JPH05267672A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH05267672A
JPH05267672A JP4066045A JP6604592A JPH05267672A JP H05267672 A JPH05267672 A JP H05267672A JP 4066045 A JP4066045 A JP 4066045A JP 6604592 A JP6604592 A JP 6604592A JP H05267672 A JPH05267672 A JP H05267672A
Authority
JP
Japan
Prior art keywords
control circuit
semiconductor device
insulating layer
layer
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4066045A
Other languages
Japanese (ja)
Other versions
JP2871939B2 (en
Inventor
Tatsuo Miyajima
辰夫 宮嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4066045A priority Critical patent/JP2871939B2/en
Publication of JPH05267672A publication Critical patent/JPH05267672A/en
Application granted granted Critical
Publication of JP2871939B2 publication Critical patent/JP2871939B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To remarkably improve resistance to noise at a low cost, in a power IC wherein a vertical type power element (MOSFET, IGBT, etc.) and its control circuit are constituted in a chip. CONSTITUTION:An insulating layer 14 is buried in a P-well 13 in which a junction (J1) for blocking a main circuit voltage is formed by using an SIMOX method and a short path 15 is formed at the same time. A control. circuit is formed only on the insulating layer 14. Thereby the control circuit is hardly affected by the displacement current due to dv/dt, especially in the case of sharp dv/dt at the time of turning OFF of a power element which turns a main current ON and OFF, so that malfunction is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ローサイドスイッチに
適した半導体装置、特に、自動車,各種自動機のソレノ
イド駆動,直流モータの駆動,各種ディスプレイの駆
動,直流モータの駆動等多くの用途に用いられるパワー
ICに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in many applications such as semiconductor devices suitable for low-side switches, in particular, solenoid driving of automobiles and various automatic machines, driving of DC motors, driving of various displays, driving of DC motors. The present invention relates to a power IC.

【0002】[0002]

【従来の技術】まず、ローサイド,単一パワー出力のパ
ワーICについて説明する。このパワーICを最も単純
な構造で実現する方法につて述べる。図7はnチャンネ
ルたて形MOS FETをパワー素子とし、MOS F
ETのPウエルと同じP拡散によって形成された大きな
Pウエルのなかに、MOS FETの制御回路を形成し
たものである。図7(a)はチップの平面図で、1はチ
ップ、2はたて形MOS FET部、3は制御回路部、
4はボンディングパット、10はたて形MOS FET
のソースである。図7(b)は、図7(a)のA部拡大
図で、5はn+ 領域、6は制御回路のMOS FETの
ソース、7はそのゲート、8はそのドレイン、9はn領
域、10はMOS FETのソース、11は同じくゲー
ト、12は同じくドレイン、13はPウエル、18はN
ウエル、19はソース,ドレイン拡散層、20はn−n
+ シリコン基板、21はゲート酸化膜、22はポリシリ
コンゲートである。この構造は最も簡単な構造で、大容
量パワー素子をもつローサイドスイッチを提供しうる。
2. Description of the Related Art First, a low-side, single power output power IC will be described. A method of realizing this power IC with the simplest structure will be described. In FIG. 7, an n-channel vertical MOS FET is used as a power element, and a MOS F
The control circuit of the MOS FET is formed in a large P well formed by the same P diffusion as the P well of the ET. FIG. 7A is a plan view of a chip, 1 is a chip, 2 is a vertical MOS FET part, 3 is a control circuit part,
4 is a bonding pad and 10 is a vertical MOS FET
Is the source of. 7B is an enlarged view of part A of FIG. 7A, 5 is an n + region, 6 is the source of the MOS FET of the control circuit, 7 is its gate, 8 is its drain, 9 is an n region, 10 is the source of the MOS FET, 11 is the same gate, 12 is the same drain, 13 is a P well, and 18 is N
Well, 19 is a source / drain diffusion layer, 20 is nn
+ Silicon substrate, 21 is a gate oxide film, and 22 is a polysilicon gate. This structure is the simplest structure and can provide a low-side switch having a large capacity power element.

