JPH05255815A - Iron-based shape memory alloy - Google Patents

Iron-based shape memory alloy

Info

Publication number
JPH05255815A
JPH05255815A JP27909392A JP27909392A JPH05255815A JP H05255815 A JPH05255815 A JP H05255815A JP 27909392 A JP27909392 A JP 27909392A JP 27909392 A JP27909392 A JP 27909392A JP H05255815 A JPH05255815 A JP H05255815A
Authority
JP
Japan
Prior art keywords
shape memory
alloy
iron
memory alloy
martensite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27909392A
Other languages
Japanese (ja)
Other versions
JPH0723522B2 (en
Inventor
Yoshiro Ashida
善郎 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP27909392A priority Critical patent/JPH0723522B2/en
Publication of JPH05255815A publication Critical patent/JPH05255815A/en
Publication of JPH0723522B2 publication Critical patent/JPH0723522B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide an iron-based shape memory alloy having excellent shape memory property as well as improved ductility by preventing the grain boundary precipitation of eta-Ni3Ti when an Fe-Ni-Co-Ti alloy is ausaged. CONSTITUTION:This iron-based shape memory alloy consists of, by weight, 31-35% Ni, 8-15% Co, 2.5-6.5% Ti, at least one among 1.5-10.0& Al, 0.5-5.0% Mo, 1.0-5.0% W, 0.5-5.0% Nb and 0.002-0.010% B and the balance Fe with inevitable impurities.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉄系形状記憶合金に関
する。
FIELD OF THE INVENTION The present invention relates to an iron-based shape memory alloy.

【0002】[0002]

【従来の技術】形状記憶合金は、その特異な機能を利用
して、工業、エネルギー、医学等種々の分野への応用展
開が期待される金属材料であつて、既に一部ではその実
用化も試みられている。形状記憶現象及び擬弾性現象
は、熱弾性マルテンサイト変態を起こす合金に現われる
ものであつて、かかる現象を示す金属材料は、主として
非鉄合金において多く見出されているが、鉄系合金にお
いても、Fe-25 原子%PtとFe-30 原子%Pdとが熱弾性マ
ルテンサイトになり、完全な形状記憶現象を示すことが
知られている。
2. Description of the Related Art Shape memory alloys are metallic materials that are expected to be applied to various fields such as industry, energy and medicine by utilizing their unique functions, and some of them have already been put to practical use. Being tried. Shape memory phenomenon and pseudoelasticity phenomenon appear in alloys that undergo thermoelastic martensitic transformation, and metal materials exhibiting such phenomenon are mainly found in non-ferrous alloys, but also in iron-based alloys, It is known that Fe-25 atomic% Pt and Fe-30 atomic% Pd become thermoelastic martensite and show a complete shape memory phenomenon.

【0003】更に、最近になつて、Fe-Ni-Co-Ti 合金を
オーステナイト域で時効処理、即ち、オースエイジした
後、低温に冷却するとき、シン・プレート (thin plat
e) ・マルテンサイト組織が形成され(日本金属学会秋
期大会一般講演概要第216頁(1982年9月))、更
に、この合金が形状記憶現象を示すことも見出されてい
る。この合金は鉄系合金であるために製造が容易である
と共に、比較的安価であり、実用性の高い形状記憶合金
であるが、一方、この合金においては、オースエイジす
るとき、オーステナイト粒界に粒界反応型の析出物とし
て、η相の Ni3Ti(以下、η-Ni3Tiと称する。)が析出
することも既に知られている(日本金属学会春期大会一
般講演概要第198頁及び306頁(1984年4月))。
Furthermore, recently, when a Fe-Ni-Co-Ti alloy is aged in the austenite region, that is, ausaged and then cooled to a low temperature, a thin plate is used.
e) ・ Martensite structure is formed (General Lecture of Autumn Meeting of the Japan Institute of Metals, p. 216 (September 1982)), and it is further found that this alloy exhibits a shape memory phenomenon. Since this alloy is an iron-based alloy, it is easy to manufacture and relatively inexpensive, and it is a highly practical shape memory alloy.On the other hand, in this alloy, when ausaging, the grain boundaries are austenite. It is already known that Ni 3 Ti in the η phase (hereinafter, referred to as η-Ni 3 Ti) is precipitated as a field reaction type precipitate (Summary of Spring Meeting of the Japan Institute of Metals, pages 198 and 306). Page (April 1984)).

