JPH05251235A - Soft magnetic alloy film and magnetic head - Google Patents

Soft magnetic alloy film and magnetic head

Info

Publication number
JPH05251235A
JPH05251235A JP4854092A JP4854092A JPH05251235A JP H05251235 A JPH05251235 A JP H05251235A JP 4854092 A JP4854092 A JP 4854092A JP 4854092 A JP4854092 A JP 4854092A JP H05251235 A JPH05251235 A JP H05251235A
Authority
JP
Japan
Prior art keywords
alloy film
composition
soft magnetic
film
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4854092A
Other languages
Japanese (ja)
Inventor
Keita Ihara
慶太 井原
Hiroshi Sakakima
博 榊間
Kumio Nako
久美男 名古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4854092A priority Critical patent/JPH05251235A/en
Publication of JPH05251235A publication Critical patent/JPH05251235A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To realize a soft magnetic alloy film for magnetic head use, which not only shows good soft magnetic characteristics and a high saturation magnetization after a high-temperature heat treatment is performed but also shows a low magnetostriction and a good surface state, and a magnetic head which is formed at a high yield using this alloy film. CONSTITUTION:The composition of a soft magnetic alloy film is modulated in the film thickness direction in at least the time of formation of the alloy film and is an Fe composition modulated nitride film with a mean composition, which is shown by a formula FeaTibZrcNd (a, b, c, and d represent atomic % and are respectively set on the condition of 70<=a<=92, 1<=b<=6, 3<=c<=10, 3<=d<=20 and a+b+c+d=100, in the film. A magnetic cap is attached to a magnetic head with high-melting point glass and a head chip is attached to a non-magnetic support with low-melting point glass. The magnetic head is a metal-in cap type magnetic head (an MIG head) formed using the above soft magnetic alloy film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ビデオテープレコーダ
(VTR)やハードディスク等の磁気ヘッド用コア用材料
として適したFe系の軟磁性合金膜と該磁気ヘッド用コ
ア材料を用いた磁気ヘッドに関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a video tape recorder.
The present invention relates to an Fe-based soft magnetic alloy film suitable as a core material for a magnetic head such as a (VTR) or a hard disk, and a magnetic head using the core material for a magnetic head.

【0002】[0002]

【従来の技術】実用的な磁気ヘッドを製作する際は、信
頼性等の点で磁気ギャップ部等に接着ガラス等による強
固な接着を行っておくことが重要となる。接着強度の強
い接着ガラスは一般に融点が高いため、高融点の接着ガ
ラスを用いて高温のギャップ形成等を行うことにより信
頼性の高い磁気ヘッドを歩留まり良く作製することがで
きる。この場合、磁気ヘッド用軟磁性合金膜としては高
温熱処理後に良好な軟質磁気特性が得られるものが必要
となる。特に、ガラス接着による磁気ギャップの形成後
にさらに熱処理が加わるような工程を経る磁気ヘッドで
は、磁気ギャップが後の工程の熱処理によりゆるまない
ようにきわめて高い融点を有する接着ガラスを用いて高
温で磁気ギャップの形成を行っておく必要がある。この
ような磁気ヘッドとして、例えばギャップ近傍に配され
た軟磁性合金膜とフェライトにより磁路が構成されたメ
タルインギャップ型磁気ヘッド(以降MIGヘッドとい
う)では、650℃以上の高融点のガラスでギャップ形成を
行ったヘッドチップを、ハードディスク用スライダーの
非磁性支持体に600℃以下の低融点のガラスにより埋め
込んだりする構成のものがある。これらに用いられる軟
磁性合金膜には650℃以上の極めて高温の熱処理後に良
好な磁気特性を示すことが求められる。磁気ヘッド等の
コア材料として用いられる代表的な軟磁性合金としては
Co系の非晶質合金やセンダスト等があり、磁気記録等
の高密度化に伴って益々高い飽和磁化が必要とされてい
る。しかしながら上記の軟質磁気特性の熱的安定性まで
考慮した場合、従来のVTR等の磁気ヘッド用軟磁性合
金膜において、実用的な飽和磁化の上限は、Co系非晶
質合金やセンダストを用いて達成される1T(テスラ)前
後であった。
2. Description of the Related Art When manufacturing a practical magnetic head, it is important to firmly bond the magnetic gap and the like with an adhesive glass or the like from the viewpoint of reliability and the like. Since the adhesive glass having a high adhesive strength generally has a high melting point, a highly reliable magnetic head can be manufactured with a high yield by forming a high temperature gap using the adhesive glass having a high melting point. In this case, the soft magnetic alloy film for a magnetic head needs to have good soft magnetic characteristics after high temperature heat treatment. In particular, in a magnetic head that undergoes a step in which a heat treatment is further applied after forming a magnetic gap by glass bonding, an adhesive glass having an extremely high melting point is used to prevent the magnetic gap from loosening due to a heat treatment in a later step. Must be formed. As such a magnetic head, for example, in a metal-in-gap type magnetic head (hereinafter referred to as MIG head) in which a magnetic path is formed by a soft magnetic alloy film and ferrite arranged near the gap, a glass having a high melting point of 650 ° C. or higher is used. There is a structure in which the head chip with the gap formed is embedded in a non-magnetic support of a slider for a hard disk with a glass having a low melting point of 600 ° C. or less. The soft magnetic alloy films used for these are required to show good magnetic properties after heat treatment at an extremely high temperature of 650 ° C. or higher. Typical soft magnetic alloys used as core materials for magnetic heads include Co-based amorphous alloys, sendust, etc., and higher saturation magnetization is required as the magnetic recording density increases. .. However, in consideration of the thermal stability of the soft magnetic characteristics described above, in the conventional soft magnetic alloy film for a magnetic head such as a VTR, the practical upper limit of saturation magnetization is a Co-based amorphous alloy or sendust. It was around 1T (Tesla) achieved.

