JPH05256581A - Magnetically lifting apparatus for feebly magnetic substance such as sintered ore - Google Patents

Magnetically lifting apparatus for feebly magnetic substance such as sintered ore

Info

Publication number
JPH05256581A
JPH05256581A JP8752092A JP8752092A JPH05256581A JP H05256581 A JPH05256581 A JP H05256581A JP 8752092 A JP8752092 A JP 8752092A JP 8752092 A JP8752092 A JP 8752092A JP H05256581 A JPH05256581 A JP H05256581A
Authority
JP
Japan
Prior art keywords
magnetic
electromagnet
sintered ore
magnetic flux
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8752092A
Other languages
Japanese (ja)
Other versions
JP2715215B2 (en
Inventor
Shuichi Sato
修一 佐藤
Keiji Sato
啓二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8752092A priority Critical patent/JP2715215B2/en
Publication of JPH05256581A publication Critical patent/JPH05256581A/en
Application granted granted Critical
Publication of JP2715215B2 publication Critical patent/JP2715215B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To provide the title apparatus which can effectively lift even a feebly magnetic substance such as a sintered ore through small-sized, light-weighted and low-powered constitution, by a method wherein the magnetic flux of permanent magnets is allowed to overlap on the magnetic circuits of an electromagnet and the ratio of the height of an electromagnetic coil to the distance between magnetic poles is specified. CONSTITUTION:A magnetic circuit B is composed of an E-shaped magnetic field-generating device 1 (E-shaped magnet) and a sintered ore 2 (feebly magnetic substance), which are opposed to each other through a gap. A yoke (iron core frame) 3 and a racetrack type coil 4, with which central magnetic poles are surrounded, are also provided. When a subject to be lifted (sintered ore) is the feebly magnetic substance, most of magnetic flux is distributed between magnetic poles and a magnetic circuit B' is established, and hence magnetism does not act on the subject. In order that the magnetism is allowed to act on the subject, the ratio of the height (h) of an electromagnetic coil to the distance (z) between the magnetic poles is preset in the range of 1.5 to 3.5. In addition, permanent magnets 6 are bonded to the pole ends 5 of the electromagnet and the magnetic flux is allowed to overlap each other. Furthermore, the length of the permanent magnets 6 bonded to outer and inner poles on the electromagnet is varied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、DL式(Dwight
Loyd Type)およびGW式(Greena
Walt Type)などの空気下方吸引式焼結機によ
る鉄鉱石焼結鉱の製造等に用いられる省電力小型軽量化
を図った、焼結鉱等の弱磁性体の磁気浮揚装置に関する
ものであり、鉄鉱石以外の下方吸引式焼結法及び一般的
弱磁性体の非接触浮上にも適用可能である。
BACKGROUND OF THE INVENTION The present invention is a DL type (Dweight)
Lloyd Type) and GW formula (Greena)
The present invention relates to a magnetic levitation device for a weak magnetic material such as a sinter, which is used for the production of iron ore sinter by an air downward suction type sintering machine such as Walt Type) and which is small in size and lightweight for power saving. It is also applicable to the downward suction sintering method other than iron ore and non-contact floating of general weak magnetic materials.

【0002】[0002]

【従来の技術】空気下方吸引式焼結機による焼結操業に
おいて、最近では特開平2−254125号公報に焼結
原料の装入に際して複数の鋼板(スタンド材)を配列し
た装入装置を介することにより焼結鉱生成時の収縮によ
る下層原料の圧縮化を防止する歩留、品質が低下しない
有効な方法が記載されているが、支持に使うスタンド材
は磨耗により一定期間過ぎると取り替えねばならない等
の問題がある。
2. Description of the Related Art In a sintering operation using an air downward suction type sintering machine, a charging device in which a plurality of steel plates (stand materials) are arranged when charging a sintering raw material is recently disclosed in Japanese Patent Laid-Open No. 2-254125. It describes an effective method that prevents compression of the lower layer raw material due to shrinkage at the time of sinter ore production and does not deteriorate the quality, but the stand material used for support must be replaced after a certain period of time due to wear. There are problems such as.

【0003】そこで本発明者等は、電磁力を利用して、
非接触で焼結を保持・浮揚する焼結方法を考え、特願平
2−242544号および特願平3−124532とし
て出願した。
Therefore, the present inventors have utilized electromagnetic force to
Considering a sintering method in which sintering is held and floated in a non-contact manner, application was filed as Japanese Patent Application Nos. 2-242544 and 3-124532.

【0004】即ち、図8に、DL式焼結機で本発明の焼
結方法を操業する例を示す。焼結原料サージホッパー7
に蓄えられた焼結原料は、焼結機8に原料装入装置9で
装入された後点火炉10で着火され、順次表層から下層
に向けて焼結されるが、点火炉10を通過した後はスト
ランドの進行とともに焼結床の上層から焼結が完了し、
固結し冷却され焼結鉱(シンターケーキ)2ができる。
図8中一点鎖線は焼結反応が行われている燃焼溶融帯1
1で、この線より上方は焼結反応が完了したいわゆる焼
結鉱部分で、この線より下方は原料状態にある部分であ
る。
That is, FIG. 8 shows an example of operating the sintering method of the present invention with a DL type sintering machine. Sintering raw material surge hopper 7
The sintering raw material stored in 1 is charged into the sintering machine 8 by the raw material charging device 9 and then ignited in the ignition furnace 10 and sequentially sintered from the surface layer to the lower layer, but passes through the ignition furnace 10. After that, as the strand progresses, sintering is completed from the upper layer of the sintering bed,
After being solidified and cooled, a sintered ore (sinter cake) 2 is formed.
The one-dot chain line in FIG. 8 indicates the combustion melting zone 1 in which the sintering reaction is performed.
1, the upper part of this line is the so-called sintered ore part where the sintering reaction is completed, and the lower part of this line is the part in the raw material state.