【0004】本発明者らは、上記合金を特にその機械的
性質に及ぼす上記析出物の影響なる観点から更に鋭意研
究した結果、この析出物が粒界に存在するとき、合金の
延性を低めることを見出した。形状記憶合金において延
性が低いことは、繰返し変形に対して旧粒界が脆弱であ
ることにつながり、かくして、粒界破壊しやすいことと
なる。
The inventors of the present invention have conducted further studies from the viewpoint of the influence of the precipitates on the mechanical properties of the alloy. As a result, the ductility of the alloy is lowered when the precipitates are present at the grain boundaries. Found. The low ductility of the shape memory alloy leads to the weakness of the old grain boundaries against repeated deformation, and thus the grain boundary fracture is likely to occur.

【0005】[0005]

【発明が解決しようとする課題】本発明者らはFe-Ni-Co
-Ti 系形状記憶合金における上記した問題を解決するた
めに、この合金をオースエイジしたときに現われる形状
記憶性を阻害することなく、このオースエイジ中に生じ
るη-Ni3Tiの粒界析出を防止し、若しくは抑制する添加
元素について鋭意広範に研究した結果、合金中のTi量
によつてその適正な添加量は必ずしも同じではないが、
概してAl、Mo、W、Nb及びBよりなる群から選ば
れる1種を単独添加し、又は2種以上を複合添加するこ
とによつて、前記η-Ni3Tiの粒界析出を効果的に防止す
ることができ、かくして、延性が改善されると共に、形
状記憶性にすぐれる鉄系形状記憶合金を得ることができ
ることを見出して、本発明に至つたものである。
DISCLOSURE OF THE INVENTION The present inventors have made Fe-Ni-Co
In order to solve the above-mentioned problems in -Ti-based shape memory alloys, the grain boundary precipitation of η-Ni 3 Ti that occurs during ausaging is prevented without impairing the shape memory properties that appear when ausaging this alloy. Or, as a result of extensive research on additive elements to be suppressed, the proper addition amount is not necessarily the same depending on the Ti amount in the alloy,
Generally, by adding one kind selected from the group consisting of Al, Mo, W, Nb and B alone or by adding two or more kinds effectively, the grain boundary precipitation of the η-Ni 3 Ti can be effectively performed. The present invention is based on the finding that an iron-based shape memory alloy that can be prevented and thus improved in ductility and excellent in shape memory can be obtained.

【0006】[0006]

【課題を解決するための手段】本発明による鉄系形状記
憶合金は、重量%で (a) Ni 31〜35%、 Co 8〜15%、及び Ti 2.5〜6.5%に加えて、 (b) Al 1.5〜10.0%、 Mo 0.5 〜5.0%、 W 1.0〜5.0%、 Nb 0.5〜5.0%、及び B 0.002〜0.010% よりなる群から選ばれる少なくとも1種の元素、及び残
部鉄及び不可避的不純物よりなることを特徴とする。
The iron-based shape memory alloy according to the present invention comprises, in weight percent, (a) Ni 31-35%, Co 8-15%, and Ti 2.5-6.5%. , (B) Al 1.5 to 10.0%, Mo 0.5 to 5.0%, W 1.0 to 5.0%, Nb 0.5 to 5.0%, and B 0.002 to 0. It is characterized by comprising at least one element selected from the group consisting of 010%, and the balance iron and unavoidable impurities.

