JPH05249450A - Liquid crystal display - Google Patents

Liquid crystal display

Info

Publication number
JPH05249450A
JPH05249450A JP3318172A JP31817291A JPH05249450A JP H05249450 A JPH05249450 A JP H05249450A JP 3318172 A JP3318172 A JP 3318172A JP 31817291 A JP31817291 A JP 31817291A JP H05249450 A JPH05249450 A JP H05249450A
Authority
JP
Japan
Prior art keywords
light
optical waveguide
substrate
liquid crystal
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3318172A
Other languages
Japanese (ja)
Inventor
Ken Sumiyoshi
研 住吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3318172A priority Critical patent/JPH05249450A/en
Publication of JPH05249450A publication Critical patent/JPH05249450A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To provide a high transmissivity and fine image brightness even in a light shielding layer having the same opening rate by making the area of a incident surface of an optical waveguide transmitting light in the direction of a base board normal line in one base board larger than the area of a light- emitting surface of a shape including in the display area of a picture element part. CONSTITUTION:The optical waveguide 102 is formed in the direction of the base board normal line in one substrate 101 and the area of the incident surface 103 to the optical waveguide 102 provided at the incident side of light is constituted larger than the area of the light-emitting surface 104 from the optical waveguide 102 in the substrate 101. When the light is made incident on vertically like arrows, almost amount of the light coming into the incident side of the substrate 101 is closed by the optical waveguide 102 and advanced, then the light is focused and emitted from the light-emitting surface 104. Consequently, by including the shape of the light-emitting surface 104 in the surface of the substrate 101 in the display part 105, almost amount of the incident light transmits and a large amount of transmitting light is obtained without being affected by the size of the picture element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液晶表示装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device.

【0002】[0002]

【従来の技術】アクティブマトリクス液晶表示装置の高
精細化が求められている。特に、液晶表示装置を高品位
テレビやエンジニアリングワークステーションに適用す
る需要は、年々増加する傾向にある(フラットパネルデ
ィスプレイ 1991 193頁 日経BP社)。
2. Description of the Related Art High-definition active matrix liquid crystal display devices are required. In particular, the demand for applying liquid crystal display devices to high-definition televisions and engineering workstations tends to increase year by year (Flat Panel Display, 1991, p. 193, Nikkei BP).

【0003】[0003]

【発明が解決しようとする課題】一般に液晶表示装置の
一画素は、非表示部と表示部からなる。従って、液晶表
示装置の透過率は、開口率(画素サイズの面積に対する
非表示部の面積比)に比例することとなる。図2に示す
ように、透明基板205,206間に液晶204を挾持
した液晶表示装置の非表示部には、配線201,薄膜ト
ランジスタやダイオードなどの画素駆動素子202,遮
光層203などが含まれる。
Generally, one pixel of a liquid crystal display device comprises a non-display portion and a display portion. Therefore, the transmittance of the liquid crystal display device is proportional to the aperture ratio (the area ratio of the non-display portion to the area of the pixel size). As shown in FIG. 2, a non-display portion of a liquid crystal display device in which a liquid crystal 204 is sandwiched between transparent substrates 205 and 206 includes a wiring 201, a pixel driving element 202 such as a thin film transistor or a diode, a light shielding layer 203, and the like.

【0004】いま、一画素の大きさが小さくなった場合
を考える。この場合、非表示部の面積を単純に縮小する
ことはできない。なぜなら、配線や画素駆動素子の加工
精度と基板同士の組立精度によって、これらの非表示部
に面積の下限が決っているからである。
Now, consider the case where the size of one pixel is reduced. In this case, the area of the non-display portion cannot be simply reduced. This is because the lower limit of the area of these non-display areas is determined by the processing accuracy of wirings and pixel driving elements and the assembly accuracy of substrates.

【0005】従って、液晶表示装置の開口率は、一画素
の大きさを小さくするに従い急激に減少してしまう。こ
のため、高精細液晶ディスプレイを作成した場合、非常
に暗い表示画面となってしまうという困難があった。
Therefore, the aperture ratio of the liquid crystal display device sharply decreases as the size of one pixel is reduced. Therefore, when a high-definition liquid crystal display is created, it is difficult to obtain a very dark display screen.

【0006】[0006]

【課題を解決するための手段】本発明の液晶表示装置
は、一方の基板内に基板法線方向へ光を伝える光導波路
を有し、前記光導波路の入射面面積が前記光導波路の出
射面面積と比較して大きく、前記出射面の形状が画素部
の表示領域内に含まれることから構成される。
A liquid crystal display device of the present invention has an optical waveguide for transmitting light in a substrate normal direction in one substrate, and an incident surface area of the optical waveguide is an emission surface of the optical waveguide. The shape is larger than the area and the shape of the emission surface is included in the display region of the pixel portion.

