the piezoelectric film 1 and the support plate 2
And peel off.

【0005】[0005]

【課題を解決するための手段】本発明は上記事情に鑑み
てなされたもので、導電性プラスチックからなる支持板
と圧電フィルムとを超音波で直接接合せしめることによ
り前記課題の解決を図った。前記圧電フィルムにはポリ
フッ化ビニル、ポリ塩化ビニル、ナイロン11等を素材
としたものを使用できる。これらの素材は溶融すると圧
電性を失う。しかし超音波での接合は界面の極近傍のみ
に起こるので、本発明の加速度センサの圧電フィルムの
圧電性にはなんら問題は生じない。前記支持板をなす導
電性プラスチックは、素材には特に制限はなく、かつフ
ィラーが含有されていてもよい。用いる導電性プラスチ
ックは体積抵抗率500Ω・cm以下のものが好まし
い。さらにこの導電性プラスチックは好ましくは弾性率
が高いものであることが望まれる。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has solved the above problems by directly bonding a support plate made of a conductive plastic and a piezoelectric film by ultrasonic waves. The piezoelectric film may be made of polyvinyl fluoride, polyvinyl chloride, nylon 11 or the like. When melted, these materials lose their piezoelectricity. However, since the ultrasonic bonding occurs only in the very vicinity of the interface, no problem occurs in the piezoelectricity of the piezoelectric film of the acceleration sensor of the present invention. The material of the conductive plastic forming the support plate is not particularly limited, and may contain a filler. The conductive plastic used preferably has a volume resistivity of 500 Ω · cm or less. Further, it is desired that the conductive plastic preferably has a high elastic modulus.

【0006】[0006]

【作用】本発明の圧電型加速度センサでは、支持板に導
電性プラスチックからなるものを用いたので、電極とし
ての役割を兼ねることができ、圧電フィルムに直に接す
るように支持板を設けることができる。さらに支持板は
プラスチック製なので、超音波を印加することによって
圧電フィルムと接合することができる。従って、本発明
の圧電型加速度センサでは、圧電フィルムと支持板とを
接着剤層を介さずに直接接合することができる。また、
本発明の圧電型加速度センサの圧電フィルムと支持板と
を直接超音波で接合せしめるので、両者が一体化し、極
めて強固に接合する。従って、両者が剥離することがな
く、その結果、耐衝撃性が向上する。
In the piezoelectric acceleration sensor of the present invention, since the support plate made of conductive plastic is used, it can also serve as an electrode, and the support plate can be provided so as to be in direct contact with the piezoelectric film. it can. Furthermore, since the support plate is made of plastic, it can be bonded to the piezoelectric film by applying ultrasonic waves. Therefore, in the piezoelectric acceleration sensor of the present invention, the piezoelectric film and the support plate can be directly bonded without the adhesive layer. Also,
Since the piezoelectric film of the piezoelectric acceleration sensor of the present invention and the supporting plate are directly bonded by ultrasonic waves, they are integrated and bonded extremely firmly. Therefore, the both are not separated, and as a result, the impact resistance is improved.

【0007】[0007]

【実施例】以下、図面を参照して本発明の電線の接続方
法を詳しく説明する。なお前記従来例と同一構成部分に
は、同一符号を付して説明を簡略化する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A wire connecting method of the present invention will be described in detail below with reference to the drawings. The same components as those of the conventional example are designated by the same reference numerals to simplify the description.

【0008】本実施例の圧電型加速度センサと従来のも
のとの相違点は、検知部4の構造にある。本実施例の検
知部4は、図1に示すように、圧電フィルム1の表裏両
面に導電性プラスチックからなる支持板2を直接接合せ
しめたものである。圧電フィルム1と支持板2とはその
界面に5秒間、超音波を印加することにより超音波接合
されている。前記圧電フィルム1にはポリフッ化ビニリ
デンからなる、厚さ110μm、一辺5mmの正方形状
のものを用いた。支持板2にはポリブチレンテレフタレ
ートにフィラーとしてカーボンファイバーを練りこんだ
材料を1.5mmの厚さに延ばし、さらに一辺5mmの
正方形状に成形したものを用いた。このものの体積抵抗
率は10Ω・cmである。
The difference between the piezoelectric acceleration sensor of the present embodiment and the conventional one is in the structure of the detection section 4. As shown in FIG. 1, the detection unit 4 of the present embodiment is one in which a support plate 2 made of a conductive plastic is directly bonded to both front and back surfaces of a piezoelectric film 1. The piezoelectric film 1 and the support plate 2 are ultrasonically bonded to the interface by applying ultrasonic waves for 5 seconds. As the piezoelectric film 1, a square film made of polyvinylidene fluoride having a thickness of 110 μm and a side of 5 mm was used. As the support plate 2, a material obtained by spreading polybutylene terephthalate into which carbon fiber was kneaded as a filler to a thickness of 1.5 mm and further forming a square shape having a side of 5 mm was used. The volume resistivity of this product is 10 Ω · cm.

