JP3071076B2 - Liquid crystal display cell manufacturing method - Google Patents

Liquid crystal display cell manufacturing method

Info

Publication number
JP3071076B2
JP3071076B2 JP5270798A JP27079893A JP3071076B2 JP 3071076 B2 JP3071076 B2 JP 3071076B2 JP 5270798 A JP5270798 A JP 5270798A JP 27079893 A JP27079893 A JP 27079893A JP 3071076 B2 JP3071076 B2 JP 3071076B2
Authority
JP
Japan
Prior art keywords
liquid crystal
light
projection
cell
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5270798A
Other languages
Japanese (ja)
Other versions
JPH07120767A (en
Inventor
雄二 置田
英二 玉岡
和弘 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP5270798A priority Critical patent/JP3071076B2/en
Publication of JPH07120767A publication Critical patent/JPH07120767A/en
Application granted granted Critical
Publication of JP3071076B2 publication Critical patent/JP3071076B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、大画面の液晶表示セル
を構成する一対の基板間の距離を均一に保つ液晶表示セ
ルの製造方法に関し、特に高速応答性、メモリー性を有
する強誘電性液晶を用いた液晶表示セルの製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a liquid crystal display cell for maintaining a uniform distance between a pair of substrates constituting a large-screen liquid crystal display cell, and more particularly to a ferroelectric material having high-speed response and memory properties. The present invention relates to a method for manufacturing a liquid crystal display cell using liquid crystal.

【0002】[0002]

【従来の技術】強誘電性液晶は応答速度が極めて速く、
又、配向の双安定性を有することに起因して電界を取り
去った後にもメモリー性を有するため、光学変調素子と
しての応用が期待され、研究開発が盛んに行われてい
る。
2. Description of the Related Art Ferroelectric liquid crystals have a very fast response speed.
In addition, since it has a memory property even after the electric field is removed due to the bistability of the orientation, its application as an optical modulation element is expected, and research and development are being actively conducted.

【0003】従来の強誘電性液晶を用いた表示セルの構
造、および作製法を以下に示す。
The structure and manufacturing method of a display cell using a conventional ferroelectric liquid crystal are described below.

【0004】通常液晶セルは、ITO透明電極付きガラ
ス基板上に、絶縁膜と配向膜を設け、ラビングにより配
向処理を施した後、セル間隔を確保するため一方の基板
上にスペーサをランダムに散布し、エッジシールにより
両基板の貼り合わせが行われる。
Normally, in a liquid crystal cell, an insulating film and an alignment film are provided on a glass substrate with an ITO transparent electrode, and alignment treatment is performed by rubbing. Then, spacers are randomly dispersed on one of the substrates to secure a cell interval. Then, the two substrates are bonded to each other by the edge seal.

【0005】そして、両基板間に確保された厚さ1.5
〜2μmの空間に、強誘電性液晶が、加熱により等方性
液体状態で注入され、その後徐冷される。
[0005] Then, the thickness 1.5 secured between the two substrates.
A ferroelectric liquid crystal is injected into an isotropic liquid state by heating into a space of 22 μm, and then slowly cooled.

【0006】この作製法により作製された強誘電性液晶
表示セルは、スペーサのみによりセル間隔の制御を行う
ため、セル間隔がスペーサの密度に依存する傾向が見ら
れ、液晶表示セル全体にわたってセル間隔を精度よく制
御するのは困難である。
In the ferroelectric liquid crystal display cell manufactured by this method, the cell interval is controlled only by the spacer, so that the cell interval tends to depend on the density of the spacer. Is difficult to control with high accuracy.

【0007】前述の如く、強誘電性液晶の高速応答性、
および配向の双安定性が有効に実現されうる為には、
1.5〜2μm程度のセル間隔が望ましい。
As described above, the high-speed response of the ferroelectric liquid crystal,
In order for bistability of orientation and orientation to be realized effectively,
A cell interval of about 1.5 to 2 μm is desirable.