【0007】[0007]

【作用】本発明を図1を用いて説明する。本発明におい
ては、一方の基板101中に光導波路102が、基板法
線方向に形成されている。本構造においては、基板の光
が入射する側にある光導波路102への入射面103の
面積が、基板の光が出射する側にある光導波路102か
らの出射面104と面積と比較して大きい。
The present invention will be described with reference to FIG. In the present invention, the optical waveguide 102 is formed in the one substrate 101 in the substrate normal direction. In this structure, the area of the incident surface 103 of the substrate on the light incident side of the optical waveguide 102 is larger than the area of the light emitting surface 104 of the substrate on the light emitting side of the optical waveguide 102. ..

【0008】このため、図1の液晶表示装置に光が垂直
に入射した場合、基板の光が入射する側に到達した光の
大部分が、光導波路102に閉じ込められて進行する。
光導波路を進行するうちに、光は絞られて、光導波路か
らの出射面104から出射する。
Therefore, when light is vertically incident on the liquid crystal display device of FIG. 1, most of the light reaching the light incident side of the substrate is confined in the optical waveguide 102 and travels.
While advancing through the optical waveguide, the light is focused and emitted from the emission surface 104 from the optical waveguide.

【0009】従って、光出射面106の基板面内の形状
を液晶表示装置の表示部105内に含まれるようにする
ことにより、入射光のほとんどを透過させることができ
る。このため、画素サイズに関わりなく、大きな透過光
量を得ることができる。
Therefore, by making the shape of the light emitting surface 106 in the substrate surface to be included in the display portion 105 of the liquid crystal display device, most of the incident light can be transmitted. Therefore, a large amount of transmitted light can be obtained regardless of the pixel size.

【0010】[0010]

【実施例】本発明の実施例を図3を用いて説明する。図
3に示すように光導波路306を有する光導波路基板3
03上に、クロム薄膜からなる遮光層304とラビング
したポリイミド薄膜305を積層した。ここで、導波路
303の光入射面は、一辺100μm角の正方形であ
り、ピッチ100μmで並んでいる。従って、光導波路
基板303の光が入射する側はすべて、導波路の光入射
面に覆われている。
EXAMPLE An example of the present invention will be described with reference to FIG. An optical waveguide substrate 3 having an optical waveguide 306 as shown in FIG.
03, a light shielding layer 304 made of a chromium thin film and a rubbed polyimide thin film 305 were laminated. Here, the light incident surface of the waveguide 303 is a square having a side of 100 μm and is arranged at a pitch of 100 μm. Therefore, the light incident surface of the optical waveguide substrate 303 is entirely covered with the light incident surface of the waveguide.

【0011】一方、導波路303の光出射面は、一辺3
0μm角の正方形であり、ピッチ100μmで並んでい
る。さらに、遮光層304の開口部は、一辺40μm角
の正方形であり、図3に示すように各光導波路303と
整合して配置している。
On the other hand, the light emitting surface of the waveguide 303 has one side 3
The squares are 0 μm square and are arranged at a pitch of 100 μm. Further, the opening of the light-shielding layer 304 is a square having a side of 40 μm and is aligned with each optical waveguide 303 as shown in FIG.

【0012】さらに、ラビングしたポリイミド薄膜30
2を積層したガラス基板301と、光導波路基板303
をプラスチックスペーサを用いて間隔5μmで対向さ
せ、両者の間にネマチック液晶E8を注入し、TN構造
307を実現した。この構造の液晶セルを直交した偏光
板308間に設置し、550nmの透過率を求めた。こ
の結果、20%の透過率を確認した。
Further, a rubbed polyimide thin film 30 is used.
2 laminated glass substrate 301 and optical waveguide substrate 303
Were made to face each other at intervals of 5 μm using a plastic spacer, and nematic liquid crystal E8 was injected between them to realize a TN structure 307. The liquid crystal cell having this structure was placed between the orthogonal polarizing plates 308, and the transmittance at 550 nm was determined. As a result, a transmittance of 20% was confirmed.

【0013】比較のために、同寸法の遮光層を積層した
ガラス基板を、前記光導波基板303の代わりとして用
いた液晶セルを用意し、同様に透過率を求めた。この結
果、5%の透過率を確認した。
For comparison, a liquid crystal cell was prepared in which a glass substrate having light-shielding layers of the same size laminated was used as a substitute for the optical waveguide substrate 303, and the transmittance was similarly obtained. As a result, a transmittance of 5% was confirmed.