【0005】パレット8−1の上部に設置した磁気浮揚
装置12により、シンターケーキ重力とブロアー吸引圧
によりシンターケーキにかかる下向きの力との合力未満
または以上の浮揚力をシンターケーキに作用させること
により、シンターケーキの重力を軽減するか又はシンタ
ーケーキを保持又は剥離させ、浮上保持すること等によ
り、シンターケーキより下部の焼結は上からの重力から
開放された状態でかつシンターケーキで予熱された空気
を用いて反応を進行させることができる。13は据え付
け架台そして14は焼結完了点である。
By the magnetic levitation device 12 installed on the upper part of the pallet 8-1, by applying a levitation force to the sinter cake which is less than or more than the resultant force of the gravity of the sinter cake and the downward force applied to the sinter cake by the suction pressure of the blower. By reducing the gravity of the sinter cake or holding or peeling the sinter cake and floating it, the sintering below the sinter cake was preheated with the sinter cake released from the gravity from above. Air can be used to drive the reaction. 13 is a mounting stand and 14 is a sintering completion point.

【0006】鉄鉱石焼結鉱(シンターケーキ)は弱磁性
体であるため磁気特性が悪く、また非接触で保持・浮揚
する必要があるために、従来の銅またはアルミニュウム
からなる導線を同筒状に巻着した電磁石で十分な強力磁
界を発生させるためには、膨大な電力と冷却水が必要で
あり大規模な設備となることが問題である。
Since iron ore sinter (sinter cake) is a weak magnetic material, it has poor magnetic properties, and since it needs to be held and levitated in a non-contact manner, a conventional conductor wire made of copper or aluminum is in the same tubular shape. In order to generate a sufficiently strong magnetic field with the electromagnet wound around, enormous amount of electric power and cooling water are required, and it is a problem that it becomes a large-scale facility.

【0007】また、永久磁石単体では、現在商品化され
ている中で性能が高いものは最大残留磁束密度が1.3
テスラ程度であるが、空隙がある磁気回路を構成すると
発生磁束の減衰が大きく、必要な電磁力をだすのが難し
い。
In the case of a single permanent magnet, the highest residual magnetic flux density of 1.3 is currently commercialized.
Although it is about Tesla, when a magnetic circuit with a gap is formed, the generated magnetic flux is greatly attenuated, and it is difficult to generate the necessary electromagnetic force.

【0008】[0008]

【発明が解決しようとする課題】本発明は上述のような
問題を解決し、低電力・小型・軽量で空隙部において強
力な磁界が得られる磁気回路を有する磁界発生装置を提
供し、非接触で焼結鉱等の弱磁性体を保持・浮揚させる
磁気浮揚装置を提供するものである。
SUMMARY OF THE INVENTION The present invention solves the above problems and provides a magnetic field generator having a magnetic circuit capable of obtaining a strong magnetic field in a void with low power consumption, small size and light weight, and a non-contact type. The present invention provides a magnetic levitation device that holds and levitates a weak magnetic material such as a sintered ore.

【0009】[0009]

【課題を解決するための手段】本発明の装置は、空隙を
形成して対向する焼結鉱等の弱磁性体と少なくとも永久
磁石および電磁石とその継鉄で磁気的に結合し該空隙に
磁界を発生させる磁界発生装置において、弱磁性体に対
向した継鉄の表面に張り付けた永久磁石で、電磁石の磁
気回路上で有効に永久磁石の磁束を重畳させるとともに
起磁力及び電流密度に関係した係数である電磁石のコイ
ル高さと磁極間隔との比を約1.5〜3.5倍にするこ
とにより弱磁性体の表層に磁束を有効に集中させる構造
にし、さらに、電磁石の外極、内極に設置した永久磁石
の張り付け長さ(永久磁石の高さ)を変えることにより
電磁石端部の磁束を向上させた構造を有することを特徴
とする焼結鉱等の弱磁性体の磁気浮揚装置である。継鉄
とは、磁気回路の一部を形成する電磁石の例えば鉄心フ
レームであり、パーマロイ、ケイ素鋼、パーメンダー等
の高飽和磁束密度、高透磁率の磁性材料が使用される。
磁極間隔とは、電磁石のコイル幅に断熱材厚等を加えた
長さをいう。
The apparatus of the present invention comprises a weak magnetic material such as sinter ore that forms a gap and is opposed to at least a permanent magnet, an electromagnet and a yoke thereof to magnetically couple the magnetic field to the gap. In a magnetic field generator that generates a magnetic field, a permanent magnet attached to the surface of a yoke facing a weak magnetic body, effectively superimposes the magnetic flux of the permanent magnet on the magnetic circuit of the electromagnet, and By making the ratio of the coil height of the electromagnet to the magnetic pole interval about 1.5 to 3.5 times, the structure is such that the magnetic flux is effectively concentrated on the surface layer of the weak magnetic material. A magnetic levitation device for weak magnetic materials such as sinter, characterized by having a structure in which the magnetic flux at the end of the electromagnet is improved by changing the attachment length (height of the permanent magnet) of the permanent magnet installed in the is there. The yoke is an iron core frame of an electromagnet that forms a part of a magnetic circuit, and a magnetic material having a high saturation magnetic flux density and a high magnetic permeability, such as permalloy, silicon steel, and permendur, is used.
The magnetic pole interval means a length obtained by adding a thickness of a heat insulating material to the coil width of the electromagnet.

【0010】[0010]

【作用】本発明について、図面を参照しながら作用を説
明する。
The operation of the present invention will be described with reference to the drawings.

