JPH05259383A - Semiconductor capacity device - Google Patents
Semiconductor capacity deviceInfo
- Publication number
- JPH05259383A JPH05259383A JP5216792A JP5216792A JPH05259383A JP H05259383 A JPH05259383 A JP H05259383A JP 5216792 A JP5216792 A JP 5216792A JP 5216792 A JP5216792 A JP 5216792A JP H05259383 A JPH05259383 A JP H05259383A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- insulating film
- capacitance
- area
- capacitive element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、集積回路内に形成され
る容量素子に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacitive element formed in an integrated circuit.
【0002】[0002]
【従来の技術】図3は、集積回路内でその表面に絶縁膜
を介して容量の一方の電極となる金属膜を形成した絶縁
膜容量の従来例の平面図である。また、図4は図3に示
す容量素子のB−B′断面を含む集積回路の略断面図で
ある。2. Description of the Related Art FIG. 3 is a plan view of a conventional example of an insulating film capacitor in which a metal film serving as one electrode of a capacitor is formed on the surface of the integrated circuit via an insulating film. FIG. 4 is a schematic cross-sectional view of the integrated circuit including the BB ′ cross section of the capacitive element shown in FIG.
【0003】図3および4に示されるように、周囲と分
離された、たとえばN型エピタキシャル層5の中にN+
拡散層4が形成され、その表面に絶縁膜3が形成されて
いる。この絶縁膜3に孔をあけ、N+ 拡散層4から容量
素子の一方の端子6を取出す。そして、容量素子の他方
の端子は、絶縁膜3を介してその上に金属を蒸着した電
極1から取出す。容量素子は、電極1とそれに対応する
N+ 拡散層4とこれらに挟まれる絶縁膜3によって形成
される。容量値はおおよそ、絶縁膜3の膜厚とその誘電
率および電極1の面積によって決まる。絶縁膜3の膜厚
と誘電率は、使用する半導体プロセスによってほぼ決ま
っているため、パターン設計においては、電極1の面積
を設定することによって所望の値に設計される。As shown in FIGS. 3 and 4, N + is formed in, for example, an N type epitaxial layer 5 isolated from the surroundings.
The diffusion layer 4 is formed, and the insulating film 3 is formed on the surface thereof. A hole is opened in this insulating film 3 and one terminal 6 of the capacitive element is taken out from the N + diffusion layer 4. Then, the other terminal of the capacitive element is taken out from the electrode 1 on which the metal is vapor-deposited via the insulating film 3. The capacitive element is formed by the electrode 1, the N + diffusion layer 4 corresponding to the electrode 1, and the insulating film 3 sandwiched therebetween. The capacitance value is roughly determined by the film thickness of the insulating film 3, its dielectric constant and the area of the electrode 1. Since the film thickness and the dielectric constant of the insulating film 3 are substantially determined by the semiconductor process used, in the pattern design, it is designed to a desired value by setting the area of the electrode 1.
【0004】[0004]
【発明が解決しようとする課題】前述のような従来の容
量素子においては、極めて小さな容量、たとえば1pF
以下の容量を形成しようとした場合に、電極1の面積を
非常に小さく設定する必要がある。集積回路内で形成さ
れる電極となる金属膜は通常蒸着により形成し、エッチ
ングにより所定の形状にするが、エッチングのばらつき
によりその面積がばらつく。エッチングのばらつきに対
して、十分大きな面積の電極を使用していれば、このエ
ッチングばらつきはさほど問題にならないが、1pF以
下の容量を形成しようとすると、電極の面積を非常に小
さく設定する必要があるため、大きなばらつきが発生す
ることとなる。In the conventional capacitive element as described above, an extremely small capacitance, for example, 1 pF.
When attempting to form the following capacitance, it is necessary to set the area of the electrode 1 to be extremely small. A metal film to be an electrode formed in an integrated circuit is usually formed by vapor deposition and is formed into a predetermined shape by etching, but its area is varied due to variations in etching. If an electrode having a sufficiently large area is used against the variation in etching, this variation in etching does not pose a problem, but in order to form a capacitance of 1 pF or less, the area of the electrode needs to be set to be extremely small. Therefore, a large variation occurs.
【0005】[0005]
【課題を解決するための手段】本発明においては、半導
体基板に容量素子を2つ以上直列に接続して所望の容量
値を形成する。また、同一拡散領域の上部に絶縁膜を介
して複数の電極を設けてこれらの容量素子を直列に接続
する。In the present invention, two or more capacitive elements are connected in series on a semiconductor substrate to form a desired capacitance value. In addition, a plurality of electrodes are provided above the same diffusion region via an insulating film to connect these capacitive elements in series.