【0008】本願出願人が1.5μmのスペーサを用い
て前記作製法により作製した液晶表示セルについてセル
間隔測定を行った結果、同一セル内で1.24〜1.6
4μmのばらつきがあり、スペーサ密度の小さい場所に
おいてセル間隔が小さくなることが確認された。即ち、
スペーサのみにより、セル全領域に於てセル間隔を精度
よく均一に制御するのは困難であるといえる。
As a result of measuring the cell spacing of the liquid crystal display cell manufactured by the above-mentioned manufacturing method using the spacer of 1.5 μm by the applicant of the present invention, the result was 1.24 to 1.6 in the same cell.
It was confirmed that there was a variation of 4 μm, and the cell spacing was reduced in places where the spacer density was low. That is,
It can be said that it is difficult to precisely and uniformly control the cell interval over the entire cell area by using only the spacer.

【0009】また、従来の作製法により作製された強誘
電性液晶表示セルは、衝撃への特別な対策を有しない。
実際本願出願人は、液晶表示セルの両面に圧着により偏
光子を取り付ける際、強誘電性液晶の配向に一部乱れが
生じることを確認した。即ち、該作製法により作製され
た強誘電性液晶表示セルは、外部からの機械的衝撃に対
する十分なセル強度を有していないといえる。
Further, a ferroelectric liquid crystal display cell manufactured by a conventional manufacturing method has no special countermeasure against impact.
In fact, the present applicant has confirmed that when the polarizer is attached to both sides of the liquid crystal display cell by pressure bonding, the orientation of the ferroelectric liquid crystal is partially disturbed. That is, it can be said that the ferroelectric liquid crystal display cell manufactured by this manufacturing method does not have sufficient cell strength against mechanical shock from the outside.

【0010】これを防ぐために、短冊状に突起体を配置
し、それで2枚の基板間のスペースを維持する方法が提
案されている(特公平2−17007号公報)。
In order to prevent this, there has been proposed a method of arranging protrusions in a strip shape and thereby maintaining a space between two substrates (Japanese Patent Publication No. 17007/1990).

【0011】図10にブラックマトリクス(以下BMと
称する)上に短冊状の突起体を設ける強誘電性液晶表示
セルの断面図を示す。
FIG. 10 is a sectional view of a ferroelectric liquid crystal display cell in which strip-shaped projections are provided on a black matrix (hereinafter referred to as BM).

【0012】図10において、一対の基板の内、少なく
とも一方の基板のBM上に、互いに平行で、且つ基板の
硬度より小さい硬度の帯状突起体をに設ける。
In FIG. 10, a band-shaped projection having a hardness smaller than the hardness of the substrate is provided on the BM of at least one of the pair of substrates.

【0013】さらに、この帯状突起体の延在方向と平行
なラビング処理を行った前記一対の平行基板間に強誘電
性液晶を挟持する。
Further, a ferroelectric liquid crystal is sandwiched between the pair of parallel substrates which have been subjected to the rubbing process in parallel with the extending direction of the band-shaped projection.

【0014】図10に示されるように、ガラス基板1上
に互いに平行な短冊状の透明なY電極2が設けられ、表
示性能向上のため画素を取り巻いて格子状の遮光パター
ンとして不透明なBM3が形成されている。
As shown in FIG. 10, transparent strip-shaped Y electrodes 2 parallel to each other are provided on a glass substrate 1, and an opaque BM3 is formed as a grid-like light-shielding pattern surrounding pixels to improve display performance. Is formed.

【0015】光が通過するY電極2上にはSiO2製の
絶縁膜4、ポリイミド製の配向膜5が積層している。
An insulating film 4 made of SiO 2 and an alignment film 5 made of polyimide are laminated on the Y electrode 2 through which light passes.