【0014】上記実施例で用いた光導波路基板303は
種々の方法で作製できる。その一例を図4,図5に示
す。
The optical waveguide substrate 303 used in the above embodiment can be manufactured by various methods. An example thereof is shown in FIGS.

【0015】図4は成形法により光導波路基板を作製す
る例である。まず、図4(a)に示すように、樹脂B上
に感光性樹脂Aを塗布し、マスクを介して露光する。次
いで、図4(b)に示すように、現像して感光性樹脂A
をパターン化した後、樹脂Bで感光性樹脂Aをモールド
する(図4(c))。最後に、エッチングあるいは研磨
等により樹脂Bを取り除いて感光性樹脂Aの端面を露出
して光導波路基板とする(図4(d))。
FIG. 4 shows an example of manufacturing an optical waveguide substrate by a molding method. First, as shown in FIG. 4A, the photosensitive resin A is applied onto the resin B and exposed through a mask. Then, as shown in FIG. 4B, the photosensitive resin A is developed to develop the photosensitive resin A.
After patterning, the photosensitive resin A is molded with the resin B (FIG. 4C). Finally, the resin B is removed by etching or polishing to expose the end face of the photosensitive resin A to form an optical waveguide substrate (FIG. 4 (d)).

【0016】図5はイオン拡散法により光導波路基板を
作製する例である。まず、図5(a)に示すように、ガ
ラス基板上に感光性樹脂をパターン上に形成する。次い
で、図5(b)に示す如く、イオン拡散した後、感光性
樹脂を除去して光導波路基板(図5(c))とする。
FIG. 5 shows an example of producing an optical waveguide substrate by the ion diffusion method. First, as shown in FIG. 5A, a photosensitive resin is formed in a pattern on a glass substrate. Next, as shown in FIG. 5B, after ion diffusion, the photosensitive resin is removed to obtain an optical waveguide substrate (FIG. 5C).

【0017】[0017]

【発明の効果】以上述べたように、本発明を用いること
により、同じ開口率の遮光層を有しながら、実行的に高
い透過率を得ることが可能である。これによって、本発
明が高精細な液晶表示装置の画面輝度向上に有効なこと
が示された。
As described above, by using the present invention, it is possible to obtain a practically high transmittance while having a light shielding layer having the same aperture ratio. This indicates that the present invention is effective for improving the screen brightness of a high-definition liquid crystal display device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を説明するための断面図。FIG. 1 is a sectional view for explaining the present invention.

【図2】従来の技術を説明するための断面図。FIG. 2 is a sectional view for explaining a conventional technique.

【図3】本発明の実施例を説明するための断面図。FIG. 3 is a sectional view for explaining an embodiment of the present invention.

【図4】光導波路基板の作製例を示す図。FIG. 4 is a diagram showing an example of manufacturing an optical waveguide substrate.

【図5】光導波路基板の作製例を示す図。FIG. 5 is a diagram showing an example of manufacturing an optical waveguide substrate.

【符号の説明】[Explanation of symbols]

101 基板 102 光導波路 103 入射面 104 出射面 105 表示部 106 液晶層 107 透明基板 201 配線 202 画素駆動素子 203 遮光層 204 液晶層 205 透明基板 206 透明基板 301 ガラス基板 102 ポリイミド薄膜 303 光導波路基板 304 遮光層 305 ポリイミド薄膜 306 光導波路 307 TN構造 308 偏光板 101 Substrate 102 Optical Waveguide 103 Incident Surface 104 Emission Surface 105 Display Unit 106 Liquid Crystal Layer 107 Transparent Substrate 201 Wiring 202 Pixel Driving Element 203 Light Shielding Layer 204 Liquid Crystal Layer 205 Transparent Substrate 206 Transparent Substrate 301 Glass Substrate 102 Polyimide Thin Film 303 Optical Waveguide Substrate 304 Light Shading Layer 305 Polyimide thin film 306 Optical waveguide 307 TN structure 308 Polarizing plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 2枚の透明基板間に液晶を挾持した液晶
表示装置において、一方の基板内に基板法線方向へ光を
伝える光導波路を有し、前記光導波路の入射面面積が前
記光導波路の出射面面積と比較して大きく、前記出射面
の形状が画素部の表示領域内に含まれることを特徴とし
た液晶表示装置。
1. A liquid crystal display device in which a liquid crystal is sandwiched between two transparent substrates, wherein one substrate has an optical waveguide for transmitting light in a normal direction of the substrate, and an incident surface area of the optical waveguide is the optical waveguide. A liquid crystal display device characterized in that the shape of the exit surface is larger than the exit surface area of the waveguide and is included in the display region of the pixel portion.
JP3318172A 1991-12-02 1991-12-02 Liquid crystal display Withdrawn JPH05249450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3318172A JPH05249450A (en) 1991-12-02 1991-12-02 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3318172A JPH05249450A (en) 1991-12-02 1991-12-02 Liquid crystal display