【0009】前記構造のサンプルを50個用意し、この
サンプルについてセンサ出力のばらつきと耐衝撃性とを
測定した。耐衝撃性の測定はアルミニウムからなる10
cm3 のブロック上に前記構造からなるセンサを固定
し、衝撃方向が検知軸Gと直交するようにコンクリート
ブロック上に落下させた。耐衝撃性はこの時破壊された
センサの個数を調べることによって求めた。また、サン
プル50個中の最大出力/最小出力という値でセンサ出
力のばらつきを示した。
Fifty samples having the above-mentioned structure were prepared, and variations in sensor output and impact resistance were measured for this sample. Impact resistance measurement is made of aluminum 10
A sensor having the above structure was fixed on a block of cm 3 , and dropped on a concrete block so that the impact direction was orthogonal to the detection axis G. The impact resistance was determined by examining the number of sensors destroyed at this time. Further, the variation of the sensor output is shown by the value of the maximum output / minimum output among the 50 samples.

【0010】比較のために、従来使用されているセンサ
に付いても出力と耐衝撃性を測定した。比較例として準
備したセンサは圧電フィルム1としては前述したものと
同様のものを用い、その圧電フィルム1の両面に電極6
として、厚さ30μm、一辺5mmの正方形形状からな
る銅箔をエポキシ接着剤で前記圧電フィルム1の両面に
接着し、さらにその両面にガラスエポキシからなる、厚
さ1.5nm、一辺5mmの正方形形状の板を支持板2
として同様に接着した。この比較用サンプルを50個製
造した。
For comparison, the output and impact resistance of the conventionally used sensor were measured. The sensor prepared as a comparative example uses the same piezoelectric film 1 as described above, and the electrodes 6 are provided on both sides of the piezoelectric film 1.
A copper foil having a thickness of 30 μm and a side shape of 5 mm is adhered to both sides of the piezoelectric film 1 with an epoxy adhesive, and glass epoxy is provided on both sides of the copper foil having a thickness of 1.5 nm and a side shape of 5 mm. Support plate 2
As well as glued. Fifty comparison samples were manufactured.

【0011】測定結果は以下に示す通りである。 The measurement results are as shown below.

【0012】表1から分かるように、本実施例の加速度
センサは従来のものに比べてセンサ毎の出力のばらつき
も小さく、かつ耐衝撃性も向上している。
As can be seen from Table 1, the acceleration sensor of this embodiment has smaller variation in the output from each sensor and improved impact resistance as compared with the conventional one.

【0013】本実施例の圧電型加速度センサの検知部4
では、支持板2に導電性プラスチックからなるものを用
いたので、電極6としての役割を兼ねることができ、圧
電フィルム1に直に接するように支持板2を設けること
ができる。さらに支持板2はプラスチック製なので、超
音波を印加することによって圧電フィルム1と接合する
ことができる。従って、本実施例の圧電型加速度センサ
では、圧電フィルム1と支持板2とを接着剤層3を介さ
ずに直接接合することができるので、接着剤層の厚さに
起因したセンサ毎の出力のばらつきはなくなった。また
圧電フィルム1と支持板2とを直接、超音波接合せしめ
るので、両者が一体化し、強固に接合する。従って、両
者が剥離することがなく、耐衝撃性が向上した。
Detection unit 4 of the piezoelectric acceleration sensor of this embodiment
Since the support plate 2 made of conductive plastic is used, it can also serve as the electrode 6, and the support plate 2 can be provided so as to be in direct contact with the piezoelectric film 1. Further, since the support plate 2 is made of plastic, it can be bonded to the piezoelectric film 1 by applying ultrasonic waves. Therefore, in the piezoelectric acceleration sensor according to the present embodiment, the piezoelectric film 1 and the support plate 2 can be directly bonded without the adhesive layer 3, so that the output of each sensor due to the thickness of the adhesive layer. The variability disappeared. Moreover, since the piezoelectric film 1 and the support plate 2 are directly ultrasonically bonded, they are integrated and firmly bonded. Therefore, both were not separated and the impact resistance was improved.

【0014】[0014]

【発明の効果】本発明の圧電型加速度センサの検知部で
は、支持板に導電性プラスチックからなるものを用いた
ので、電極としての役割を兼ねることができ、圧電フィ
ルムに直に接するように支持板を設けることができる。
さらに支持板はプラスチック製なので、超音波を印加す
ることによって圧電フィルムと接合することができる。
従って、本発明の圧電型加速度センサでは、圧電フィル
ムと支持板とを接着剤層を介さずに直接接合することが
できるので、接着剤層の厚さに起因したセンサ毎の出力
のばらつきはなくなった。また圧電フィルムと支持板と
を直接、超音波接合せしめるので、両者が一体化し、強
固に接合する。従って、両者が剥離することがなく、耐
衝撃性が向上した。
In the detecting portion of the piezoelectric acceleration sensor of the present invention, since the supporting plate made of conductive plastic is used, it can also serve as an electrode and is supported so as to be in direct contact with the piezoelectric film. A plate can be provided.
Furthermore, since the support plate is made of plastic, it can be bonded to the piezoelectric film by applying ultrasonic waves.
Therefore, in the piezoelectric acceleration sensor of the present invention, since the piezoelectric film and the support plate can be directly bonded without the adhesive layer interposed, there is no variation in the output from sensor to sensor due to the thickness of the adhesive layer. It was Further, since the piezoelectric film and the supporting plate are directly ultrasonically bonded, they are integrated and firmly bonded. Therefore, both were not separated and the impact resistance was improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の加速度センサを示す断面図FIG. 1 is a sectional view showing an acceleration sensor according to a first embodiment.