【0006】[0006]
【作用】本発明によれば、極めて小さな絶縁膜容量を形
成する場合に、容量素子を2つ以上直列に接続すること
によって、1個あたりの金属蒸着膜の面積が大きくなる
ようにして、金属蒸着膜のエッチングの際のばらつきに
よる容量値のばらつきを低減する。また、同一拡散領域
の上部に複数の金属蒸着膜による電極を設けて、直列に
接続することで、同一拡散領域が共通の電極となるか
ら、必要以上の容量素子の面積拡大を避けて容量値ばら
つき低減を実現することができる。According to the present invention, when forming a very small insulating film capacitance, by connecting two or more capacitive elements in series, the area of each metal vapor deposition film can be increased, and Variation in capacitance value due to variation during etching of a vapor deposition film is reduced. Also, by providing multiple metal evaporated film electrodes on top of the same diffusion region and connecting them in series, the same diffusion region becomes a common electrode, so avoid increasing the area of the capacitive element more than necessary and increase the capacitance value. It is possible to reduce variations.
【0007】[0007]
【実施例】図1は、本発明における一実施例の平面図を
示し、図2は、図1に示す容量素子のA−A′の断面を
含む集積回路の略断面図である。1 is a plan view of an embodiment of the present invention, and FIG. 2 is a schematic cross sectional view of an integrated circuit including a cross section AA 'of the capacitive element shown in FIG.
【0008】図1および2において、従来例と同様に周
囲と分離された、N型エピタキシャル層5の表面にN+
拡散層4が形成されている。その表面に絶縁膜3を形成
し、さらにその表面に電極1および2を形成する。第1
の容量素子C1は、絶縁膜3を介して電極1とN+ 拡散
層4との間に形成される。また、第2の容量素子C2も
同様に、絶縁膜3を介して電極2とN+ 拡散層4との間
に形成される。2つの容量素子C1およびC2はN+ 拡
散層4を共有しているため、容量素子C1およびC2の
それぞれの電極1および2から、配線を取出すことによ
り、自動的に、容量素子C1およびC2が直列接続され
た容量素子が形成される。In FIGS. 1 and 2, N + is formed on the surface of the N type epitaxial layer 5 which is separated from the surroundings as in the conventional example.
The diffusion layer 4 is formed. An insulating film 3 is formed on the surface, and electrodes 1 and 2 are further formed on the surface. First
The capacitive element C1 is formed between the electrode 1 and the N + diffusion layer 4 with the insulating film 3 interposed therebetween. Similarly, the second capacitive element C2 is also formed between the electrode 2 and the N + diffusion layer 4 with the insulating film 3 interposed therebetween. Since the two capacitive elements C1 and C2 share the N + diffusion layer 4, the wiring is taken out from the respective electrodes 1 and 2 of the capacitive elements C1 and C2, so that the capacitive elements C1 and C2 are automatically Capacitive elements connected in series are formed.
【0009】この直列接続された容量値をcとし、C1
およびC2の容量値をそれぞれc1およびc2とする
と、 c=(c1×c2)/(c1+c2)…(1)となる。Let C be the capacitance value connected in series, and C1
When the capacitance values of C2 and C2 are c1 and c2, respectively, c = (c1 * c2) / (c1 + c2) ... (1)
【0010】たとえば、c1=c2とすると、 c=c1×1/2…(2)となる。For example, if c1 = c2, then c = c1 × 1/2 (2)
【0011】前述したように、容量値は電極1および2
の面積によって主として決まり、電極の面積が小さくな
るほど電極のエッチングによるばらつきが増加する。し
たがって、本発明におけるこの実施例では、(2)式の
場合で、同じばらつきで半分の容量値を実現できる。As described above, the capacitance value is determined by the electrodes 1 and 2.
Is mainly determined by the area of the electrode, and the smaller the area of the electrode, the greater the variation due to etching of the electrode. Therefore, in this embodiment of the present invention, in the case of the formula (2), a half capacitance value can be realized with the same variation.
【0012】また、同一の拡散領域内ばかりでなく、別
の拡散領域内の複数の容量素子を直列接続することによ
っても、個々の容量素子の電極の面積を大きく設定でき
るので、1素子のみで形成する容量素子に比べて、容量
値のばらつきを低減できる。しかも、同一拡散領域内に
2個の容量素子を形成する場合は、N+ 拡散層4から取
出す一方の電極の端子6を必要としないので、さほど大
きな面積の損失がない。Further, the area of the electrode of each capacitance element can be set large by connecting a plurality of capacitance elements not only in the same diffusion region but in different diffusion regions in series. Variation in capacitance value can be reduced as compared with a capacitive element to be formed. Moreover, when two capacitive elements are formed in the same diffusion region, the terminal 6 of one electrode taken out from the N + diffusion layer 4 is not required, so that there is no large area loss.