【0016】ガラス基板1に対向して対向ガラス基板7
が設けられ、対向ガラス基板7上にガラス基板1上のY
電極2と交差する方向に透明なX電極8が形成されてい
る。
The opposing glass substrate 7 faces the glass substrate 1.
Are provided, and Y on the glass substrate 1 is
A transparent X electrode 8 is formed in a direction crossing the electrode 2.

【0017】X電極を被うようにSiO2製の絶縁膜
4、さらにエポキシ樹脂またはポリイミド樹脂製の突起
体6と接するポリイミド製の配向膜5が設けられてい
る。
An insulating film 4 made of SiO 2 and an orientation film 5 made of polyimide in contact with a projection 6 made of epoxy resin or polyimide resin are provided so as to cover the X electrode.

【0018】この短冊状の突起体を形成する方法として
は、光硬化性のネガレジスト系のポリイミド塗布後、光
硬化性のポリイミド膜上のSiO2をマスクとしてヒド
ラジンまたはO2プラズマを用いたフォトリソプロセス
でパタニングする方法が知られている(Maung
S.Htoo,”Microelectronic P
olymers”,pp45〜47,1989,pub
lished by Marcel Dekker I
nc.)。
As a method for forming the strip-shaped projections, a photo-curable negative resist-based polyimide is applied, and then photolithography using hydrazine or O 2 plasma using SiO 2 on the photo-curable polyimide film as a mask. A method of patterning in a process is known (Maung)
S. Htoo, "Microelectronic P
oligomers ", pp45-47, 1989, pub
flushed by Marcel Dekker I
nc. ).

【0019】しかし、従来の短冊状の突起体の形成方法
では、高価な高精度のフォトマスクが必要であり、しか
も、パターンずれが発生した場合には図11に示すよう
に表示品位の低下を招くため、マスクのパターン合わせ
にかなりの工数を必要とするという欠点があった。
However, the conventional method of forming a strip-shaped projection requires an expensive and high-precision photomask, and when a pattern shift occurs, the display quality is reduced as shown in FIG. Therefore, there is a disadvantage that a considerable number of man-hours are required for mask pattern alignment.

【0020】また、上述の文献の第47頁第16行目乃
至第17行目によれば、光分解性のポジレジスト系のポ
リイミドは知られていなかった。
According to the above-mentioned document, p. 47, lines 16 to 17, no photodegradable positive resist polyimide has been known.

【0021】図11に一対の電極で形成される画素と突
起体とが重なって画素の有効面積が小さくなった強誘電
性液晶表示セルの一画素の平面図を示す。
FIG. 11 is a plan view of one pixel of a ferroelectric liquid crystal display cell in which a pixel formed by a pair of electrodes and a projection overlap each other to reduce the effective area of the pixel.

【0022】図11で、横に延びるX電極8と縦に延び
るY電極2との交差部に相当する左斜線部で示される光
を透過する画素10は、厚さ2μmの光透過率の低い右
斜線部で示される突起体6と一部重なっている。
In FIG. 11, a pixel 10 that transmits light indicated by a hatched portion corresponding to the intersection of a horizontally extending X electrode 8 and a vertically extending Y electrode 2 has a low light transmittance of 2 μm. The projection 6 partially overlaps with the projection 6 indicated by the oblique right portion.

【0023】例えば、画素の一辺の長さが50μmの場
合、突起体と画素の重なりが5μmであっても各画素の
面積の10%が全て失われてしまうことになる。
For example, when the length of one side of a pixel is 50 μm, even if the overlap between the projection and the pixel is 5 μm, 10% of the area of each pixel is completely lost.

【0024】[0024]

【発明が解決しようとする課題】本発明は、上述の従来
の欠点に鑑みてなされたものであり、セル間隔制御の精
度の向上、更には衝撃に対する液晶セル強度の向上を計
りながら、しかも単一配向性(モノドメイン性)が向上
し、BMに自己整合する突起体の簡単な製造を目的とし
てなされたものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned drawbacks, and has been made to improve the accuracy of cell interval control and the strength of a liquid crystal cell with respect to impact, and yet to achieve a simple method. This is for the purpose of simplifying the production of a projection which is improved in one orientation (monodomain property) and is self-aligned with the BM.