【0007】シン・プレート・マルテンサイトは、完全
双晶マルテンサイトであること、及び変態歪による応力
がオーステナイト母相中では弾性変形によつて緩和さ
れ、塑性変形が起こらないことに特徴を有する。このよ
うなシン・プレート・マルテンサイトの生成には、母材
強度(降伏強さ)が大きいこと、又は剛性率が小さいこ
とが有利であり、このような場合、変態歪による母相の
塑性変形が起こり難いからである。また、変態時の容積
変化、変態シアー量が少ないときも、変態に伴う母相へ
の歪が小さくなるので、塑性変形が起こり難くなる。更
に、マルテンサイトの正方晶率(tetragonality)が大き
いこともシン・プレート・マルテンサイトの生成に有利
である。この正方晶率が大きくなるほど、マルテンサイ
トの (112)双晶変形のシアー量が小さくなり、双晶界面
エネルギーが低下する。これらはマルテンサイト晶内で
の双晶の形成を容易にし、密度を大きくする作用があ
る。また、正方晶率が大きいほど、変態シアー量は小さ
くなり、母相の塑性変形が起こり難い。
Thin plate martensite is characterized in that it is completely twinned martensite, and that stress due to transformation strain is relaxed by elastic deformation in the austenite matrix and plastic deformation does not occur. In order to generate such thin plate martensite, it is advantageous that the base material strength (yield strength) is large or the rigidity is small. In such a case, plastic deformation of the matrix phase due to transformation strain is advantageous. Is unlikely to occur. Further, even when the volume change at the time of transformation and the amount of transformation shear are small, the strain to the parent phase due to transformation becomes small, so that plastic deformation hardly occurs. Furthermore, the large tetragonality of martensite is also advantageous for the production of thin plate martensite. As this tetragonal ratio increases, the shear amount of (112) twin deformation of martensite decreases, and the twin interface energy decreases. These have the function of facilitating the formation of twin crystals in the martensite crystal and increasing the density. Further, the larger the tetragonal crystal ratio, the smaller the amount of transformation shear, and the less likely plastic deformation of the matrix phase occurs.

【0008】シン・プレート・マルテンサイトの生成に
有利な他の要因は、マルテンサイトの生成温度、即ち、
Ms点が低いことである。Ms点が低いほど、マルテン
サイト晶での双晶変形がすべり変形に比べて起こりやす
いからである。また、母材の強度も上昇し、塑性変形し
難くなる。本発明による形状記憶合金において、Ni、
Co及びTiは、合金にシン・プレート・マルテンサイ
トを生成させるために前記範囲にあることが必要であ
り、その範囲をはずれる組成によつては、合金はシン・
プレート・マルテンサイトを生成せず、従つて、形状記
憶性を示さない。特に、NiはMs点を低くするのに効
果がある。Tiはオースエイジにより母相オーステナイ
ト中に規則(ordered)γ'-Ni3Ti を均一微細に析出させ
て、母相を強化し、或いはマルテンサイトの正方晶の出
現等に効果がある。また、Coは母材のキユリー点を上
昇させ、Ms点との差を大きくすることにより、変態容
積変化を小さくし、更に、母相の剛性率を低下させるの
に有効である。
Another factor that favors the formation of thin plate martensite is the temperature at which martensite is formed, ie
That is, the Ms point is low. This is because as the Ms point is lower, twinning deformation in martensite is more likely to occur than slip deformation. In addition, the strength of the base material also increases, making it difficult for plastic deformation. In the shape memory alloy according to the present invention, Ni,
Co and Ti are required to be in the above range in order to form thin plate martensite in the alloy.
It does not produce plate martensite and therefore does not show shape memory. In particular, Ni is effective in lowering the Ms point. Ti has an effect of uniformly and finely depositing ordered γ′-Ni 3 Ti in the matrix austenite by ausage, strengthening the matrix, or appearance of tetragonal martensite. Further, Co is effective in raising the Kuriy point of the base material and increasing the difference from the Ms point to reduce the change in transformation volume and further reduce the rigidity of the base phase.

【0009】上記のようにFe-Ni-Co-Ti 合金をオースエ
イジすると、オーステナイト粒内にγ' 相の Ni3Tiが微
細に析出するが、この粒内における析出が飽和すると、
本来、Ni3Ti の安定相はη-Ni3Tiであるから、γ'-Ni3T
i はη-Ni3Tiに変化する。この場合の変化はセパレート
・ニュークレーシヨン(separate nucleation) にて起こ
り、核生成位置は粒界である。即ち、γ'-Ni3Ti として
析出したNi及びTiが再度、マトリツクスに固溶し、
粒界に移動して、最終安定相であるη-Ni3Tiとして再析
出するのである。
When the Fe-Ni-Co-Ti alloy is ausaged as described above, Ni 3 Ti in the γ'phase is finely precipitated in the austenite grains, but when the precipitation in the grains is saturated,
Originally, since a stable phase of Ni 3 Ti is η-Ni 3 Ti, γ'- Ni 3 T
i changes to η-Ni 3 Ti. The change in this case occurs in separate nucleation, and the nucleation position is at the grain boundary. That is, Ni and Ti precipitated as γ'-Ni 3 Ti again form a solid solution in the matrix,
It moves to the grain boundary and reprecipitates as the final stable phase, η-Ni 3 Ti.