【0011】図1(イ)に示す様に、この発明において
例えば実線で示す磁気回路Bは、空隙を形成して対向す
る、図2に示すE型磁界発生装置(E型マグネット)1
と焼結鉱(弱磁性体)2とからなる。3は継鉄(鉄芯フ
レーム)そして4は中央の磁極を取り巻くレーストラッ
ク型コイルである。図1(イ)は、図1(ロ)の概略I
(イ)−I(イ)矢視断面説明図であり、そして図1
(ロ)は、図2の上面図である。
As shown in FIG. 1A, in the present invention, for example, a magnetic circuit B shown by a solid line has an E type magnetic field generator (E type magnet) 1 shown in FIG.
And sintered ore (weak magnetic material) 2. Reference numeral 3 is a yoke (iron core frame), and 4 is a racetrack type coil surrounding the central magnetic pole. FIG. 1 (a) is a schematic I of FIG. 1 (b).
(A) -I (I) is a cross-sectional explanatory view taken in the direction of the arrow, and FIG.
2B is a top view of FIG. 2.

【0012】電磁力を作用させる対象が強磁性体の場合
は、磁極間をギャップより広くとり、磁極の幅を広くす
ることで非接触で充分な磁束(電磁力)を得ることがで
きる。ところが、電磁力を作用させる対象が弱磁性体の
場合、対象の磁気特性が空気に近いため、図1(イ)に
示すように、ほとんどの磁束は磁極間で分布し破線で示
す磁気回路B’を構成するため対象(焼結鉱)に作用し
ない。故に、図1(イ)に示す様に、まず空隙に比べて
磁極間隔を広くとると同時にフレームの幅及び電磁石の
コイルの高さ比を最適にすることにより、図1(イ)の
実線の様に焼結鉱(弱磁性体)2の内部に磁束が集中
し、電磁力(吸引力)を高めることができる。継鉄(鉄
芯フレーム)3の両側下端部分がS極の時は鉄芯フレー
ムの中央下端部分はN極になり、S極とN極とがそれぞ
れ磁気浮揚力を作用させる。
When the object to which the electromagnetic force is applied is a ferromagnetic material, a sufficient magnetic flux (electromagnetic force) can be obtained in a non-contact manner by making the magnetic poles wider than the gap and widening the width of the magnetic poles. However, when the target to which the electromagnetic force is applied is a weak magnetic material, the magnetic characteristic of the target is close to that of air, so that as shown in FIG. It does not act on the target (sintered ore) because it constitutes'. Therefore, as shown in FIG. 1 (a), first, the magnetic pole spacing is made wider than that of the air gap, and at the same time, the width of the frame and the height ratio of the coil of the electromagnet are optimized, so that the solid line in FIG. In this way, the magnetic flux is concentrated inside the sintered ore (weak magnetic material) 2, and the electromagnetic force (attracting force) can be increased. When the lower end portions on both sides of the yoke (iron core frame) 3 are S poles, the central lower end portion of the iron core frame is an N pole, and the S pole and the N pole respectively exert magnetic levitation force.

【0013】また、図2に示すように、例えば、E型電
磁石の磁極端5に永久磁石6を接着することにより磁束
の重畳効果により電磁石の通電電流を低く抑えた場合で
も発生磁束(電磁力)が低減することはない。又、通電
電流が一定の場合、大幅に電磁力を増大させることが出
来る。
As shown in FIG. 2, the magnetic flux (electromagnetic force) generated by the permanent magnet 6 is adhered to the magnetic pole end 5 of the E-type electromagnet to suppress the energizing current of the electromagnet to a low level due to the superposition effect of the magnetic flux. ) Is not reduced. Further, when the energizing current is constant, the electromagnetic force can be greatly increased.

【0014】また、図1(イ)及び図2に示すように、
電磁石のコイル高さhと磁極間隔zとの比は、発生磁束
の主要部分を焼結鉱の中に有効に投入するために1.5
〜3.5倍程度がよい。又その係数は、必要起磁力及び
単位面積当たりの起磁力(電流密度)に関係しており、
その式を数1に示す。
Further, as shown in FIG. 1 (a) and FIG.
The ratio of the coil height h of the electromagnet to the magnetic pole spacing z is 1.5 so that the main part of the generated magnetic flux is effectively injected into the sinter.
About 3.5 times is preferable. The coefficient is related to the required magnetomotive force and the magnetomotive force (current density) per unit area,
The formula is shown in Equation 1.

【0015】[0015]

【数1】 ただし、 z 磁極間隔 h 電磁石のコイル高さ k 補正係数(5.5〜7.0) X1 起磁力 n1 起磁力係数(0.16〜0.20) X2 電磁密度 n2 電磁密度係数(0.12〜0.16)。[Equation 1] However, z magnetic pole spacing h coil height of electromagnet k correction coefficient (5.5 to 7.0) X 1 magnetomotive force n 1 magnetomotive force coefficient (0.16 to 0.20) X 2 electromagnetic density n 2 electromagnetic density coefficient (0 12-0.16).

【0016】つまり図3に示すように、E型磁界発生装
置と負荷(焼結鉱)との距離を30mm又は50mmと
して起磁力を変化させた時において、電磁石のコイル高
さhを磁極間隔zの1.5〜3.5倍にした場合に単位
作用面積当たりの発生電磁力が最大となっている。出来
れば、2.0〜2.5倍程度が望ましい。これは、高さ
hが高くなれば、電磁石コイルを貫通する洩れ磁束が多
くなり、磁極間隔zを広くとると磁気抵抗が大きくなる
ためである。
That is, as shown in FIG. 3, when the magnetomotive force is changed by setting the distance between the E-type magnetic field generator and the load (sinter ore) to 30 mm or 50 mm, the coil height h of the electromagnet is set to the magnetic pole interval z. When it is 1.5 to 3.5 times, the generated electromagnetic force per unit acting area is the maximum. If possible, about 2.0 to 2.5 times is desirable. This is because as the height h increases, the leakage magnetic flux penetrating the electromagnet coil increases, and when the magnetic pole interval z is increased, the magnetic resistance increases.