【0003】[0003]

【発明が解決しようとする課題】上記のような従来の半
導体装置は、dv/dt耐量が極めて小さいという致命
的欠点があった。すなわち、例えば出力MOS FET
がON状態からOFF状態にスイッチする際、Pウエル
が作る接合J1 に出力MOS FETのターンオフに伴
うdv/dtが印加され、このdv/dtによる偏位電
流(図7(b)に矢印で示す)が制御回路のnチャンネ
ルMOS FET部のドレイン直下のPNPN四層構造
をラッチアップさせたり、あるいはPチャンネルMOS
FETのドレインに流入し、後段の素子をドライブし
て誤動作させてしまうという問題があった。
The conventional semiconductor device as described above has a fatal defect that the dv / dt resistance is extremely small. That is, for example, an output MOS FET
Is switched from the ON state to the OFF state, a dv / dt accompanying the turn-off of the output MOS FET is applied to the junction J 1 formed by the P well, and the excursion current due to this dv / dt (see an arrow in FIG. 7B). Shows the latch-up of the PNPN four-layer structure directly under the drain of the n-channel MOS FET part of the control circuit, or the P-channel MOS.
There is a problem that it flows into the drain of the FET and drives a device in the subsequent stage to cause a malfunction.

【0004】本発明は、上記の課題を解決するためにな
されたもので、dv/dtによる偏位電流によって、パ
ワーICの制御回路が誤動作するのを防ぐことが可能な
半導体装置を得ることを目的とする。
The present invention has been made to solve the above problems, and it is an object of the present invention to obtain a semiconductor device capable of preventing a control circuit of a power IC from malfunctioning due to a deviation current due to dv / dt. To aim.

【0005】[0005]

【課題を解決するための手段】本発明に係る半導体装置
は、ウエル中に断続的、かつ平面的に絶縁体層を形成し
て、たて方向の短絡路を形成するとともに、この絶縁体
層上にのみ制御回路を形成する構成としたものである。
In a semiconductor device according to the present invention, an insulating layer is intermittently and planarly formed in a well to form a short circuit path in the vertical direction, and the insulating layer is formed. The control circuit is formed only on the top.

【0006】また、短絡路の上部に高濃度の不純物を拡
散して低電位電源と結線したり、高濃度の不純物を拡散
した短絡路の周囲に接地されない反対導電型の高不純物
濃度層を形成することも好ましい。
In addition, a high-concentration impurity is diffused above the short-circuit path and connected to a low-potential power source, or a high-impurity concentration layer of the opposite conductivity type which is not grounded is formed around the short-circuit path where the high-concentration impurity is diffused. It is also preferable to

【0007】[0007]

【作用】本発明においては、パワー素子のターンオフ時
に発生する偏位電流が、絶縁体層によってブロックさ
れ、短絡路を通過するようになる。また、短絡路が低電
位電源と接続されていれば、偏位電流が外部に放出され
やすい。
In the present invention, the excursion current generated when the power element is turned off is blocked by the insulating layer and passes through the short circuit path. Further, if the short circuit is connected to the low potential power source, the excursion current is likely to be emitted to the outside.

【0008】[0008]

【実施例】図1(a),(b)〜図4(a),(b)に
本発明の半導体装置の一実施例の製造工程を示す。これ
らの図において、図7と同一符号は同一のものを示し、
14はSIMOX(Separated by Inplanted Oxigen) 法
により形成された絶縁体層、15はこの絶縁体層14に
形成された短絡路、16は低抵抗短絡路、17はn形不
純物拡散層である。以下、工程について説明する。
1 (a), 1 (b) to 4 (a), 4 (b) show a manufacturing process of an embodiment of a semiconductor device of the present invention. In these figures, the same reference numerals as those in FIG.
Reference numeral 14 is an insulator layer formed by the SIMOX (Separated by Inplanted Oxigen) method, 15 is a short circuit path formed in the insulation layer 14, 16 is a low resistance short circuit path, and 17 is an n-type impurity diffusion layer. The steps will be described below.