【図2】従来の加速度センサを示す断面図FIG. 2 is a sectional view showing a conventional acceleration sensor.

【図3】従来の加速度センサの検知部を示す断面図FIG. 3 is a cross-sectional view showing a detection unit of a conventional acceleration sensor.

【図4】従来の加速度センサの荷重体を説明するための
斜視図
FIG. 4 is a perspective view for explaining a load body of a conventional acceleration sensor.

【符号の説明】[Explanation of symbols]

1・・圧電フィルム 2・・支持板 4・・検知部
5・・台座 7・・荷重体
1 ... Piezoelectric film 2 ... Support plate 4 ... Detection part 5 ... Pedestal 7 ... Load body

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今井 隆之 東京都江東区木場1丁目5番1号 藤倉電 線株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Takayuki Imai 1-5-1 Kiba, Koto-ku, Tokyo Inside Fujikura Electric Wire Co., Ltd.

Claims (1)

【特許請求の範囲】 【請求項1】 被測定物に剛に取り付けられる台座と、
この台座の検知軸に垂直な測定面に固着された検知部
と、この検知部上に固着され慣性質量部として作用する
剛体からなる荷重体を有し、前記検知部が圧電フィルム
とこの圧電フィルムの表裏両面側に設けられた支持板と
からなる圧電型加速度センサにおいて、 前記支持板が導電性プラスチックからなり、前記圧電フ
ィルムと支持板とが超音波接合によって直接固着されて
いる圧電型加速度センサ。
Claims: 1. A pedestal rigidly attached to an object to be measured,
The pedestal has a detection unit fixed to a measurement surface perpendicular to the detection axis, and a load body made of a rigid body fixed on the detection unit and acting as an inertial mass unit. The detection unit has a piezoelectric film and the piezoelectric film. In the piezoelectric acceleration sensor including a support plate provided on both front and back sides, the support plate is made of conductive plastic, and the piezoelectric film and the support plate are directly fixed by ultrasonic bonding. ..
JP20379591A 1991-07-18 1991-07-18 Piezoelectric acceleration sensor Withdrawn JPH0526895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20379591A JPH0526895A (en) 1991-07-18 1991-07-18 Piezoelectric acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20379591A JPH0526895A (en) 1991-07-18 1991-07-18 Piezoelectric acceleration sensor

Publications (1)

Publication Number Publication Date
JPH0526895A true JPH0526895A (en) 1993-02-02

Family

ID=16479874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20379591A Withdrawn JPH0526895A (en) 1991-07-18 1991-07-18 Piezoelectric acceleration sensor

Country Status (1)

Country Link
JP (1) JPH0526895A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011107163A (en) * 1999-07-07 2011-06-02 Micro-Poise Measurement Systems Llc Vibration correction system for tire testing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011107163A (en) * 1999-07-07 2011-06-02 Micro-Poise Measurement Systems Llc Vibration correction system for tire testing system

Similar Documents

Publication Publication Date Title
EP0528279B1 (en) Flexible piezoelectric device
US7441321B2 (en) Method of manufacturing ultrasound transducer device having acoustic backing
JP3183177B2 (en) Acceleration sensor
US9872120B2 (en) Ultrasonic transducers and methods of manufacturing the same
JPH0526895A (en) Piezoelectric acceleration sensor
JP2000131298A (en) Ultrasonic probe
JPH09170926A (en) Angular velocity sensor
JP2688252B2 (en) Piezoelectric acceleration sensor
JP4439851B2 (en) Array-type ultrasonic probe and manufacturing method thereof
JPH05172624A (en) Piezoelectric type vibration sensor device
JPH06148011A (en) Piezoelectric vibration sensor
JP2007107990A (en) Acceleration sensor
JPH10314672A (en) Plate type ultrasonic oscillator
JPH09304171A (en) Piezoelectric vibration sensor
JPH05172841A (en) Output adjustment method for piezoelectric vibration sensor
JPH07108040B2 (en) Ultrasonic probe and manufacturing method thereof
JPH11258262A (en) Piezoelectric sensor
JPH01245796A (en) Ceramic for piezoelectric vibrator and its manufacture
JPH05203666A (en) Piezoelectric vibration sensor
JP2677689B2 (en) Acceleration sensor chip manufacturing method
JPH05249135A (en) Manufacture of piezoelectric acceleration sensor
JPS6177498A (en) Ultrasonic probe and manufacturing method
JPH0575000B2 (en)
JPH09119860A (en) Piezoelectric vibration sensor apparatus
JP2003038486A (en) Ultrasonic probe

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008