【0017】図4に、図2に示すE型磁界発生装置の全
体サイズを一定にして内極の幅を増減させた場合の電磁
力への影響を示す。継鉄の磁束飽和と内極直下の磁束の
減衰を低減するためには、空隙距離30mmの場合、内
極の幅は100〜150mmにした場合電磁力が最大と
なっている。なお、通電電流ゼロ、電磁石のみ、そして
起磁力アップした場合の電磁力を示すが、マグネットの
複合化等の効果が見られる。なお、内極の幅は、フレー
ムの磁気特性、起磁力によって考慮する必要があるが、
内極の中心が磁気飽和する程度(鉄の場合1.6〜1.
8Tesla)に設計するのがよく、上記値は鉄フレー
ムを前提とした場合である。外極は原則として内極の約
半分の厚みとする。
FIG. 4 shows the effect on the electromagnetic force when the width of the inner pole is increased or decreased while keeping the overall size of the E-type magnetic field generator shown in FIG. In order to reduce the magnetic flux saturation of the yoke and the attenuation of the magnetic flux just below the inner pole, the electromagnetic force is maximum when the gap distance is 30 mm and the width of the inner pole is 100 to 150 mm. It should be noted that the electromagnetic force when the energizing current is zero, only the electromagnet, and the magnetomotive force is increased is shown, but the effect of compounding the magnet and the like can be seen. The width of the inner pole must be taken into consideration by the magnetic characteristics of the frame and the magnetomotive force,
Magnetic saturation of the center of the inner pole (1.6-1.
8 Tesla), and the above values are based on the assumption of an iron frame. In principle, the outer pole should be about half the thickness of the inner pole.

【0018】また、空隙部及び弱磁性の焼結鉱部が磁気
回路上で大きな割合を占めるため、図5においてE型電
磁石の焼結鉱表層の磁束密度分布であるa線で示すよう
に、磁界の強さが弱くなると同時に焼結鉱表面の磁束密
度は電磁石の内側フレーム直下が強くなり両端フレーム
直下が減少するような分布となる傾向がある。
Since the voids and the weakly magnetized sintered ore portion occupy a large proportion on the magnetic circuit, as shown by the line a in FIG. 5, which is the magnetic flux density distribution of the sintered ore surface layer of the E-type electromagnet, At the same time that the strength of the magnetic field weakens, the magnetic flux density on the surface of the sinter tends to have a distribution such that the area immediately below the inner frame of the electromagnet becomes stronger and the area immediately below both end frames decreases.

【0019】故に、磁界発生装置の磁極端の表面(磁気
回路上)に、例えば、SmCo系またはNdFeB系の
如き希土類永久磁石の様な高性能永久磁石を張り合わせ
ることにより磁束を重畳させる。その結果、図5におい
て内極および外極に同一張り付け長さ(20mm)の永
久磁石を張り合わせた場合のE型電磁石の焼結鉱表層の
磁束密度分布であるb線で示すように、発生磁束密度は
急激に向上する。
Therefore, the magnetic flux is superposed on the surface (on the magnetic circuit) of the magnetic pole end of the magnetic field generator by bonding a high performance permanent magnet such as a rare earth permanent magnet such as SmCo type or NdFeB type. As a result, as shown by the line b in FIG. 5, which is the magnetic flux density distribution of the sintered ore surface layer of the E-type electromagnet when the permanent magnets having the same attachment length (20 mm) are attached to the inner pole and the outer pole, The density increases sharply.

【0020】図6において、図2に示すE型磁界発生装
置においてアルニコ系、SmCo系そしてNdFeB系
の実用レベルの各種永久磁石を使用した場合の電磁力特
性を示す。・は今回採用した上記高性能〔例えば、残留
磁束密度Br=1.1T(tesla);保磁力Hc=
6.76x105 A/m;可逆透磁力ミュウガンマー=
1.3〕永久磁石である。
FIG. 6 shows the electromagnetic force characteristics when various practical permanent magnets of Alnico type, SmCo type and NdFeB type are used in the E-type magnetic field generator shown in FIG.・ The above-mentioned high performance adopted this time [for example, residual magnetic flux density Br = 1.1T (tesla); coercive force Hc =
6.76 × 10 5 A / m; reversible permeability Mew Gamma =
1.3] A permanent magnet.

【0021】次に、永久磁石と負荷(焼結鉱)との距離
が一定の時、永久磁石の張り付け長さは、希土類永久磁
石を使用する場合約20〜50mm程度がよく、それ以
下の場合は、磁束の重畳効果が低く、それ以上張り付け
長さが長くても重畳効果が余り向上しないしコスト的に
みても電磁石で発生させたほうが安くなる。
Next, when the distance between the permanent magnet and the load (sintered ore) is constant, the sticking length of the permanent magnet is preferably about 20 to 50 mm when a rare earth permanent magnet is used, and is less than that. Has a low effect of superimposing magnetic flux, and even if the sticking length is longer, the effect of superimposing does not improve so much, and in terms of cost, it is cheaper to generate with an electromagnet.

【0022】なお、永久磁石の張り付け長さを外極と内
極を個別および一括(全体)に変化させた場合の電磁力
特性を図7に示す。図7において、Sm・Co希土類磁
石を併用したハイブリットマグネットにおいて、図2に
示すE型電磁石の構造で内極/外極の幅を120mm/
60mmとした場合の、永久磁石の張り付け長さによる
電磁力特性への影響を示す。張り付け長さ50mm以上
において、電磁力の増加は緩やかである。又、内極に張
り付ける永久磁石の効果は、外極に張り付ける永久磁石
より大きいため、外極の永久磁石の長さを20mm程度
として、内極を50mm程度とすることが望ましい。そ
の結果、高価な永久磁石を削減することができる。
FIG. 7 shows the electromagnetic force characteristics when the sticking length of the permanent magnet is changed to the outer pole and the inner pole individually or collectively (whole). Referring to FIG. 7, in the hybrid magnet using the Sm.Co rare earth magnet in combination, the inner pole / outer pole width is 120 mm / in the E-type electromagnet structure shown in FIG.
The influence of the sticking length of the permanent magnet on the electromagnetic force characteristics when the length is 60 mm is shown. When the sticking length is 50 mm or more, the increase in electromagnetic force is moderate. Further, since the effect of the permanent magnet attached to the inner pole is larger than that of the permanent magnet attached to the outer pole, it is desirable to set the length of the outer pole permanent magnet to about 20 mm and the inner pole to about 50 mm. As a result, expensive permanent magnets can be eliminated.