【0003】[0003]

【発明が解決しようとする課題】高密度記録に用いられ
る磁気ヘッド用軟磁性合金膜としては、できる限り高い
飽和磁化を有する軟磁性合金膜が求められている。先に
開発された膜厚方向に窒素の組成を変調したFe系の組
成変調窒化合金膜(例えば特願昭61−54054号、特願平1
−25008号、特願平1−300506号)は、1Tをはかるに越
える高飽和磁化を有し、高温熱処理後に良好な軟質磁気
特性を示すために磁気ヘッド用として好都合な材料とな
っている。ただしFe系組成変調窒化膜では熱処理温度
によって磁気特性が変化するために熱処理温度に応じた
適当な組成を選択する必要がある。このようなFe系組
成変調窒化膜を、特に高温の熱処理が加えられる磁気ヘ
ッド用コア材として用いる場合も、その高温熱処理後に
無磁歪となる組成や高温熱処理によっても表面酸化を生
じにくい組成等は明らかにしておく必要があった。本発
明は、窒素による組成変調をFe系合金に適用して得ら
れるFe系の組成変調窒化合金膜において、高温の熱処
理後に良好な軟質磁気特性と高飽和磁化を示すばかりで
なく低磁歪となり、表面酸化を生じにくい磁気ヘッド用
軟磁性合金膜と、これを用いて良好なヘッド特性を有
し、歩留まり良く作製することができる磁気ヘッドを提
供することを目的とするものである。
As a soft magnetic alloy film for a magnetic head used for high density recording, a soft magnetic alloy film having a saturation magnetization as high as possible is required. A Fe-based composition-modulated nitrided alloy film, which has been developed previously and whose nitrogen composition is modulated in the film thickness direction (for example, Japanese Patent Application No. 61-54054 and Japanese Patent Application No. 1-54054).
-25008 and Japanese Patent Application No. 1-300506) have a high saturation magnetization exceeding 1T and exhibit good soft magnetic properties after high-temperature heat treatment, and are therefore suitable materials for magnetic heads. However, in the Fe-based composition-modulated nitride film, the magnetic characteristics change depending on the heat treatment temperature, so it is necessary to select an appropriate composition according to the heat treatment temperature. Even when such an Fe-based composition-modulated nitride film is used as a core material for a magnetic head to which a high-temperature heat treatment is applied, a composition which is non-magnetostrictive after the high-temperature heat treatment or a composition which hardly causes surface oxidation by the high-temperature heat treatment is used. I had to clarify. According to the present invention, in a Fe-based composition-modulated nitride alloy film obtained by applying composition modulation by nitrogen to a Fe-based alloy, not only good soft magnetic characteristics and high saturation magnetization but also low magnetostriction are obtained after heat treatment at high temperature. It is an object of the present invention to provide a soft magnetic alloy film for a magnetic head which hardly causes surface oxidation, and a magnetic head which uses the same and has good head characteristics and can be manufactured with a high yield.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の軟磁性合金膜は、少なくとも合金膜作成時
に膜厚方向の組成が変調されており、膜中の平均組成が
式 FeaTibZrcdで示され、前記式の組成において、
Feは鉄,Tiはチタン,Zrはジルコニウム,Nは窒素
であって、a,b,c,dは原子%を表し、それぞれ 7
0≦a≦92,1≦b≦6,3≦c≦10,3≦d≦20,a
+b+c+d=100 である軟磁性合金膜を用いる。この
場合は、膜厚方向に少なくとも窒素の組成が変調されて
おり、膜中の平均組成が式 FeaTibZrcd で示さ
れ、前記式の組成において、Feは鉄,Tiはチタン,Z
rはジルコニウム,Nは窒素であって、a,b,c,d
は原子%を表し、それぞれ 70≦a≦92,1≦b≦6,
3≦c≦10,3≦d≦20,a+b+c+d=100 であ
り、Fe系の微結晶粒を含有する軟磁性合金膜を用いて
もよい。以上の場合、膜厚方向の組成変調波長が60nm以
下である上記軟磁性合金膜は特に軟質磁気特性が優れて
いる。また磁気ヘッドとしては、少なくともギャップ近
傍に配されて軟磁性合金膜とフェライトにより磁路が構
成され、前記軟磁性合金膜が膜厚方向に少なくとも窒素
の組成が変調されており、膜中の平均組成が式 FeaTi
bZrcd で示され、前記式の組成において、Feは鉄,
Tiはチタン,Zrはジルコニウム,Nは窒素であって、
a,b,c,dは原子%を表し、それぞれ 70≦a≦9
2,1≦b≦6,3≦c≦10,3≦d≦20,a+b+c
+d=100 であり、Fe系の微結晶粒を含有する軟磁性
合金膜である磁気ヘッドを用いる。ここで磁気ヘッドと
しては、少なくともギャップ近傍に配されて軟磁性合金
膜とフェライトにより磁路が構成され、高融点ガラスに
より磁気ギャップが接着され、低融点ガラスによりヘッ
ドチップが非磁性支持体に接着された磁気ヘッドであっ
て、前記軟磁性合金膜が、膜厚方向に少なくとも窒素の
組成が変調されており、膜中の平均組成が式FeaTib
rcd で示され、前記式の組成において、Feは鉄,Ti
はチタン,Zrはジルコニウム,Nは窒素であって、
a,b,c,dは原子%を表し、それぞれ 70≦a≦9
2,1≦b≦6,3≦c≦10,3≦d≦20,a+b+c
+d=100であり、Fe系の微結晶粒を含有する軟磁性合
金膜である磁気ヘッドを用いると特に有効である。
In order to achieve the above object, in the soft magnetic alloy film of the present invention, the composition in the film thickness direction is modulated at least when the alloy film is formed, and the average composition in the film is represented by the formula Fe a Ti b Zr c N d , in the composition of the above formula,
Fe is iron, Ti is titanium, Zr is zirconium, N is nitrogen, and a, b, c, and d represent atomic%, and each is 7
0 ≦ a ≦ 92, 1 ≦ b ≦ 6, 3 ≦ c ≦ 10, 3 ≦ d ≦ 20, a
A soft magnetic alloy film with + b + c + d = 100 is used. In this case, at least the composition of nitrogen is modulated in the film thickness direction, and the average composition in the film is represented by the formula Fe a Ti b Zr c N d , where Fe is iron and Ti is titanium. , Z
r is zirconium, N is nitrogen, and a, b, c, d
Represents atomic% and 70 ≦ a ≦ 92, 1 ≦ b ≦ 6, respectively.
A soft magnetic alloy film containing 3 ≦ c ≦ 10, 3 ≦ d ≦ 20, a + b + c + d = 100, and Fe-based fine crystal grains may be used. In the above cases, the soft magnetic alloy film having a composition modulation wavelength of 60 nm or less in the film thickness direction is particularly excellent in soft magnetic characteristics. Further, as a magnetic head, a magnetic path is formed by at least the vicinity of the gap and is composed of a soft magnetic alloy film and ferrite, and at least the nitrogen composition is modulated in the film thickness direction of the soft magnetic alloy film. The composition is the formula Fe a Ti
b Zr c N d , wherein Fe is iron,
Ti is titanium, Zr is zirconium, N is nitrogen,
a, b, c, d represent atomic% and 70 ≦ a ≦ 9, respectively
2, 1 ≤ b ≤ 6, 3 ≤ c ≤ 10, 3 ≤ d ≤ 20, a + b + c
+ D = 100, and a magnetic head which is a soft magnetic alloy film containing Fe-based fine crystal grains is used. Here, the magnetic head is arranged at least in the vicinity of the gap to form a magnetic path with the soft magnetic alloy film and ferrite, the high melting glass adheres the magnetic gap, and the low melting glass adheres the head chip to the non-magnetic support. In the above magnetic head, the soft magnetic alloy film is such that at least the composition of nitrogen is modulated in the film thickness direction, and the average composition in the film is represented by the formula Fe a Ti b Z
indicated by r c N d, in the composition of the formula, Fe is iron, Ti
Is titanium, Zr is zirconium, N is nitrogen,
a, b, c, d represent atomic% and 70 ≦ a ≦ 9, respectively
2, 1 ≤ b ≤ 6, 3 ≤ c ≤ 10, 3 ≤ d ≤ 20, a + b + c
+ D = 100, and it is particularly effective to use a magnetic head which is a soft magnetic alloy film containing Fe-based fine crystal grains.