【0010】本発明による形状記憶合金は、上述したN
i、Co及びTiに加えて、Al、Mo、W、Nb及び
Bよりなる群から選ばれる少なくとも1種の元素を含有
する。これら元素Al、Mo、W、Nb及びBは、いず
れも、Ni及びTiの拡散を妨げることによつて、η-N
i3Tiの粒界析出を防止する。更に、Al及びNbはγ'-
Ni3Ti を安定化し、Bはη-Ni3Tiの粒界析出核生成を抑
制する。また、Mo及びNbは、合金の形状記憶性を高
めるのみならず、オーステナイト強度を高める結果、合
金の形状回復力を強める効果を有する。
The shape memory alloy according to the present invention has the above-mentioned N content.
In addition to i, Co and Ti, it contains at least one element selected from the group consisting of Al, Mo, W, Nb and B. All of these elements Al, Mo, W, Nb and B prevent η-N from diffusing Ni and Ti.
Prevents grain boundary precipitation of i 3 Ti. Furthermore, Al and Nb are γ'-
Stabilizes Ni 3 Ti, and B suppresses the generation of η-Ni 3 Ti grain boundary precipitation nuclei. Further, Mo and Nb not only enhance the shape memory property of the alloy but also enhance the austenite strength, and as a result, have the effect of enhancing the shape recovery force of the alloy.

【0011】上述した効果を有効に発現させるためのこ
れら元素の適正な添加量は、合金におけるTi量に依存
する。本発明による合金は、Tiを2.5〜6.5%の範囲
で含むものである。上述した効果を有効に得るために、
本発明においては、上記元素の添加量は、Alは1.5〜
10.0%の範囲、好ましくは1.5〜6.5%の範囲であ
り、Moは0.5 〜5.0%の範囲、Wは1.0〜5.0%の範
囲、Nbは0.5〜5.0%の範囲、Bは0.002〜0.01
0%の範囲である。
Appropriate amounts of addition of these elements for effectively exhibiting the above-mentioned effects depend on the amount of Ti in the alloy. The alloy according to the present invention contains Ti in the range of 2.5 to 6.5%. In order to effectively obtain the above effects,
In the present invention, Al is added in an amount of 1.5 to
It is in the range of 1.0%, preferably in the range of 1.5 to 6.5%, Mo is in the range of 0.5 to 5.0%, W is in the range of 1.0 to 5.0%, and Nb is in the range of 0. 5 to 5.0% range, B is 0.002 to 0.01
It is in the range of 0%.

【0012】本発明による鉄系形状記憶合金は、前記所
定の組成を有する合金を900〜1200℃に加熱して
溶体化処理後、500〜800℃の温度で100時間以
下のオースエイジ処理を施すことにより製造することが
でき、冷却又は応力付加に対応して、シン・プレート・
マルテンサイトを生成させる。即ち、本発明による合金
は、ある温度以下で任意の方法により変形を与えた後、
加熱時にマルテンサイトが母相へ戻る逆変態の終了温度
Af点以上の温度に加熱することによつて、形状が変形
前に復元する形状記憶性を示す。
In the iron-based shape memory alloy according to the present invention, the alloy having the above-mentioned predetermined composition is heated to 900 to 1200 ° C. for solution treatment, and then subjected to ausage treatment for 100 hours or less at a temperature of 500 to 800 ° C. It can be manufactured by using a thin plate
Generate martensite. That is, the alloy according to the present invention, after being deformed by any method below a certain temperature,
By heating to a temperature at or above the end temperature Af of the reverse transformation where martensite returns to the parent phase during heating, the shape exhibits a shape memory property in which the shape is restored before the deformation.