【0009】まず、n−n+ シリコン基板20を使用
し、通常のパワーMOS FETを作成するプロセスに
よりPウエル13を図1(a)に示すように、制御回路
を構成する部分およびパワーMOS FETの部分に形
成する。この場合、制御回路部分には図1(b)の拡大
図に示すように、全面に、そしてパワーMOS FET
部分には各セグメント対応で形成する。
First, as shown in FIG. 1A, the P well 13 is formed by a process of forming an ordinary power MOS FET using the nn + silicon substrate 20, and a portion constituting the control circuit and the power MOS FET. Is formed in the part of. In this case, the control circuit portion is, as shown in the enlarged view of FIG.
The part is formed corresponding to each segment.

【0010】次に、図2(a),(b)に示すように、
SIMOX法によりイオン注入機(図示せず)を用いて
- を制御回路部の所定の場所に所定の深さで注入して
絶縁体層14を形成する。この時、制御部分の周辺部分
およびdv/dt偏位電流のバイパス路形成のために島
状に注入を行わない領域を設けて短絡路15を形成す
る。
Next, as shown in FIGS. 2 (a) and 2 (b),
O 2 is implanted into the control circuit portion at a predetermined depth by a SIMOX method using an ion implanter (not shown) to form the insulator layer 14. At this time, a short-circuit path 15 is formed by providing an island-shaped region where injection is not performed in order to form a peripheral portion of the control portion and a bypass passage for the dv / dt deviation current.

【0011】次に、YAGレーザ等により酸素イオンを
注入した領域を走査しアニールすることにより、酸素イ
オン注入によりモザイク化したシリコンの結晶性を改復
させる。しかるのち、短絡路15に対応させてボロン等
P形不純物を高濃度で拡散し、図3(a)に示すよう
に、低抵抗短絡路16を形成する。また、一層この短絡
路の効果を高めることを必要とする場合は、図3(b)
に示すように、ボロン拡散層を取り囲むようにリン等の
n形不純物の拡散層17を形成すると効果的である。
Next, the crystallinity of the silicon mosaiced by the oxygen ion implantation is restored by scanning and annealing the region into which the oxygen ions are implanted with a YAG laser or the like. After that, a P-type impurity such as boron is diffused at a high concentration so as to correspond to the short circuit 15, and a low resistance short circuit 16 is formed as shown in FIG. Further, when it is necessary to further enhance the effect of this short-circuit path, FIG.
It is effective to form the diffusion layer 17 of n-type impurities such as phosphorus so as to surround the boron diffusion layer as shown in FIG.

【0012】次に、通常用いられる方法により、パワー
MOS FET部に対してはソース10に対応するn形
層制御回路部に対しては、埋め込まれた絶縁体層14上
のシリコン層にNウエル18,ソース,ドレイン拡散層
19等を形成し、さらに、ゲート酸化膜21,ポリシリ
コンゲート22等を形成する。そして、その他必要なプ
ロセスを経た後金属層による電極配線を行う。この金属
配線において、すでに述べた短絡路15上の低抵抗短絡
路16は、接地電位またはMOS FETのソース電位
に接続される。このようにして得られた本発明の一実施
例の部分拡大図を図4に示す。
Next, by a commonly used method, for the power MOS FET portion, the n-well corresponding to the source 10 is formed in the silicon layer on the buried insulator layer 14 for the n-type layer control circuit portion. 18, a source / drain diffusion layer 19 and the like are formed, and a gate oxide film 21, a polysilicon gate 22 and the like are further formed. Then, after passing through other necessary processes, electrode wiring is performed using a metal layer. In this metal wiring, the low resistance short circuit 16 on the short circuit 15 described above is connected to the ground potential or the source potential of the MOS FET. FIG. 4 shows a partially enlarged view of an embodiment of the present invention thus obtained.