【0005】[0005]

【作用】本発明の軟磁性合金膜は、Fe基合金中に窒素
との親和性が強い金属元素を含み、スパッタ法による合
金膜作製直後に少なくとも窒素元素が膜厚方向に組成変
調された明確な組成変調構造、即ち窒化層と非窒化層よ
りなる積層構造を有する組成変調窒化合金膜となってい
る。ここで組成変調窒化合金膜中では窒素元素が組成変
調されることにより他の構成元素も相対的に組成変調さ
れる。膜厚方向における窒化層と非窒化層の一層当たり
の層厚の和は組成変調波長と呼ばれるが、これはスパッ
タ時におけるスパッタガス中に混合する窒素ガスの混合
周期を変化させることにより制御される。このスパッタ
ガス中に混合する窒素ガスの割合はPn(%)=100×(窒
素ガス分圧)/(全スパッタガス圧)で表わされる窒素ガ
ス分圧比Pn(%)を用いて示される。このようにして作
製される組成変調窒化合金膜は、成膜時においては明確
な組成変調構造を示し、非晶質もしくはそれに近い状態
にあるが、高温熱処理により窒素の拡散が生じて明確な
組成変調構造から不明確な組成変調構造へと移行し、高
温熱処理後にはα−Fe等のFe系の微結晶粒を含有する
ようになる。この熱処理により合金膜の構造が変化した
状態において、本発明の軟磁性合金膜は良好な軟質磁気
特性と高飽和磁化ばかりでなく低磁歪となる。したがっ
て熱処理後に良好な軟質磁気特性を得るための条件は、
スパッタ法による合金膜作成時に少なくとも窒素元素が
組成変調されているか、もしくは熱処理後において膜厚
方向に窒素の組成がわずかにでも変調されていてFe系
の微結晶粒を含有していることが必要なのである。ここ
で特に優れた軟質磁気特性を得るためには組成変調波長
を少なくとも60nm以下にすればよい。
The soft magnetic alloy film of the present invention contains a metal element having a strong affinity for nitrogen in the Fe-based alloy, and it is clear that the composition of at least the nitrogen element was modulated in the film thickness direction immediately after the alloy film was formed by the sputtering method. The composition-modulated nitride alloy film has a different composition-modulated structure, that is, a laminated structure including a nitride layer and a non-nitride layer. Here, in the composition-modulated nitride alloy film, the composition of the nitrogen element is modulated, so that the other constituent elements are also relatively composition-modulated. The sum of the layer thicknesses of the nitrided layer and the non-nitrided layer in the film thickness direction is called the composition modulation wavelength, which is controlled by changing the mixing period of the nitrogen gas mixed in the sputtering gas during sputtering. .. The ratio of the nitrogen gas mixed in the sputtering gas is shown by using a nitrogen gas partial pressure ratio Pn (%) expressed by Pn (%) = 100 × (nitrogen gas partial pressure) / (total sputtering gas pressure). The composition-modulated nitride alloy film thus produced exhibits a clear composition-modulated structure at the time of film formation and is in an amorphous state or in a state close to that. The modulation structure shifts to an indefinite composition modulation structure, and after high-temperature heat treatment, Fe-based fine crystal grains such as α-Fe are contained. In the state where the structure of the alloy film is changed by this heat treatment, the soft magnetic alloy film of the present invention has not only good soft magnetic characteristics and high saturation magnetization but also low magnetostriction. Therefore, the conditions for obtaining good soft magnetic properties after heat treatment are
It is necessary that at least the composition of nitrogen element is modulated at the time of forming the alloy film by the sputtering method, or that the composition of nitrogen is slightly modified in the film thickness direction after the heat treatment to contain Fe-based fine crystal grains. That is why. Here, in order to obtain particularly excellent soft magnetic characteristics, the composition modulation wavelength should be at least 60 nm or less.