【0013】[0013]

【実施例】表1及び表2に示すように、Fe-Ni-Co-Ti 合
金を基本合金とし、これにAl、Mo、W、Nb及び/
又はBを添加した合金を真空溶解法にて製造し、鍛造、
圧延して厚さ5mm、幅70mm及び長さ1000mmの板を
製造し、供試材とした。この供試材を1150℃で1時
間加熱して溶体化処理した後、空冷し、この後、700
℃で4時間オースエイジして、η-Ni3Tiの析出状況を観
察した。また、上記オースエイジ処理後、厚さ1mm、幅
5mm及び長さ50mmの平板に切出し、液体窒素中で−1
96℃の温度にて曲げ角度100°のV字型に曲げ変形
を行ない、この後、室温中に取出して平板に戻る度合に
よつて形状回復率を調べ、また、形状回復力を調べた。
更に、別に上記オースエイジ処理後、引張試験片を作製
し、常温にて引張試験を行なつて伸びを測定した。結果
を表1及び表2に示す。
EXAMPLES As shown in Tables 1 and 2, Fe-Ni-Co-Ti alloy was used as a basic alloy, and Al, Mo, W, Nb and /
Alternatively, an alloy containing B is manufactured by a vacuum melting method, forged,
A plate having a thickness of 5 mm, a width of 70 mm and a length of 1000 mm was manufactured by rolling and used as a test material. The test material was heated at 1150 ° C. for 1 hour for solution treatment and then air-cooled.
After being aged at 4 ° C. for 4 hours, the precipitation of η-Ni 3 Ti was observed. After the ausage treatment, it is cut into a flat plate having a thickness of 1 mm, a width of 5 mm, and a length of 50 mm, and -1
Bending deformation was performed at a temperature of 96 ° C. into a V-shape having a bending angle of 100 °, and then the shape recovery rate and the shape recovery force were examined by the degree of returning to a flat plate after being taken out at room temperature.
Furthermore, after the above-mentioned ausage treatment, a tensile test piece was prepared, and a tensile test was performed at room temperature to measure elongation. The results are shown in Tables 1 and 2.

【0014】従来合金として表1に示すものは、Fe-Ni-
Co-Ti 系基本合金であり、オーステナイト粒界に多くの
η-Ni3Tiが析出しており、伸びも極めて低い。比較合金
3及び4においては、Al量の添加量が不足するため
に、粒界に尚僅かのη-Ni3Tiが析出している。このよう
な従来合金及び比較合金に対して、本発明による合金に
よれば、粒界にはη-Ni3Tiの析出が認められないので、
伸びも20%以上であり、形状記憶性も殆どが100%
を示す。
The conventional alloys shown in Table 1 are Fe-Ni-
It is a Co-Ti-based basic alloy with a large amount of η-Ni 3 Ti precipitated at the austenite grain boundaries, and its elongation is also extremely low. In Comparative Alloys 3 and 4, a small amount of η-Ni 3 Ti was precipitated at the grain boundaries because the added amount of Al was insufficient. In contrast to such conventional alloys and comparative alloys, according to the alloy of the present invention, no precipitation of η-Ni 3 Ti is observed at the grain boundaries,
Elongation is more than 20%, shape memory is almost 100%
Indicates.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【発明の効果】このように、本発明の合金によれば、η
-Ni3Tiの粒界析出が防止されるために、延性が著しく改
善されると共に、伸びも大きく、形状記憶合金として実
用性が高い。
As described above, according to the alloy of the present invention, η
To -Ni 3 Ti grain boundary precipitates is prevented, the ductility is remarkably improved, elongation increases, is highly practical as shape memory alloys.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量%で (a) Ni 31〜35%、 Co 8〜15%、及び Ti 2.5〜6.5%に加えて、 (b) Al 1.5〜10.0%、 Mo 0.5 〜5.0%、 W 1.0〜5.0%、 Nb 0.5〜5.0%、及び B 0.002〜0.010% よりなる群から選ばれる少なくとも1種の元素、及び残
部鉄及び不可避的不純物よりなることを特徴とする鉄系
形状記憶合金。
1. In addition to (a) Ni 31-35%, Co 8-15%, and Ti 2.5-6.5% by weight, (b) Al 1.5-10.0%, Mo 0.5 to 5.0%, W 1.0 to 5.0%, Nb 0.5 to 5.0%, and B 0.002 to 0.010%, at least one element selected from the group consisting of: And an iron-based shape memory alloy comprising the balance iron and inevitable impurities.
JP27909392A 1992-10-19 1992-10-19 Iron-based shape memory alloy Expired - Lifetime JPH0723522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27909392A JPH0723522B2 (en) 1992-10-19 1992-10-19 Iron-based shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27909392A JPH0723522B2 (en) 1992-10-19 1992-10-19 Iron-based shape memory alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22991684A Division JPS61106746A (en) 1984-10-30 1984-10-30 Iron system shape memory alloy