Publications (1)

Publication Number Publication Date
JPH05249450A true JPH05249450A (en) 1993-09-28

Family

ID=18096275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3318172A Withdrawn JPH05249450A (en) 1991-12-02 1991-12-02 Liquid crystal display

Country Status (1)

Country Link
JP (1) JPH05249450A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5481385A (en) * 1993-07-01 1996-01-02 Alliedsignal Inc. Direct view display device with array of tapered waveguide on viewer side
US6344886B2 (en) * 1998-09-22 2002-02-05 Stanley Electric Co., Ltd. Light guide device enhancing a polarized component and liquid crystal display device
KR20030059420A (en) * 2001-12-29 2003-07-10 한국과학기술연구원 3D MEMS light collection plate, manufacturing method and display devices
WO2004057414A1 (en) * 2002-12-20 2004-07-08 Koninklijke Philips Electronics N.V. Optical substrate, display device using the same and their manufacturing methods
US7573550B2 (en) * 2003-05-20 2009-08-11 Brilliant Film, Llc Devices for use in non-emissive displays
WO2010105656A1 (en) * 2009-03-16 2010-09-23 Hewlett-Packard Development Company, L.P. Optical structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5481385A (en) * 1993-07-01 1996-01-02 Alliedsignal Inc. Direct view display device with array of tapered waveguide on viewer side
US6344886B2 (en) * 1998-09-22 2002-02-05 Stanley Electric Co., Ltd. Light guide device enhancing a polarized component and liquid crystal display device
KR20030059420A (en) * 2001-12-29 2003-07-10 한국과학기술연구원 3D MEMS light collection plate, manufacturing method and display devices
WO2004057414A1 (en) * 2002-12-20 2004-07-08 Koninklijke Philips Electronics N.V. Optical substrate, display device using the same and their manufacturing methods
US7573550B2 (en) * 2003-05-20 2009-08-11 Brilliant Film, Llc Devices for use in non-emissive displays
WO2010105656A1 (en) * 2009-03-16 2010-09-23 Hewlett-Packard Development Company, L.P. Optical structure

Similar Documents

Publication Publication Date Title
US6262783B1 (en) Liquid crystal display device with reflective electrodes and method for fabricating the same
US5777713A (en) Liquid crystal display unit with spacers form in the light shielding regions
JP4362882B2 (en) Liquid crystal panel, liquid crystal panel manufacturing method, and liquid crystal display device
JP2004118200A (en) Display plate for liquid crystal display device, method for manufacturing the same, and liquid crystal display device utilizing the same
JPH0990337A (en) Transmission type liquid crystal display device
US20020113926A1 (en) Liquid crystal display device
US20020080323A1 (en) Method of producing micro-lenses and image display device with the same
JP4220231B2 (en) Display panel substrate manufacturing method
KR20050001942A (en) Mother glass substrate for liquid crystal display device
CN114967317A (en) Mask plate, manufacturing method, liquid crystal display panel and device
KR20060107106A (en) Liquid crystal display device and manufacturing method thereof
KR20050069531A (en) Liquid crystal display device
JPH05249450A (en) Liquid crystal display
US6963380B1 (en) Method of fabricating hologram diffuser for liquid crystal display and liquid crystal display device using the same
JP3071076B2 (en) Liquid crystal display cell manufacturing method
KR100285652B1 (en) Liquid crystal display device having wide viewing angle and manufacturing method thereof
JP4315084B2 (en) Microlens array plate and manufacturing method thereof, and electro-optical device and electronic apparatus including the same
JPS59143124A (en) Electro-optical device
JP3702902B2 (en) Manufacturing method of electro-optical device
JPH11109366A (en) Liquid crystal display device
US6986983B2 (en) Method for forming a reflection-type light diffuser
JPH03214121A (en) Liquid crystal display device
JP4514561B2 (en) Method for manufacturing reflective display device
JP2002229048A (en) Liquid crystal display and method of manufacturing the same
JPH09197412A (en) Liquid crystal display device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311