【0006】本発明の軟磁性合金膜の場合、窒素元素と
の親和性が弱いFeと、窒素元素との親和性が強いZrお
よびTiが合金膜中に共存している。合金膜中では選択
的にZr等が窒素元素と化学的に強く結合しており、こ
のことが熱処理後に熱的に安定で良好な軟質磁気特性を
得る上で重要となっている。本発明の軟磁性合金膜にお
いて高温熱処理後に単に高飽和磁化と良好な軟質磁気特
性を得るためには、膜中の平均組成Zrを少なくとも3
原子%以上、窒素を3原子%以上、逆にFeを92原子%
以下にすることが必要であり、飽和磁化を高くするため
にはFeの含有量を少なくとも60原子%以上としてZrを
少なくとも20原子%以下および窒素を20原子%以下とす
ることが望ましい。以上の膜中平均組成は基本的にはF
e,ZrおよびNの3元素からなるが、実用特性を考慮し
た場合、この3元系合金膜は高温の熱処理によって表面
酸化を生じ易い短所がある。この高温熱処理時の表面酸
化を抑制する方法として1原子%以上のTiを添加する
ことが有効であることがわかった。ただしTiの添加量
を10原子%程度以上まで多くし過ぎると再び表面酸化が
認められており、この意味ではTi含有量を1原子%以
上で10原子%以下にしなければならない。さらにこのT
iを添加した4元系軟磁性合金膜は特に650℃以上の高温
熱処理によって低磁歪となることが確認された。650〜7
20℃程度の熱処理後に低磁歪の軟磁性合金膜を得るため
には、膜中の平均組成で、Tiの含有量を6原子%以下
にしておく必要がある。これ以上Ti量が増すと磁歪は
正側へ大きくなる。これらをまとめたものが請求項の範
囲中に示した組成式となっている。以上のようにして得
られる本発明の軟磁性合金膜は、高温熱処理後に良好な
軟質磁気特性と高飽和磁化を有し、しかも低磁歪であ
り、高温熱処理によっても表面酸化が生じにくい組成と
なっている。ただしFeの一部をCoやNiで置換される
場合もFeが主成分であればよく、スパッタガス中に不
可避的なガス等が含有されて合金膜中に酸素等が含有さ
れる場合も微量であれば問題はない。以上の本発明の軟
磁性合金膜は650℃以上の高温熱処理に対して特に効果
があるものであり、このような極めて高い温度の熱処理
を必要とする磁気ヘッドに対して適したものとなってい
る。高温熱処理を用いる磁気ヘッドとしては前述したよ
うに、少なくともギャップ近傍に軟磁性合金膜を配した
MIGヘッド等で、高融点ガラスにより磁気ギャップが
接着され、低融点ガラスによりへッドチップが非磁性支
持体に接着された構成のものが特に有効となる。なぜな
ら軟磁性合金膜が極めて高い温度の熱処理後に良好な磁
性特性と実用特性を示すため、650℃以上の極めて高い
融点を有する強固するガラスにより磁気ギャップの接続
ができるのである。これにより低融点ガラスによる接着
時に磁気ギャップが緩むようなことがなくなり、さらに
低融点ガラスも比較的強い接着強度のものを使用でき、
磁気ヘッド作製上の歩留まりが向上することになる。
In the soft magnetic alloy film of the present invention, Fe, which has a weak affinity for the nitrogen element, and Zr and Ti, which have a strong affinity for the nitrogen element, coexist in the alloy film. In the alloy film, Zr or the like is selectively chemically strongly bonded to the nitrogen element, which is important for obtaining a thermally stable and good soft magnetic property after the heat treatment. In the soft magnetic alloy film of the present invention, in order to simply obtain high saturation magnetization and good soft magnetic properties after high temperature heat treatment, the average composition Zr in the film should be at least 3.
Atomic% or more, nitrogen 3 atomic% or more, conversely Fe 92 atomic%
In order to increase the saturation magnetization, it is preferable that the Fe content is at least 60 atomic% or more, Zr is at least 20 atomic% or less, and nitrogen is 20 atomic% or less. The above average composition in the film is basically F
Although it is composed of three elements, e, Zr and N, this ternary alloy film has a drawback that surface oxidation is likely to occur due to high temperature heat treatment in consideration of practical characteristics. It has been found that adding 1 atomic% or more of Ti is effective as a method for suppressing the surface oxidation during the high temperature heat treatment. However, if the addition amount of Ti is excessively increased to about 10 atomic% or more, surface oxidation is recognized again, and in this sense, the Ti content must be 1 atomic% or more and 10 atomic% or less. Furthermore this T
It was confirmed that the quaternary soft magnetic alloy film containing i was reduced in magnetostriction particularly by high temperature heat treatment at 650 ° C. or higher. 650-7
In order to obtain a soft magnetic alloy film having a low magnetostriction after heat treatment at about 20 ° C., the Ti content must be 6 atomic% or less in terms of the average composition in the film. If the amount of Ti increases more than this, the magnetostriction increases to the positive side. The composition of these is the composition formula shown in the scope of the claims. The soft magnetic alloy film of the present invention obtained as described above has a composition having good soft magnetic characteristics and high saturation magnetization after high-temperature heat treatment, has low magnetostriction, and has a composition in which surface oxidation hardly occurs even by high-temperature heat treatment. ing. However, even if a part of Fe is replaced with Co or Ni, it is only necessary that Fe is the main component, and if the sputtering gas contains an unavoidable gas, etc., and the alloy film contains oxygen, etc. If so, there is no problem. The above soft magnetic alloy film of the present invention is particularly effective for high-temperature heat treatment at 650 ° C. or higher, and is suitable for a magnetic head that requires heat treatment at such an extremely high temperature. There is. As described above, the magnetic head using the high temperature heat treatment is a MIG head having a soft magnetic alloy film arranged at least in the vicinity of the gap, and the magnetic gap is adhered by the high melting point glass and the head chip is made of a non-magnetic support by the low melting point glass. It is particularly effective to use a structure adhered to. This is because the soft magnetic alloy film exhibits good magnetic properties and practical properties after heat treatment at an extremely high temperature, so that a magnetic gap can be connected by a strong glass having an extremely high melting point of 650 ° C. or higher. This prevents the magnetic gap from loosening when bonding with low melting glass, and it is also possible to use low melting glass with relatively strong adhesive strength,
The yield in manufacturing the magnetic head is improved.