【0023】起磁力は約30,000ATである。The magnetomotive force is about 30,000 AT.

【0024】図5において、ほぼ同量の永久磁石を使用
する場合における、外極に張り付ける永久磁石を内極よ
り長くした場合(内極長さ20mm、外極長さ50m
m)のE型電磁石の焼結鉱表層の磁束密度分布であるc
線、内極を長くした場合(内極長さ50mm、外極長さ
20mm)のその分布であるd線で示すように、内極に
張り付ける永久磁石は外極より長くすることにより全体
の磁束密度を向上させ端部の磁束低下を防止することが
できる。その結果、焼結鉱表層全面に渡り均一で強力な
磁束が作用し、発生電磁力が強くなる。
In FIG. 5, when using permanent magnets of substantially the same amount, the permanent magnet attached to the outer pole is longer than the inner pole (inner pole length 20 mm, outer pole length 50 m).
m) the magnetic flux density distribution of the surface layer of the sintered ore of the E-type electromagnet c
As shown by the d-line, which is the distribution when the line and the inner pole are made longer (inner pole length 50 mm, outer pole length 20 mm), the permanent magnet attached to the inner pole is made longer than the outer pole as a whole. It is possible to improve the magnetic flux density and prevent the magnetic flux from decreasing at the ends. As a result, a uniform and strong magnetic flux acts over the entire surface of the sintered ore, and the generated electromagnetic force becomes stronger.

【0025】なお、空隙距離が一定の場合永久磁石の張
り付けレベルはギャップが一定の場合なるべく電磁石の
焼結鉱表面側のレベルより出っ張らないように設置した
方がギャップによる磁束密度の低下が防止でき効果的で
ある。
If the air gap distance is constant, the permanent magnet attachment level should be set so that it does not protrude beyond the level of the electromagnet on the surface of the sintered ore when the gap is constant, so that the decrease in magnetic flux density due to the gap can be prevented. It is effective.

【0026】以上の作用により、磁界発生装置と焼結鉱
との間で構成される焼結鉱表面の磁束密度及び磁束分布
を改善し、焼結鉱の磁気発生装置への電磁力(吸引力)
を高めることができる。
With the above operation, the magnetic flux density and the magnetic flux distribution on the surface of the sintered ore formed between the magnetic field generator and the sintered ore are improved, and the electromagnetic force (attraction force) of the sintered ore to the magnetic generator is improved. )
Can be increased.

【0027】[0027]

【実施例】本発明の実施例を図面を参照しながら以下に
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0028】成分:T.Fe:52.47%,CaO:
7.35%,Si02 :5.27%,Al2 3 :2.
33%,MgO:1.04%そしてC:2.89%の焼
結原料を準備して、下記の実施例を行った。
Component: T. Fe: 52.47%, CaO:
7.35%, Si0 2: 5.27% , Al 2 O 3: 2.
33%, MgO: 1.04% and C: 2.89% sintering raw materials were prepared, and the following examples were performed.

【0029】[0029]

【実施例1】また、本発明の磁界発生装置(マグネッ
ト)1として、図1および図2に示す如き永久磁石6を
張り付けた継鉄(鉄芯フレーム)3およびレーストラッ
ク型コイル4からなるマグネットを準備して焼結鉱を浮
上させた。
First Embodiment As a magnetic field generator (magnet) 1 of the present invention, a magnet composed of a yoke (iron core frame) 3 to which a permanent magnet 6 is attached as shown in FIGS. 1 and 2 and a racetrack type coil 4. Was prepared to float the sinter.

【0030】本発明の磁界発生装置(マグネット)1
は、表1に示す様な構成とした。幅が370mmで長さ
870mm(継鉄長さ700mm)、高さ290mmの
レーストラック型複合マグネットを焼結鉱と30mm離
して設置した。複合マグネットはSm・Co系永久磁石
(内極設置の磁石幅120mm、外極設置の磁石幅60
mm、張り付け長さ30mm)、30000ATの電磁
石(コイル幅65mm厚、コイル高さ220mm但し、
断熱材厚みを含む)、及び機械構造用炭素鋼(SC材)
のヨークから磁気回路を構成し、自重600kgのもの
を使用した。
Magnetic field generator (magnet) 1 of the present invention
Has a configuration as shown in Table 1. A racetrack type composite magnet having a width of 370 mm, a length of 870 mm (yoke length of 700 mm) and a height of 290 mm was placed 30 mm away from the sintered ore. The composite magnet is a Sm / Co permanent magnet (magnet width 120 mm for inner pole installation, magnet width 60 for outer pole installation).
mm, pasting length 30 mm), 30000 AT electromagnet (coil width 65 mm thickness, coil height 220 mm,
Insulation material thickness included) and carbon steel for machine structure (SC material)
A magnetic circuit was constructed from the yoke of, and the one having its own weight of 600 kg was used.

【0031】[0031]

【表1】 [Table 1]

【0032】焼結鉱にギャップ30mmで電磁力を加え
た結果、消費電力4.5kWで約210kg/台を浮上
させる能力を発揮した。
As a result of applying an electromagnetic force to the sinter with a gap of 30 mm, it exhibited the ability to levitate about 210 kg / unit at a power consumption of 4.5 kW.

【0033】[0033]

【比較例1】永久磁石部分を鉄ヨークに変えた以外は実
施例1と同様の構成とした従来の電磁石を準備した。
Comparative Example 1 A conventional electromagnet having the same structure as in Example 1 was prepared except that the permanent magnet portion was changed to an iron yoke.