【0013】次に、本発明の動作を図5(a),(b)
を用いて説明する。パワーMOS FETのターンオフ
時の波形は図5(a)に示すようになっており、オン状
態で充電された状態にあるゲート容量の電荷が放電され
ると急激にMOS FETはオフ状態に移行し、ソース
ドレイン電流IDSが零になるのに対応し、ソースドレイ
ン電圧VDSはオン状態の数Vの電圧から電源電圧(抵抗
負荷時)まで数千v/μsにおよぶ高いdv/dtで立
ち上がる。このVDSの変化により接合J1 は急激に充電
され(この充電電流を偏位電流と呼ぶ)、偏位電流が流
れることになるが、図5(b)において、偏位電流は埋
めこまれた絶縁体層14に阻まれて、接合J1 を形成す
るPウエル13内を横方向に流れ、短絡路14を通って
電源に流れる。したがって、制御回路のMOS FET
やその他の有用な場所に流れ込むことがなくなる。
Next, the operation of the present invention will be described with reference to FIGS.
Will be explained. The waveform of the power MOS FET at the time of turn-off is as shown in FIG. 5 (a), and when the charge of the gate capacitance in the on state is discharged, the MOS FET rapidly shifts to the off state. , The source / drain current I DS becomes zero, and the source / drain voltage V DS rises at a high dv / dt of several thousand v / μs from the voltage of several V in the ON state to the power supply voltage (during resistive load). .. Due to this change in V DS, the junction J 1 is rapidly charged (this charging current is referred to as excursion current), and the excursion current flows, but the excursion current is buried in FIG. 5B. Blocked by the insulating layer 14 and flowing laterally in the P-well 13 forming the junction J 1 , it flows through the short circuit path 14 to the power supply. Therefore, the control circuit MOS FET
And no other useful place.

【0014】また、短絡路14を全く設けないと、接合
1 と絶縁体層14のPウエル13のシート抵抗Rによ
って変位電流×Rの電圧が絶縁体層14の直下のP層内
に発生する。絶縁体層14のシート抵抗は一般に100
Ω以上、また、接合容量を1000PF/cm2 程度以
上とすると中心部で数十vに達する場合があり、この電
圧によって埋め込み絶縁体層14の充電電流が流れるこ
とがある。この充電電流は制御回路を誤動差させること
があるが、短絡路15を設けることによってこの偏位電
流によるPウエル13内の電位上昇を数V以下にするこ
とが容易にでき、上述の誤動作を完全に防止できる。
If the short circuit 14 is not provided at all, a voltage of displacement current × R is generated in the P layer immediately below the insulating layer 14 due to the junction J 1 and the sheet resistance R of the P well 13 of the insulating layer 14. To do. The sheet resistance of the insulator layer 14 is generally 100.
When it is Ω or more, and when the junction capacitance is about 1000 PF / cm 2 or more, it may reach several tens of v in the central portion, and this voltage may cause a charging current of the embedded insulator layer 14 to flow. This charging current may cause the control circuit to erroneously make a difference. However, by providing the short-circuit path 15, it is possible to easily make the potential increase in the P well 13 due to this deviation current to several V or less, and the above-mentioned malfunction occurs. Can be completely prevented.

【0015】また、短絡路15の抵抗が高いと偏位電流
が制御回路に侵入することがあり、やはり制御回路の誤
動作をまねく。これを防止するためには、図6に示すよ
うに、低抵抗短絡路16を反対導電形の(この実施例で
はp形半導体に対して、反対のn形半導体層)n形不純
物拡散層17でとり囲む構造にすることが望ましく、こ
れによって、偏位電流の制御回路部への侵入をより確実
に防ぐことができる。なおこの場合、n形不純物拡散層
17は低抵抗短絡路16に対して電極で短絡しない方が
よい。
Further, if the resistance of the short-circuit path 15 is high, a deviation current may enter the control circuit, which also causes a malfunction of the control circuit. In order to prevent this, as shown in FIG. 6, the low resistance short circuit path 16 is provided with an n-type impurity diffusion layer 17 of an opposite conductivity type (in this embodiment, an n-type semiconductor layer opposite to a p-type semiconductor). It is desirable to have a structure surrounded by, so that the deviation current can be more reliably prevented from entering the control circuit portion. In this case, it is preferable that the n-type impurity diffusion layer 17 is not short-circuited with the electrode with respect to the low resistance short circuit path 16.