【0007】[0007]

【実施例】本発明の第1の実施例の軟磁性合金膜を以下
に説明する。高周波スパッタ法により、Fe90Ti3Zr7
を合金ターゲットとして用い、スパッタ時に1.44Paの
アルゴンガス(Ar)中に0.16Paの窒素ガス(N2)を周期
的に混合しつつ、セラミック製の基板上に一層当たり10
nmの窒化層と一層当たり10nmの非窒化層が膜厚方向に周
期的に積層された多層膜、即ち組成変調窒化合金膜を形
成した。この場合、窒素ガス分圧比Pnは10%であり、
組成変調波長は20nmとなる。上記の合金ターゲットを用
いて成膜した組成変調窒化合金膜の膜中平均組成はFe
81Ti2.7Zr5.311と表され、このようにして成膜され
た組成変調窒化合金膜に対して空気圧5mPa以下の真
空中で670℃1時間の磁界中熱処理を施し軟磁性合金膜
とした。この軟磁性合金膜は、表面がきれいな金属光沢
をしており表面酸化は殆ど認められず、磁化困難磁区方
向に19A/mの低保磁力と4400の高い比透磁率を示し、
1.6Tの高飽和磁化を有していた。さらに飽和磁歪定数
λsを測定したところ、ほぼ無磁歪(λs=0)となってお
り、磁気特性と実用特性がともに良好な磁気ヘッド用軟
磁性合金膜となっていた。これは特定の熱処理温度の場
合であるが、組成変調窒化合金膜の飽和磁歪定数は熱処
理温度によって変化する。Fe系組成変調窒化合金膜は
高温の熱処理を施されるにつれて磁歪定数が負側へ変化
して行く傾向にあり、本発明の軟磁性合金膜の場合650
〜720℃の熱処理後に無磁歪となる。ここで上記組成変
調窒化膜に各熱処理温度で1時間の磁界中熱処理を加え
た際の磁気特性を表1にまとめて示す。
EXAMPLE A soft magnetic alloy film according to the first example of the present invention will be described below. Fe 90 Ti 3 Zr 7 was formed by the high frequency sputtering method.
Is used as an alloy target, and a nitrogen gas (N 2 ) of 0.16 Pa is periodically mixed in an argon gas (Ar) of 1.44 Pa at the time of sputtering, and 10 per layer is formed on a ceramic substrate.
A multilayer film in which a nitride layer having a thickness of 10 nm and a non-nitriding layer having a thickness of 10 nm per layer were periodically laminated in the film thickness direction, that is, a composition-modulated nitride alloy film was formed. In this case, the nitrogen gas partial pressure ratio Pn is 10%,
The composition modulation wavelength is 20 nm. The average composition of the composition-modulated nitrided alloy film formed using the above alloy target is Fe.
81 Ti 2.7 Zr 5.3 N 11, and the composition-modulated nitrided alloy film thus formed was subjected to heat treatment in a magnetic field at 670 ° C. for 1 hour in a vacuum with an air pressure of 5 mPa or less to form a soft magnetic alloy film. .. The surface of this soft magnetic alloy film has a beautiful metallic luster, almost no surface oxidation is observed, a low coercive force of 19 A / m and a high relative magnetic permeability of 4400 in the direction of hard magnetic domains,
It had a high saturation magnetization of 1.6T. Further, when the saturation magnetostriction constant λs was measured, it was found to be almost non-magnetostriction (λs = 0), and it was a soft magnetic alloy film for a magnetic head having good magnetic characteristics and practical characteristics. This is the case of a specific heat treatment temperature, but the saturation magnetostriction constant of the composition-modulated nitride alloy film changes depending on the heat treatment temperature. The Fe-based composition-modulated nitrided alloy film tends to change its magnetostriction constant to the negative side as it is subjected to high-temperature heat treatment. In the case of the soft magnetic alloy film of the present invention, 650
It becomes amagnetostrictive after heat treatment at ~ 720 ℃. Table 1 shows the magnetic characteristics when the composition-modulated nitride film was subjected to heat treatment in a magnetic field for 1 hour at each heat treatment temperature.

【0008】[0008]

【表1】 [Table 1]

【0009】表1中には650℃以上の熱処理による本発
明の実施例1,2および3と600℃以下の熱処理による
比較例4,5を示している。これらの試料はいずれも高
飽和磁化と低保磁力および高透磁率で代表される良好な
軟質磁気特性を有しているが、飽和磁歪定数で示される
ように650℃以上の高温の熱処理を施した実施例1,
2,3の方が絶対値1×10~6以下の低磁歪となっている
のである。
Table 1 shows Examples 1, 2, and 3 of the present invention by heat treatment at 650 ° C. or higher, and Comparative Examples 4, 5 by heat treatment at 600 ° C. or lower. All of these samples have good soft magnetic properties represented by high saturation magnetization, low coercive force, and high magnetic permeability, but as shown by the saturation magnetostriction constant, they were annealed at a high temperature of 650 ° C or higher. Example 1
2 and 3 have low magnetostriction with an absolute value of 1 × 10 to 6 or less.

【0010】このような高温の熱処理後に低磁歪と良好
な軟質磁気特性を示す軟磁性合金膜は磁気ヘッド用とし
て有用なものである。さらに表1の試料は表面状態が良
好(○)として示されるように、いずれの熱処理温度によ
っても表面酸化が殆ど認められなかった。これはFe−
Zr−NにTiを添加しているためであり、Fe−Zr−N
の3元系だけでは高温熱処理後に表面酸化による白変が
生じるのである。ここで同様にして、Fe90Ti3Zr7
合金ターゲットとして用い、窒素ガス分圧比Pnを10%
として各種組成変調波長を有する組成変調窒化合金膜を
作製したが、飽和磁化および飽和磁歪定数は組成変調波
長が異なってもあまり変化が見られなかった。しかし、
保磁力に関しては組成変調波長が短くなるにつれて低下
し、少なくとも60nm以下で特に良好な軟質磁気特性を示
した。次に高周波スパッタ法により、各種組成の合金タ
ーゲットを用いて、全スパッタガス圧が1.6Paとなるよ
うにスパッタ時のアルゴンガス分圧と窒素ガス分圧の比
を変えて、組成変調波長が20nmの組成変調窒化合金膜を
作製し、650〜720℃の高温で最適な磁界中熱処理を施し
軟磁性合金膜を作製した。この際の各種組成の軟磁性合
金膜の磁気特性と表面状態をまとめて表2に示す。
The soft magnetic alloy film exhibiting low magnetostriction and good soft magnetic characteristics after such a high temperature heat treatment is useful for a magnetic head. Further, the samples in Table 1 show almost no surface oxidation at any heat treatment temperature, as indicated by the surface condition being good (◯). This is Fe-
This is because Ti is added to Zr-N, and Fe-Zr-N
In the ternary system alone, whitening occurs due to surface oxidation after high temperature heat treatment. Similarly, using Fe 90 Ti 3 Zr 7 as the alloy target, the nitrogen gas partial pressure ratio Pn is 10%.
As a result, composition-modulated nitride alloy films having various composition-modulation wavelengths were prepared, but the saturation magnetization and the saturation magnetostriction constant did not change much even when the composition-modulation wavelengths were different. But,
The coercive force decreased as the compositional modulation wavelength became shorter, and showed particularly good soft magnetic properties at 60 nm or less. Next, by the high frequency sputtering method, the composition modulation wavelength was 20 nm by changing the ratio of the argon gas partial pressure and the nitrogen gas partial pressure at the time of sputtering so that the total sputtering gas pressure would be 1.6 Pa by using alloy targets of various compositions. A composition-modulated nitrided alloy film was prepared and heat-treated in an optimum magnetic field at a high temperature of 650 to 720 ℃ to prepare a soft magnetic alloy film. Table 2 collectively shows the magnetic properties and surface states of the soft magnetic alloy films having various compositions.