【0034】[0034]

【表2】 [Table 2]

【0035】表2に示すように、従来の電磁石では、複
合マグネットと同じ起磁力とした場合でも電磁力は12
0kg/台であり、本発明と同じレベルの電磁力を得る
ことはできなかった。又、同じレベルの電磁力を得るた
めに、短時間に起磁力を50,065ATを印加した。
その結果消費電力は12.5kW/台(本発明の約3
倍)となり、電力消費が本発明マグネットに比べて大き
いことが判った。なお、50,065ATを連続定格で
使用できる様にするには、さらに大型、大重量となる。
As shown in Table 2, in the conventional electromagnet, the electromagnetic force is 12 even when the magnetomotive force is the same as that of the composite magnet.
It was 0 kg / unit, and it was not possible to obtain the same level of electromagnetic force as that of the present invention. Further, in order to obtain the same level of electromagnetic force, a magnetomotive force of 50,065 AT was applied in a short time.
As a result, the power consumption is 12.5 kW / unit (about 3 of the present invention.
It was found that the power consumption was larger than that of the magnet of the present invention. In order to be able to use 50,065AT with continuous rating, the size and weight are further increased.

【0036】[0036]

【実施例2】図8にしめす如き磁気浮揚焼結操業装置を
準備した。図9に示す如き磁気浮揚装置12を設置し
た。実施例1で用いた本発明の磁界発生装置(マグネッ
ト)をスケールアップした表3に示すマグネット1を4
台一組にし、据え付け架台13により焼結機8の各パレ
ット(8−1等)の上方に一組づつ設置した。
Example 2 A magnetic levitation sintering operation device as shown in FIG. 8 was prepared. A magnetic levitation device 12 as shown in FIG. 9 was installed. The magnet 1 shown in Table 3 obtained by scaling up the magnetic field generator (magnet) of the present invention used in Example 1 is
One set was set up, and one set was set above the pallets (8-1, etc.) of the sintering machine 8 by the installation stand 13.

【0037】[0037]

【表3】 [Table 3]

【0038】励磁範囲は点火炉10出側から排鉱部入側
までの35mとした。ギャップセンサー16は超音波式
とし、マグネット昇降装置15には手動でも昇降可能な
電動式昇降装置を用いた。制御設定電力とギャップから
通電電流値を計算し、主電源設備17を介してマグネッ
ト1への通電電流を調節して設定電磁力を制御するとと
もに、マグネット昇降装置15によりギャップの大きさ
を30mmに制御して磁気浮揚力の調整を行った。
The excitation range was 35 m from the exit side of the ignition furnace 10 to the entrance side of the mine. The gap sensor 16 is an ultrasonic type, and the magnet lifting device 15 is an electric lifting device that can be lifted manually. The energizing current value is calculated from the control set power and the gap, and the energizing current to the magnet 1 is adjusted via the main power supply facility 17 to control the set electromagnetic force, and the size of the gap is set to 30 mm by the magnet lifting device 15. The magnetic levitation force was controlled and adjusted.

【0039】焼結面積180m2 (3m幅x60mスト
ランド長さ)のDL焼結機8を用いて層厚550mm、
ブロワーの吸引による負圧1,000mmAqで焼結操
業する際に、図8のように点火炉10を出た後約15m
のところ(シンターケーキの表面下240mmの温度6
00℃;シンターケーキの厚さ200mm)から点火炉
後約50mのBTP(焼結燃焼完了点)14まで1m間
隔で図9に示す如き磁気浮揚装置12を設置した。
Using a DL sintering machine 8 having a sintering area of 180 m 2 (3 m width × 60 m strand length), a layer thickness of 550 mm,
Approximately 15 m after leaving the ignition furnace 10 as shown in FIG. 8 when performing a sintering operation at a negative pressure of 1,000 mmAq by suction of a blower.
At the temperature of 240 mm below the surface of the sinter cake
A magnetic levitation device 12 as shown in FIG. 9 was installed at intervals of 1 m from 00 ° C .; the thickness of the sinter cake was 200 mm) to the BTP (sintering combustion completion point) 14 about 50 m after the ignition furnace.

【0040】シンターケーキの表面と磁極端とのギャッ
プを30mmに制御しながら、燃焼溶融帯11にかかる
ブロワーの吸引による負圧と生成したシンターケーキの
重量との合計量に相当する磁気浮揚力を、点火炉10を
出た後約15mのところからBTPに至る領域において
焼結の進行によって生成するシンターケーキにかけ、燃
焼溶融帯11にかかる重力を軽減して焼結を行った。ち
なみに、点火炉10を出た後約15mのところは磁気浮
揚力140kg/台、通電電流56Aであり、BTP直
近で磁気浮揚力720kg/台、通電電流290Aであ
る。
While controlling the gap between the surface of the sinter cake and the magnetic pole tip to 30 mm, a magnetic levitation force corresponding to the total amount of the negative pressure due to the suction of the blower applied to the combustion melting zone 11 and the weight of the sinter cake generated is applied. After leaving the ignition furnace 10, the sinter cake generated by the progress of sintering was applied in a region from about 15 m from the ignition furnace 10 to the BTP, and the gravity applied to the combustion melting zone 11 was reduced to perform the sintering. Incidentally, about 15 m after leaving the ignition furnace 10, the magnetic levitation force was 140 kg / unit and the energizing current was 56 A, and the magnetic levitation force was 720 kg / unit and the energizing current was 290 A in the immediate vicinity of the BTP.

【0041】焼結原料1ton当たりの消費電力量は
5.6kWhであった。
The power consumption per ton of the sintering raw material was 5.6 kWh.

【0042】通常、点火炉10を出た後の層厚は、焼結
の進行とともに収縮が進行するため排鉱部近くでは約1
00mm収縮するのに対して、本実施例では収縮が25
mmになった。
Normally, the layer thickness after leaving the ignition furnace 10 is about 1 near the mine ore because the shrinkage progresses with the progress of sintering.
In contrast to the shrinkage of 00 mm, the shrinkage is 25 in this embodiment.
It became mm.