【0013】[0013]
【発明の効果】以上のように本発明によれば、集積回路
内で絶縁膜を利用した容量素子において、複数の容量を
直列接続することにより、電極の面積を大きく設定し、
電極形成時の金属蒸着膜のエッチングによるばらつきを
低減できる。また、同一拡散領域内に2個の容量素子を
形成し、それぞれの容量素子の電極の1端子を同一拡散
領域により共通化することにより、必要以上の面積拡大
を防止できる。As described above, according to the present invention, in a capacitive element using an insulating film in an integrated circuit, a plurality of capacitors are connected in series to set a large electrode area,
It is possible to reduce variations due to etching of the metal vapor deposition film during electrode formation. Further, by forming two capacitive elements in the same diffusion region and making one terminal of the electrode of each capacitive element common to the same diffusion region, it is possible to prevent the area expansion more than necessary.
【図1】本発明の一実施例の平面図である。FIG. 1 is a plan view of an embodiment of the present invention.
【図2】本発明の一実施例の略断面図である。FIG. 2 is a schematic cross-sectional view of an embodiment of the present invention.
【図3】従来の一例の平面図である。FIG. 3 is a plan view of a conventional example.
【図4】従来の一例の略断面図である。FIG. 4 is a schematic cross-sectional view of a conventional example.
1,2 電極 3 絶縁膜 4 N+ 拡散層 5 N型エピタキシャル層1, 2 electrodes 3 insulating film 4 N + diffusion layer 5 N type epitaxial layer
Claims (2)
された電極を有する容量を2つ以上直列に接続して、所
望の容量値を形成することを特徴とする半導体容量素
子。1. A semiconductor capacitor element, comprising: connecting two or more capacitors having electrodes formed on the surface of a semiconductor substrate via an insulating film in series to form a desired capacitance value.
に絶縁膜を介して複数の電極を設けることを特徴とする
請求項1記載の半導体容量素子。2. The semiconductor capacitive element according to claim 1, wherein a plurality of electrodes are provided above the same diffusion region on the surface of the semiconductor substrate via an insulating film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5216792A JPH05259383A (en) | 1992-03-11 | 1992-03-11 | Semiconductor capacity device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5216792A JPH05259383A (en) | 1992-03-11 | 1992-03-11 | Semiconductor capacity device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05259383A true JPH05259383A (en) | 1993-10-08 |
Family
ID=12907274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5216792A Pending JPH05259383A (en) | 1992-03-11 | 1992-03-11 | Semiconductor capacity device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05259383A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150155278A1 (en) * | 2013-12-02 | 2015-06-04 | SK Hynix Inc. | Semiconductor apparatus |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62130551A (en) * | 1985-12-02 | 1987-06-12 | Nec Ic Microcomput Syst Ltd | Integrated circuit |
-
1992
- 1992-03-11 JP JP5216792A patent/JPH05259383A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62130551A (en) * | 1985-12-02 | 1987-06-12 | Nec Ic Microcomput Syst Ltd | Integrated circuit |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150155278A1 (en) * | 2013-12-02 | 2015-06-04 | SK Hynix Inc. | Semiconductor apparatus |
KR20150063736A (en) * | 2013-12-02 | 2015-06-10 | 에스케이하이닉스 주식회사 | Semiconductor device |
US9484344B2 (en) * | 2013-12-02 | 2016-11-01 | SK Hynic Inc. | Semiconductor apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5208725A (en) | High capacitance structure in a semiconductor device | |
US6383858B1 (en) | Interdigitated capacitor structure for use in an integrated circuit | |
US5420449A (en) | Capacitor for a semiconductor device | |
EP0905792B1 (en) | Stacked-fringe integrated circuit capacitors | |
KR20020020720A (en) | Multilayer capacitor structure having an array of concentric ring-shaped plates for deep sub-micron cmos | |
US20040012911A1 (en) | Integrated circuit metal-insulator-metal capacitors formed of pairs of capacitors connected in antiparallel | |
US5374579A (en) | Method of fabricating a semiconductor DRAM | |
JPH05259383A (en) | Semiconductor capacity device | |
JPH02231755A (en) | Monolithic integrated circuit having mim capacitor | |
KR100644526B1 (en) | Method of fabricating embossing-typed capacitor | |
JP2799028B2 (en) | Semiconductor device with capacitor | |
KR20000074908A (en) | Capacitor of semicon ductor device and method for fabricating the same | |
KR100309644B1 (en) | A method for fabricating capacitor | |
JPH03230561A (en) | Semiconductor device and manufacture thereof | |
JPS62104067A (en) | Semiconductor device | |
US4723194A (en) | Structure of capacitor circuit | |
JPH0328828B2 (en) | ||
JPH0473960A (en) | Integrated circuit | |
JPH07135296A (en) | Semiconductor integrated circuit device | |
JPS6211257A (en) | Microwave integrated circuit | |
JP3060389B2 (en) | condenser | |
KR100475730B1 (en) | Variable Capacitors and Manufacturing Methods | |
KR20030040563A (en) | Semiconductor device and its manufacturing method | |
JP2563456B2 (en) | MIS type capacitive element | |
JP2965638B2 (en) | Semiconductor device |