【0011】[0011]

【表2】 [Table 2]

【0012】表2中には650℃以上の熱処理後における
本発明の実施例6,7および8と比較例9,10および11
が示されているが、膜中平均組成およびいくつかの磁気
特性は小数点以下を四捨五入した値で表わされている。
表2より、膜中の平均組成において、Fe−Ti−Zr−
Nよりなる軟磁性合金膜が高飽和磁化と良好な軟質磁気
特性ばかりでなく、絶対値が1×10~6以下の低磁歪と表
面状態が良好(○)で示されるように良好な耐表面酸化性
を示すことがわかる。これに対して比較例のFe−Zr−
NおよびFe−Ti−Nよりなる軟磁性合金膜は、高飽和
磁化と軟質磁気特性は有しているが、高温熱処理後に低
磁歪でかつ良好な表面状態を達成することができない。
特に比較例11はTi含有量が多過ぎる場合は表面酸化を
生じることを示しており、Fe−Zr−NにTiを添加す
る場合、Tiの含有量が適当な組成範囲、即ち少なくと
も1原子%以上で6原子%以下であれば低磁歪かつ良好
な表面状態を示すようになるのである。以上述べたよう
に本発明の軟磁性合金膜は、特定の組成を有するFe系
組成変調窒化合金膜であって、高温の熱処理後に良好な
軟質磁気特性と高飽和磁化を示すばかりでなく低磁歪と
なり、表面酸化を生じにくい磁気ヘッド用軟磁性合金膜
となっている。
In Table 2, Examples 6, 7 and 8 of the present invention and Comparative Examples 9, 10 and 11 after heat treatment at 650 ° C. or higher are shown.
, The average composition in the film and some magnetic properties are represented by values rounded to the nearest whole number.
From Table 2, in the average composition in the film, Fe-Ti-Zr-
The soft magnetic alloy film made of N has not only high saturation magnetization and good soft magnetic properties, but also low magnetostriction with an absolute value of 1 × 10 to 6 or less and a good surface state (○) It can be seen that it exhibits oxidizing properties. On the other hand, Fe-Zr-of the comparative example
The soft magnetic alloy film made of N and Fe-Ti-N has high saturation magnetization and soft magnetic properties, but cannot achieve a low magnetostriction and a good surface state after heat treatment at high temperature.
In particular, Comparative Example 11 shows that when Ti content is too high, surface oxidation occurs, and when Ti is added to Fe-Zr-N, the Ti content is in a suitable composition range, that is, at least 1 atomic%. If the content is 6 atomic% or less, a low magnetostriction and a good surface state will be exhibited. As described above, the soft magnetic alloy film of the present invention is a Fe-based composition-modulated nitride alloy film having a specific composition, and exhibits not only good soft magnetic characteristics and high saturation magnetization but also low magnetostriction after heat treatment at high temperature. Thus, the soft magnetic alloy film for a magnetic head hardly causes surface oxidation.