Publications (2)

Publication Number Publication Date
JPH05255815A true JPH05255815A (en) 1993-10-05
JPH0723522B2 JPH0723522B2 (en) 1995-03-15

Family

ID=17606322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27909392A Expired - Lifetime JPH0723522B2 (en) 1992-10-19 1992-10-19 Iron-based shape memory alloy

Country Status (1)

Country Link
JP (1) JPH0723522B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1961830A1 (en) * 2005-11-09 2008-08-27 Japan Science and Technology Agency Iron-based alloy having shape-memory property and superelasticity and method for manufacture thereof
JP2010222632A (en) * 2009-03-23 2010-10-07 Toyota Central R&D Labs Inc HIGH STRENGTH Fe-Ni-Co-Ti BASED ALLOY AND METHOD FOR PRODUCING THE SAME
CN106282812A (en) * 2015-06-02 2017-01-04 上海交通大学 A kind of shape memory alloy material and the application on pipe joint thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1961830A1 (en) * 2005-11-09 2008-08-27 Japan Science and Technology Agency Iron-based alloy having shape-memory property and superelasticity and method for manufacture thereof
EP1961830A4 (en) * 2005-11-09 2008-12-31 Japan Science & Tech Agency Iron-based alloy having shape-memory property and superelasticity and method for manufacture thereof
US8083990B2 (en) 2005-11-09 2011-12-27 Japan Science And Technology Agency Iron-based alloy having shape memory properties and superelasticity and its production method
JP5065904B2 (en) * 2005-11-09 2012-11-07 独立行政法人科学技術振興機構 Iron-based alloy having shape memory and superelasticity and method for producing the same
JP2010222632A (en) * 2009-03-23 2010-10-07 Toyota Central R&D Labs Inc HIGH STRENGTH Fe-Ni-Co-Ti BASED ALLOY AND METHOD FOR PRODUCING THE SAME
CN106282812A (en) * 2015-06-02 2017-01-04 上海交通大学 A kind of shape memory alloy material and the application on pipe joint thereof

Also Published As

Publication number Publication date
JPH0723522B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
JP5215855B2 (en) Fe-based alloy and manufacturing method thereof
CN112725678B (en) Non-equal atomic ratio medium/high entropy alloy containing NiCoCr and preparation method thereof
Jaffee The physical metallurgy of titanium alloys
EP1925683A1 (en) Cobalt-base alloy with high heat resistance and high strength and process for producing the same
JP2003253363A (en) Ni-BASE ALLOY FOR HEAT-RESISTANT SPRING, HEAT-RESISTANT SPRING USING THE ALLOY, AND ITS PRODUCTION METHOD
JP2001049371A (en) Al-Zn ALLOY EXCELLENT IN VIBRATION ABSORBING CAPACITY AND ITS PRODUCTION
JPWO2011046055A1 (en) Fe-based shape memory alloy and method for producing the same
Tanaka et al. Alloy design for Fe-Ni-Co-Al-based superelastic alloys
JPWO2007066555A1 (en) Co-based alloy and manufacturing method thereof
JP2001329325A (en) Shape memory alloy for living body
EP1890183A1 (en) Structural member for eyeglass, eyeglass frame comprising the structural member, and processes for production of the structural member and the eyeglass frame
JPS60116109A (en) Magnetic alloy and device including same
CN109763008A (en) A kind of high strength and high flexibility copper alloy containing niobium and preparation method thereof
Yi et al. Microstructural design for achieving high performances in Ti-V-Al lightweight shape memory alloys by optimizing Zr content
JPS61147834A (en) Corrosion-resistant high-strength ni alloy
JPH0768597B2 (en) Non-magnetic spring material and manufacturing method thereof
JP2003268501A (en) SHAPE MEMORY Fe ALLOY AND PRODUCTION METHOD THEREOF
JPH05255815A (en) Iron-based shape memory alloy
JP2909089B2 (en) Maraging steel and manufacturing method thereof
JPH0524983B2 (en)
JP2006183104A (en) High-strength titanium alloy having excellent cold workability
JP2002097537A (en) Co-ni based heat resistant alloy and manufacturing method
JP4275334B2 (en) Copper-based alloy and manufacturing method thereof
JP2682100B2 (en) Plastic mold
JPS60187652A (en) High-elasticity alloy