【0043】図10に本実施例の燃焼試験結果を示す。
図中、べースは、磁気浮上なしの操業結果である。磁気
をかけない場合に比べて磁気をかけた場合には、生産性
が約30%改善した。
FIG. 10 shows the result of the combustion test of this example.
In the figure, the base is the operation result without magnetic levitation. The productivity was improved by about 30% when the magnet was applied as compared with the case where the magnet was not applied.

【0044】図11において、時産当たりのNOx発生
量を示す。磁気をかけない場合(べース)に比べて磁気
をかけた場合には、NOx発生量が約24%減少した。
FIG. 11 shows the amount of NOx produced per hour. The amount of NOx produced was reduced by about 24% when the magnetism was applied compared to when the magnetism was not applied (base).

【0045】[0045]

【比較例2】従来の電磁石を用いて実施例2と同様に磁
気浮揚焼結を行うためには、電磁石を大型化するかまた
はその数を増加させなければならず、電力消費量も約4
〜5倍と多くなる。
Comparative Example 2 In order to perform magnetic levitation sintering using a conventional electromagnet in the same manner as in Example 2, it is necessary to upsize or increase the number of electromagnets, and the power consumption is about 4 as well.
~ 5 times more.

【0046】[0046]

【発明の効果】以上記述の如く、小型、軽量で電力消費
も少なく、場合によっては水冷装置などの設備も必要と
しないで、必要空間で磁界強度も高めて、弱磁性体であ
る焼結であっても保持・浮揚が可能な、極めて実用性の
高い磁気浮揚装置が実現する。
As described above, compactness, light weight, low power consumption, and in some cases, no equipment such as a water cooling device are required, and the magnetic field strength is increased in the required space, and it is possible to use a weak magnetic material for sintering. A magnetic levitation device with extremely high practicality that can hold and levitate even if there is is realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(イ)は、本発明における磁気回路を示す
説明図であり、図1(イ)は、図1(ロ)の概略I
(イ)−I(イ)矢視断面説明図であり、そして図1
(ロ)は、図2の上面図である。又、従来の電磁石と本
発明の電磁石における磁気回路B、B’の説明図であ
る。
FIG. 1 (a) is an explanatory diagram showing a magnetic circuit according to the present invention, and FIG. 1 (a) is a schematic I of FIG. 1 (b).
(A) -I (I) is a cross-sectional explanatory view taken in the direction of the arrow, and FIG.
2B is a top view of FIG. 2. Further, it is an explanatory view of magnetic circuits B and B ′ in the conventional electromagnet and the electromagnet of the present invention.

【図2】本発明で使用する複合マグネットの例である、
E型磁界発生装置(E型マグネット)の斜視図である。
FIG. 2 is an example of a composite magnet used in the present invention,
It is a perspective view of an E-type magnetic field generator (E-type magnet).

【図3】電磁石のコイルの高さhと磁極間隔zとの比に
よる電磁力の変化についての説明図である。
FIG. 3 is an explanatory diagram of a change in electromagnetic force depending on a ratio between a coil height h of an electromagnet and a magnetic pole interval z.

【図4】E型磁石の内極幅の電磁力特性への影響を示す
グラフである。
FIG. 4 is a graph showing the influence of the inner pole width of the E-shaped magnet on the electromagnetic force characteristics.

【図5】E型電磁石およびこれに永久磁石を張り付けた
複合マグネットの、焼結鉱表層の磁束密度分布を示すグ
ラフである。
FIG. 5 is a graph showing a magnetic flux density distribution in a surface layer of a sintered ore of an E-type electromagnet and a composite magnet having a permanent magnet attached thereto.

【図6】各種永久磁石による電磁力特性を示すグラフで
ある。
FIG. 6 is a graph showing electromagnetic force characteristics of various permanent magnets.

【図7】永久磁石張り付け長さによる、ハイブリッドマ
グネットの電磁力特性を示すグラフである。
FIG. 7 is a graph showing electromagnetic force characteristics of a hybrid magnet depending on a permanent magnet attachment length.

【図8】DL式焼結機を用いて本発明の焼結操業方法を
実施する場合の装置の一例を示す説明図である。
FIG. 8 is an explanatory diagram showing an example of an apparatus for carrying out the sintering operation method of the present invention using a DL type sintering machine.

【図9】マグネットをパレットの上方に設置した本発明
の磁気浮揚装置の一例を示す概略斜視図である。
FIG. 9 is a schematic perspective view showing an example of a magnetic levitation device of the present invention in which a magnet is installed above a pallet.

【図10】磁気浮揚を行った場合と行わない場合におけ
る燃焼試験結果(生産性)を示すグラフである。
FIG. 10 is a graph showing combustion test results (productivity) with and without magnetic levitation.

【図11】磁気浮揚を行った場合と行わない場合におけ
る燃焼試験結果(時産当たりのNOx発生量)を示すグ
ラフである。
FIG. 11 is a graph showing a combustion test result (NOx generation amount per hour) with and without magnetic levitation.

【符号の説明】[Explanation of symbols]

1 E型磁界発生装置(E型マグネット) 2 焼結鉱(弱磁性体) 3 継鉄(鉄芯フレーム) 4 レーストラック型コイル 5 磁極端 6 永久磁石 7 焼結原料サージホッパー 8 焼結機 8−1 パレット 9 原料装入装置 10 点火炉 11 燃焼溶融帯 12 磁気浮揚装置 13 据え付け架台 14 焼結燃焼完了点 15 マグネット昇降装置 16 ギップセンサー 17 主電源設備 B 実線で示す磁気回路 B’ 破線で示す磁気回路 z 磁極間隔 h 電磁石のコイル高さ 1 E type magnetic field generator (E type magnet) 2 Sinter ore (weak magnetic material) 3 Yoke iron (iron core frame) 4 Race track type coil 5 Magnetic pole tip 6 Permanent magnet 7 Sintering raw material surge hopper 8 Sintering machine 8 -1 Pallet 9 Raw material charging device 10 Ignition furnace 11 Combustion melting zone 12 Magnetic levitation device 13 Installation platform 14 Sintering combustion completion point 15 Magnet lifting device 16 Gip sensor 17 Main power supply facility B Magnetic circuit shown by solid line B'Indicated by broken line Magnetic circuit z Magnetic pole spacing h Electromagnetic coil height