【0016】[0016]

【発明の効果】本発明は以上説明したとおり、ウエル中
に断続的、かつ平面的に絶縁体層を形成して、たて方向
の短絡路を形成するとともに、この絶縁体層上にのみ制
御回路を形成する構成としたので、パワー素子のターン
オフ時等に発生する偏位電流が、絶縁体層によってブロ
ックされ、短絡路を通過するようになり、パワー素子の
ターンオフ時のdv/dtや、外部ノイズによるdv/
dt等による接合の偏位電流が制御回路に流入するのを
阻止でき、制御回路部の誤動作を防止することができる
という効果がある。
As described above, the present invention forms an insulating layer in the well intermittently and in a plane to form a short circuit path in the vertical direction, and controls only on this insulating layer. Since the circuit is formed, the excursion current generated at the time of turning off the power element is blocked by the insulating layer and passes through the short circuit, and dv / dt at the time of turning off the power element, Dv / due to external noise
It is possible to prevent the displacement current of the junction due to dt or the like from flowing into the control circuit, and it is possible to prevent the malfunction of the control circuit unit.

【0017】また、短絡部の上部に高濃度の不純物を拡
散して低電位電源と結線したり、高濃度の不純物を拡散
した短絡路の周囲に接地されない反対導電型の高不純物
濃度層を形成流することにより、より効果的に偏位電流
による影響を低減できるほか、偏位電流によって発生す
る電位を小さくでき、一層効果的に制御回路の誤動作を
防止できる。
In addition, a high-concentration impurity is diffused in the upper part of the short-circuit portion to connect with a low-potential power source, or a high-impurity concentration layer of opposite conductivity type which is not grounded is formed around the short-circuit path in which the high-concentration impurity is diffused. By allowing the current to flow, the influence of the excursion current can be more effectively reduced, and the potential generated by the excursion current can be reduced, so that malfunction of the control circuit can be prevented more effectively.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体装置のO- 注入前の構造図であ
る。
FIG. 1 is a structural diagram of a semiconductor device of the present invention before O implantation.

【図2】本発明の半導体装置の絶縁体層の形成時の構成
図である。
FIG. 2 is a configuration diagram at the time of forming an insulator layer of the semiconductor device of the present invention.

【図3】本発明の半導体装置の短絡路の形成時の構造図
である。
FIG. 3 is a structural diagram of a semiconductor device of the present invention when a short circuit is formed.

【図4】本発明の半導体装置の一実施例の構造図であ
る。
FIG. 4 is a structural diagram of an embodiment of a semiconductor device of the present invention.

【図5】dv/dt偏位電流に対する効果を説明する図
である。
FIG. 5 is a diagram illustrating an effect on dv / dt deviation current.

【図6】本発明の他の実施例の構造図である。FIG. 6 is a structural diagram of another embodiment of the present invention.

【図7】従来の半導体装置の構成図である。FIG. 7 is a configuration diagram of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1 半導体チップ 2 たて形MOS FET部 3 制御回路部 4 ワイヤボンディングパッド 5 n+ 領域 6 制御回路のMOS FETのソース 7 制御回路のMOS FETのゲート 8 制御回路のMOS FETのドレイン 9 n領域 10 たて形MOS FETのソース 11 たて形MOS FETのゲート 12 たて形MOS FETのドレイン 13 Pウエル 14 絶縁体層 15 短絡路 16 低抵抗短絡路 17 n形不純物拡散 18 Nウエル1 Semiconductor Chip 2 Vertical MOS FET Section 3 Control Circuit Section 4 Wire Bonding Pad 5 n + Region 6 Source of MOS FET of Control Circuit 7 Gate of MOS FET of Control Circuit 8 Drain of MOS FET of Control Circuit 9 n Region 10 Vertical MOS FET source 11 Vertical MOS FET gate 12 Vertical MOS FET drain 13 P-well 14 Insulator layer 15 Short circuit 16 Low resistance short 17 N-type impurity diffusion 18 N-well