【0013】本発明の第2実施例の磁気ヘッドを以下に
説明する。第1実施例に述べた本発明の軟磁性合金膜を
用いてハードディスク用磁気ヘッドであるMIGを以下
のようにして作製した。トラック加工が施されギャップ
対向面となる表面を鏡面に研磨されたI形状とC形状の
フェライト基板上に、高周波スパッタ法によりアルミナ
を10nmの層厚で成膜し、続けて同じ真空チャンバー内で
のアルミナ上にFe系組成変調窒化合金膜を2μmの膜厚
で形成した。さらにFe系組成変調窒化合金膜膜上にギ
ャップ材としてSiO2層を0.1μmの層厚で形成し、その
上に封着温度が670℃付近の高融点の接着ガラスを0.1μ
m形成した。Fe系組成変調窒化膜の作製に際しては、F
e90Ti3Zr7を合金ターゲットとして用い、スパッタ時
に1.44Paのアルゴンガス(Ar)中に0.16Paの窒素ガス
(N2)を周期的に混合しつつ、一層当たり10nmの窒化層
と一層当たり10nmの非窒化層を膜厚方向に周期的に積層
した。この場合のアルミナは熱処理時におけるフェライ
トから軟磁性合金膜への酸素の拡散を防止するために設
けた。軟磁性合金膜中の平均組成はFe81Ti2.7Zr5.3
11であり、この熱処理後の飽和磁化は1.6Tである。
このようにして作製されたI形状とC形状の2個のヘッ
ドコア半体を磁気ギャップ面上の高融点ガラス同士で突
合せ、670℃1時間の磁界中熱処理を施してヘッドコア
ブロックを形成した。このヘッドコアブロックをギャッ
プ面と略垂直方向に切断し、ヘッド正面部のトラック幅
が11μmで150μmのコア厚みを有するヘッドチップを得
た。このヘッドチップを、非磁性支持体であるハードデ
ィスク用スライダーに埋め込み、封着温度が550℃付近
の低融点ガラスにより接着して一体化した。さらにこの
一体化したスライダーの前面研磨を施し、ギャップ深さ
を5μm以下に規制した後、巻線を施し、本発明の磁気
ヘッドを得た。以上のようにして作製された本発明の磁
気ヘッド、即ち本発明のFe系組成変調窒化膜を用いた
ハードディスク用MIGヘッドは、高融点の接着ガラス
で磁気ギャップの形成を行ったため、後の工程の低融点
ガラスによるヘッドチップのスライダーへの埋め込み接
着時に、磁気ギャップがゆるむことがなく、製造上きわ
めて良好な歩留まりが得られた。このMIGヘッドの電
磁変換特性を高保磁力媒体を用いて測定し、1Tの飽和
磁化を有するセンダスト合金膜を用いたMIGヘッドと
比較した。センダスト合金膜を用いたMIGヘッドは良
好な電磁変換特性を有しているが本発明のFe系組成変
調窒化膜を用いたMIGへッドは、このセンダスト合金
膜MIGヘッドと比較してさらに2dB以上の出力向上が
図られており、オーバーライト特性に関しても10dB以上
の良好な値を示した。このヘッド出力およびオーバーラ
イト特性の差は、本発明の軟磁性合金膜が高飽和磁化と
高透磁率を有していることに起因するものである。した
がって、本発明の軟磁性合金膜を用いた本発明の磁気ヘ
ッドは歩留まり良く作製でき、しかもヘッド出力が高い
磁気ヘッドとなっているものである。
A magnetic head according to the second embodiment of the present invention will be described below. Using the soft magnetic alloy film of the present invention described in the first embodiment, MIG which is a magnetic head for a hard disk was manufactured as follows. Alumina is deposited to a layer thickness of 10 nm by high frequency sputtering on a ferrite substrate of I-shape and C-shape, which has been subjected to track processing and whose surface facing the gap is mirror-polished, and then continuously deposited in the same vacuum chamber. A Fe-based composition-modulated nitride alloy film was formed on the alumina of 2 to have a thickness of 2 μm. Further, an SiO 2 layer having a layer thickness of 0.1 μm is formed as a gap material on the Fe-based composition-modulated nitrided alloy film, and a high melting point adhesive glass having a sealing temperature of about 670 ° C. is formed on the SiO 2 layer by 0.1 μm
m formed. When manufacturing the Fe-based composition modulation nitride film, F
Using e 90 Ti 3 Zr 7 as an alloy target, 0.14 Pa nitrogen gas was added to 1.44 Pa argon gas (Ar) during sputtering.
While periodically mixing (N 2 ), a nitride layer of 10 nm per layer and a non-nitride layer of 10 nm per layer were periodically laminated in the film thickness direction. Alumina in this case was provided to prevent the diffusion of oxygen from the ferrite into the soft magnetic alloy film during heat treatment. The average composition in the soft magnetic alloy film is Fe 81 Ti 2.7 Zr 5.3.
N 11 and the saturation magnetization after this heat treatment is 1.6 T.
The two I-shaped and C-shaped head core halves thus produced were butted against each other with high melting point glass on the magnetic gap surface, and heat-treated in a magnetic field at 670 ° C. for 1 hour to form a head core block. This head core block was cut in a direction substantially perpendicular to the gap surface to obtain a head chip having a head front portion with a track width of 11 μm and a core thickness of 150 μm. This head chip was embedded in a slider for a hard disk which was a non-magnetic support, and was bonded and integrated with a low melting point glass having a sealing temperature of around 550 ° C. Further, the integrated slider was subjected to front surface polishing to regulate the gap depth to 5 μm or less, and then wound, to obtain a magnetic head of the present invention. The magnetic head of the present invention manufactured as described above, that is, the MIG head for a hard disk using the Fe-based composition modulation nitride film of the present invention, has the magnetic gap formed by the high melting point adhesive glass. When the head chip was embedded and adhered to the slider with the low melting point glass, the magnetic gap did not loosen, and a very good yield in manufacturing was obtained. The electromagnetic conversion characteristics of this MIG head were measured using a high coercive force medium, and compared with the MIG head using a sendust alloy film having a saturation magnetization of 1T. The MIG head using the sendust alloy film has good electromagnetic conversion characteristics, but the MIG head using the Fe-based composition modulation nitride film of the present invention has an additional 2 dB compared with this MIG head. The output has been improved as described above, and a good value of 10 dB or more has been shown for the overwrite characteristic. This difference in head output and overwrite characteristics is due to the soft magnetic alloy film of the present invention having high saturation magnetization and high magnetic permeability. Therefore, the magnetic head of the present invention using the soft magnetic alloy film of the present invention is a magnetic head which can be manufactured with high yield and has a high head output.

【0014】[0014]