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 空隙を形成して対向する焼結鉱等の弱磁
性体と少なくとも永久磁石および電磁石とその継鉄で磁
気的に結合し該空隙に磁界を発生させる磁界発生装置に
おいて、弱磁性体に対向した継鉄の表面に張り付けた永
久磁石で、電磁石の磁気回路上で有効に永久磁石の磁束
を重畳させるとともに起磁力及び電流密度に関係した係
数である電磁石のコイル高さと磁極間隔との比を約1.
5〜3.5倍にすることにより弱磁性体の表層に磁束を
有効に集中させる構造にし、さらに、電磁石の外極、内
極に設置した永久磁石の張り付け長さを変えることによ
り電磁石端部の磁束を向上させた構造を有することを特
徴とする焼結鉱等の弱磁性体の磁気浮揚装置。
1. A magnetic field generator that magnetically couples a weak magnetic material such as sinter ore, which forms a gap and faces each other, with at least a permanent magnet, an electromagnet and a yoke thereof to generate a magnetic field in the gap. A permanent magnet attached to the surface of the yoke facing the body, which effectively superimposes the magnetic flux of the permanent magnet on the magnetic circuit of the electromagnet, and the coil height and magnetic pole spacing of the electromagnet, which are coefficients related to magnetomotive force and current density. The ratio of about 1.
The magnetic flux is effectively concentrated on the surface layer of the weak magnetic material by increasing the ratio from 5 to 3.5 times, and the end length of the electromagnet is changed by changing the sticking length of the permanent magnets installed on the outer and inner poles of the electromagnet. A magnetic levitation device for a weak magnetic material such as sinter or the like, which has a structure in which the magnetic flux is improved.
JP8752092A 1992-03-12 1992-03-12 Magnetic levitation device for weak magnetic materials such as sinter Expired - Lifetime JP2715215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8752092A JP2715215B2 (en) 1992-03-12 1992-03-12 Magnetic levitation device for weak magnetic materials such as sinter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8752092A JP2715215B2 (en) 1992-03-12 1992-03-12 Magnetic levitation device for weak magnetic materials such as sinter

Publications (2)

Publication Number Publication Date
JPH05256581A true JPH05256581A (en) 1993-10-05
JP2715215B2 JP2715215B2 (en) 1998-02-18

Family

ID=13917275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8752092A Expired - Lifetime JP2715215B2 (en) 1992-03-12 1992-03-12 Magnetic levitation device for weak magnetic materials such as sinter

Country Status (1)

Country Link
JP (1) JP2715215B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0608436A1 (en) * 1992-08-20 1994-08-03 Nippon Steel Corporation Method and apparatus for producing sintered ore
EP0884268A2 (en) * 1997-06-11 1998-12-16 Neuhäuser GMBH + CO. Lifting device for the transport of products
KR100627245B1 (en) * 2004-06-12 2006-09-28 주식회사 태화에레마 A composit magnet linearly adjustable magneticity power and lift having the magnet, and method for control a number of lifted sheets

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0608436A1 (en) * 1992-08-20 1994-08-03 Nippon Steel Corporation Method and apparatus for producing sintered ore
EP0608436A4 (en) * 1992-08-20 1995-02-01 Nippon Steel Corp Method and apparatus for producing sintered ore.
EP0884268A2 (en) * 1997-06-11 1998-12-16 Neuhäuser GMBH + CO. Lifting device for the transport of products
EP0884268A3 (en) * 1997-06-11 1999-09-15 Neuhäuser GMBH + CO. Lifting device for the transport of products
KR100627245B1 (en) * 2004-06-12 2006-09-28 주식회사 태화에레마 A composit magnet linearly adjustable magneticity power and lift having the magnet, and method for control a number of lifted sheets

Also Published As

Publication number Publication date
JP2715215B2 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
US8322024B2 (en) Magnetic field generator manufacturing method
CN105090245A (en) Asymmetric permanent-magnet bias axial magnetic bearing
JP2715215B2 (en) Magnetic levitation device for weak magnetic materials such as sinter
CN112193079B (en) Permanent magnet and electromagnetic hybrid magnet and design method thereof
CN101537799A (en) Permanent-magnet electromagnetic hybrid magnet structure of electromagnetic-type maglev train
JPH05256582A (en) Magnetically lifting apparatus for feebly magnetic substance such as sintered ore
US20050257855A1 (en) Longitudinal magnetic field compacting method and device for manufacturing rare earth magnets
US1834725A (en) External field eliminator
KR930012178B1 (en) Method and apparatus for sintering operation
JPH05255767A (en) Magnetic flotation method and device for sintered ore
JPH0372606A (en) Magnetization of magnetic material
JP4190025B2 (en) MRI magnetic circuit assembly method
CN100519259C (en) Permanent magnetism electromagnetic blending magnet design method of electromagnetic type maglev train
JP3824241B2 (en) Sintering method
JP3783335B2 (en) Levitation melting device
US20240210112A1 (en) Induction coils as non-contact temperature boosters and flow boosters for ferrous and non-ferrous materials in a furnace
Tsukamoto et al. Development of superconducting linear induction motor for steel making processes
JPH09131025A (en) Method of magnetizing permanent magnet
JP2664233B2 (en) Article transfer device using superconductor
JP2001044032A (en) Magnetizing method for high-temperature- superconducting bulk magnet mounted on superconducting magnet-levitation railway vehicle
Nakano et al. Ultra-low iron loss in new non-oriented silicon steel sheets
JPH04329837A (en) Method for operating sintering
US2281170A (en) Method of and apparatus for melting metals by electromagnetic induction
EP0965304A1 (en) Mri magnetic field generator
JP2567013Y2 (en) Magnetic circuit for linear motor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971007