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の一方の主表面から他方の主
表面に電流を流すたて型のパワー素子が構成された半導
体基板上のウエル内に前記パワー素子を制御してドライ
ブする制御回路を備えた半導体装置において、前記ウエ
ル中に断続的、かつ平面的に絶縁体層を形成して、たて
方向の短絡路を形成するとともに、この絶縁体層上にの
み制御回路を形成する構成としたことを特徴とする半導
体装置。
1. A control circuit for controlling and driving the power element in a well on a semiconductor substrate in which a power element of a vertical type is formed to flow a current from one main surface of the semiconductor substrate to the other main surface. In a semiconductor device provided with the structure, an insulating layer is intermittently and planarly formed in the well to form a short circuit path in a vertical direction, and a control circuit is formed only on the insulating layer. A semiconductor device characterized by the above.
【請求項2】 絶縁体層をSIMOX法により形成した
請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the insulator layer is formed by a SIMOX method.
【請求項3】 短絡路の上部に高濃度の不純物を拡散し
て低電位電源と結線した請求項1記載の半導体装置。
3. The semiconductor device according to claim 1, wherein a high-concentration impurity is diffused in the upper part of the short circuit and is connected to a low potential power source.
【請求項4】 高濃度の不純物を拡散した短絡路の周囲
に接地されない反対導電型の高不純物濃度層を形成した
請求項3記載の半導体装置。
4. The semiconductor device according to claim 3, wherein a high-impurity concentration layer of the opposite conductivity type that is not grounded is formed around a short circuit path in which high-concentration impurities are diffused.
JP4066045A 1992-03-24 1992-03-24 Semiconductor device Expired - Lifetime JP2871939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4066045A JP2871939B2 (en) 1992-03-24 1992-03-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4066045A JP2871939B2 (en) 1992-03-24 1992-03-24 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH05267672A true JPH05267672A (en) 1993-10-15
JP2871939B2 JP2871939B2 (en) 1999-03-17

Family

ID=13304517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4066045A Expired - Lifetime JP2871939B2 (en) 1992-03-24 1992-03-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2871939B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026708A (en) * 1995-06-28 2002-01-25 Fuji Electric Co Ltd High voltage resistance ic
US7485509B2 (en) 2003-02-13 2009-02-03 Denso Corporation Semiconductor device provided by silicon carbide substrate and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026708A (en) * 1995-06-28 2002-01-25 Fuji Electric Co Ltd High voltage resistance ic
US7485509B2 (en) 2003-02-13 2009-02-03 Denso Corporation Semiconductor device provided by silicon carbide substrate and method for manufacturing the same

Also Published As

Publication number Publication date
JP2871939B2 (en) 1999-03-17

Similar Documents

Publication Publication Date Title
US7408228B2 (en) Semiconductor device capable of avoiding latchup breakdown resulting from negative variation of floating offset voltage
US4862233A (en) Integrated circuit device having vertical MOS provided with Zener diode
US9478543B2 (en) Semiconductor integrated circuit
JP5099282B1 (en) High voltage integrated circuit device
US6069372A (en) Insulated gate type semiconductor device with potential detection gate for overvoltage protection
KR20010015835A (en) Semiconductor device
JPH0758320A (en) Insulated gate bipolar transistor
US6972475B2 (en) Semiconductor device
JP4857814B2 (en) Motor drive device
US7071516B2 (en) Semiconductor device and driving circuit for semiconductor device
JPH06188424A (en) Semiconductor structural part
JP2810641B2 (en) Circuits to prevent conduction of parasitic elements in integrated circuits
JP3893185B2 (en) Semiconductor device
JP4531276B2 (en) Semiconductor device
JP2001284589A (en) Control circuit built-in insulated gate semiconductor device
JP2871939B2 (en) Semiconductor device
JPS63137478A (en) Manufacture of semiconductor device having protective circuit
JP3843570B2 (en) Horizontal diode
KR0136384B1 (en) Semiconductor device
US5172208A (en) Thyristor
US11646364B2 (en) Power device having lateral insulated gate bipolar transistor (LIGBT) and manufacturing method thereof
JPH08293593A (en) Mos gate type thyristor and driving method therefor
JP2729062B2 (en) Integrated circuit device
JPH10107168A (en) Semiconductor integrated circuit
KR0131369B1 (en) Manufacturing method for power semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120108

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 14