【発明の効果】上記実施例から明らかなように、本発明
による軟磁性合金膜は、高温熱処理後に良好な軟質磁気
特性と高飽和磁化を示すばかりでなく低磁歪となり、熱
処理による表面酸化が生じにくい磁気ヘッド用軟磁性合
金膜となっている。また、この軟磁性合金膜を用いた磁
気ヘッドは良好なヘッド特性を有し、歩留りよく製作で
きるという効果を有し利用価値が極めて高い。
As is apparent from the above examples, the soft magnetic alloy film according to the present invention exhibits not only good soft magnetic characteristics and high saturation magnetization after high temperature heat treatment but also low magnetostriction, and surface oxidation by heat treatment occurs. It is a difficult-to-use soft magnetic alloy film for magnetic heads. Further, the magnetic head using this soft magnetic alloy film has good head characteristics, has the effect of being manufactured with high yield, and is extremely useful.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも合金膜作成時に膜厚方向の組
成が変調されており、膜中の平均組成が式 FeaTibZr
cd で示され、前記式の組成において、Feは鉄,Ti
はチタン,Zrはジルコニウム,Nは窒素であって、
a,b,c,dは原子%を表し、それぞれ 70≦a≦9
2,1≦b≦6,3≦c≦10,3≦d≦20,a+b+c
+d=100 であることを特徴とする軟磁性合金膜。
1. The composition in the film thickness direction is modulated at least when the alloy film is formed, and the average composition in the film is expressed by the formula Fe a Ti b Zr.
c N d , in the composition of the above formula, Fe is iron, Ti
Is titanium, Zr is zirconium, N is nitrogen,
a, b, c, d represent atomic% and 70 ≦ a ≦ 9, respectively
2, 1 ≤ b ≤ 6, 3 ≤ c ≤ 10, 3 ≤ d ≤ 20, a + b + c
Soft magnetic alloy film characterized in that + d = 100.
【請求項2】 膜厚方向に少なくとも窒素の組成が変調
されており、膜中の平均組成が式 FeaTibZrcd
示され、前記式の組成において、Feは鉄,Tiはチタ
ン,Zrはジルコニウム,Nは窒素であって、a,b,
c,dは原子%を表し、それぞれ 70≦a≦92,1≦b
≦6,3≦c≦10,3≦d≦20,a+b+c+d=100
であり、Fe系の微結晶粒を含有することを特徴とする
軟磁性合金膜。
2. The composition of at least nitrogen is modulated in the film thickness direction, and the average composition in the film is represented by the formula Fe a Ti b Zr c N d , in which Fe is iron and Ti is Titanium, Zr is zirconium, N is nitrogen, a, b,
c and d represent atomic%, 70 ≦ a ≦ 92, 1 ≦ b, respectively
≦ 6,3 ≦ c ≦ 10, 3 ≦ d ≦ 20, a + b + c + d = 100
And a soft magnetic alloy film containing Fe-based fine crystal grains.
【請求項3】 特に膜厚方向の組成変調波長が60nm以下
であることを特徴とする請求項1または請求項2記載の
軟磁性合金膜。
3. The soft magnetic alloy film according to claim 1, wherein the composition modulation wavelength in the film thickness direction is 60 nm or less.
【請求項4】 少なくともギャップ近傍に配されて軟磁
性合金膜とフェライトにより磁路が構成され、前記軟磁
性合金膜が膜厚方向に少なくとも窒素の組成が変調され
ており、膜中の平均組成が式 FeaTibZrcd で示さ
れ、前記式の組成において、Feは鉄,Tiはチタン,Z
rはジルコニウム,Nは窒素であって、a,b,c,d
は原子%を表し、それぞれ 70≦a≦92,1≦b≦6,
3≦c≦10,3≦d≦20,a+b+c+d=100 であ
り、Fe系の微結晶粒を含有することを特徴とする軟磁
性合金膜である磁気ヘッド。
4. A magnetic path is formed at least in the vicinity of the gap by a soft magnetic alloy film and ferrite, and the soft magnetic alloy film has at least the nitrogen composition modulated in the film thickness direction, and the average composition in the film. Is represented by the formula Fe a Ti b Zr c N d , wherein Fe is iron, Ti is titanium, Z
r is zirconium, N is nitrogen, and a, b, c, d
Represents atomic% and 70 ≦ a ≦ 92, 1 ≦ b ≦ 6, respectively.
A magnetic head which is a soft magnetic alloy film having 3 ≦ c ≦ 10, 3 ≦ d ≦ 20, a + b + c + d = 100 and containing Fe-based fine crystal grains.
【請求項5】 少なくともギャップ近傍に配されて軟磁
性合金膜とフェライトにより磁路が構成され、高融点ガ
ラスにより磁気ギャップが接着され、低融点ガラスによ
りヘッドチップが非磁性支持体に接着された磁気ヘッド
であって、前記軟磁性合金膜が、膜厚方向に少なくとも
窒素の組成が変調されており、膜中の平均組成が式 Fe
aTibZrcd で示され、前記式の組成において、Feは
鉄,Tiはチタン,Zrはジルコニウム,Nは窒素であっ
て、a,b,c,dは原子%を表し、それぞれ 70≦a
≦92,1≦b≦6,3≦c≦10,3≦d≦20,a+b+
c+d=100 であり、Fe系の微結晶粒を含有すること
を特徴とする軟磁性合金膜である磁気ヘッド。
5. A magnetic path is formed at least near the gap to form a magnetic path with a soft magnetic alloy film and ferrite, a magnetic gap is adhered with a high melting point glass, and a head chip is adhered to a non-magnetic support with a low melting point glass. In the magnetic head, at least the composition of nitrogen is modulated in the film thickness direction of the soft magnetic alloy film, and the average composition in the film is represented by the formula Fe
a Ti b Zr c N d , in the composition of the above formula, Fe is iron, Ti is titanium, Zr is zirconium, N is nitrogen, and a, b, c and d are atomic%, respectively. 70 ≦ a
≤ 92, 1 ≤ b ≤ 6, 3 ≤ c ≤ 10, 3 ≤ d ≤ 20, a + b +
A magnetic head which is a soft magnetic alloy film having c + d = 100 and containing Fe-based fine crystal grains.
JP4854092A 1992-03-05 1992-03-05 Soft magnetic alloy film and magnetic head Pending JPH05251235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4854092A JPH05251235A (en) 1992-03-05 1992-03-05 Soft magnetic alloy film and magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4854092A JPH05251235A (en) 1992-03-05 1992-03-05 Soft magnetic alloy film and magnetic head

Publications (1)

Publication Number Publication Date
JPH05251235A true JPH05251235A (en) 1993-09-28

Family

ID=12806205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4854092A Pending JPH05251235A (en) 1992-03-05 1992-03-05 Soft magnetic alloy film and magnetic head

Country Status (1)

Country Link
JP (1) JPH05251235A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1850334A1 (en) * 2006-04-27 2007-10-31 Heraeus, Inc. Soft magnetic underlayer in magnetic media and soft magnetic alloy based sputter target

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1850334A1 (en) * 2006-04-27 2007-10-31 Heraeus, Inc. Soft magnetic underlayer in magnetic media and soft magnetic alloy based sputter target

Similar Documents

Publication Publication Date Title
EP0373615A2 (en) Soft magnetic alloy films and the method of manufacturing the same
EP0382195A1 (en) Magnetic head and method of manufacturing the same
US5585984A (en) Magnetic head
JPH07302711A (en) Soft magnetic alloy thin film and its manufacture
JPH0827897B2 (en) Magnetic head
JPH05251235A (en) Soft magnetic alloy film and magnetic head
EP0442760A2 (en) Soft magnetic alloy films and magnetic heads using the same
US4615748A (en) Amorphous soft magnetic thin film
JPH0827908B2 (en) Magnetic head
JP2523854B2 (en) Magnetic head
JP2775770B2 (en) Method for manufacturing soft magnetic thin film
JP3517067B2 (en) Magnetic head
JP2570337B2 (en) Soft magnetic laminated film
JPH02263409A (en) Mild magnetic alloy film and manufacture thereof
JP2808796B2 (en) Soft magnetic thin film
JPS58118015A (en) Magnetic head
EP0378160B1 (en) Magnetic head and method of producing the same
JPH02290004A (en) Soft magnetic alloy film and its manufacture
KR0136419B1 (en) Soft magnetic alloy thin film substrate
JP3386270B2 (en) Magnetic head and magnetic recording device
JP2519554B2 (en) MIG type magnetic head
JP3272738B2 (en) Soft magnetic multilayer
JP3452594B2 (en) Manufacturing method of magnetic head
JPH07249519A (en) Soft magnetic alloy film, magnetic head, and method for adjusting coefficient of thermal expansion of soft magnetic alloy film
JPH05114516A (en) Soft magnetic alloy film and magnetic head