【0025】[0025]

【課題を解決するための手段】本発明は、格子状のBM
に平面的に充填される島状の画素の有る基板上方に光分
解性膜を形成する工程と、該基板側から遮光性の前記格
子状のBMの間隙に存在する透光性の前記島状の画素を
通して、前記光分解性膜を方向によって光の進行方向が
異なる線状光で異方性露光する工程と、露光された光分
解性膜を現像して前記BM上方の一方向に突起体を形成
する工程と、該突起体を含む前記基板全面に無機絶縁膜
を形成する工程と、該無機絶縁膜上に有機配向膜を形成
する工程と、前記基板に対向する対向基板と前記基板を
貼り合わせて空セルを作製する工程と、該空セルに液晶
を注入した後封口する工程とを備えるものである。
SUMMARY OF THE INVENTION The present invention relates to a grid-shaped BM.
Forming a photo-decomposable film above a substrate having island-shaped pixels that are planarly filled in the substrate, and the light-transmitting island-shaped existing in a gap between the lattice-shaped BMs that are light-shielding from the substrate side. Anisotropically exposing the photodegradable film with linear light having different light traveling directions depending on directions through a pixel, and developing the exposed photodegradable film to project in one direction above the BM. Forming an inorganic insulating film over the entire surface of the substrate including the protrusions, forming an organic alignment film on the inorganic insulating film, and forming a counter substrate facing the substrate and the substrate. The method includes a step of forming an empty cell by bonding, and a step of injecting liquid crystal into the empty cell and sealing the empty cell.

【0026】即ち、本発明は、光分解性樹脂と線状光を
用いた異方性の背面露光方法を用いることでフォトマス
クおよび露光時のパターン合わせプロセスを省略して、
基板のBM上の特定方向のみに突起体を形成するもので
ある。
That is, the present invention omits a photomask and a pattern matching process at the time of exposure by using an anisotropic backside exposure method using a photodegradable resin and linear light.
The protrusion is formed only in a specific direction on the BM of the substrate.

【0027】[0027]

【作用】本発明においては、表示のコントラストを向上
する目的で配置されている格子状のBMをマスクとして
利用して、自己整合的にBM上に連続した短冊状の突起
体を形成し、突起体を一対の基板間のスペース支持体と
することでセルギャップをセル全面にわたって高精度に
制御するものである。
According to the present invention, a continuous strip-shaped projection is formed on the BM in a self-aligning manner by using a lattice-shaped BM arranged for the purpose of improving the display contrast as a mask. By using the body as a space support between a pair of substrates, the cell gap is controlled with high precision over the entire surface of the cell.

【0028】[0028]

【実施例】以下に本発明の実施例を図に従って説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0029】そこで図1に従い、強誘電性液晶表示セル
に、基板上のBMパターンをマスクとして用い、一対の
基板間で交差する電極に対して平行な方向で互いに光の
角度分布の異なる異方性光源で露光パタニングして突起
体を形成する製造方法について実施例を示すことにす
る。
Therefore, according to FIG. 1, the ferroelectric liquid crystal display cell uses the BM pattern on the substrate as a mask, and anisotropically different in angle distribution of light in a direction parallel to the electrode crossing between the pair of substrates. An example will be described with respect to a manufacturing method of forming a projection by exposure patterning with a neutral light source.

【0030】図1は本発明の強誘電性液晶表示セルのY
電極側の基板の製造方法の断面工程図である。
FIG. 1 shows the Y of the ferroelectric liquid crystal display cell of the present invention.
It is sectional process drawing of the manufacturing method of the board | substrate of an electrode side.

【0031】(1)一対の基板の内、SiO2製の分離
膜11によって上下に絶縁されたガラス基板1上のCr
製のBM3と分離膜上のITO製のY電極2とがあるガ
ラス基板1をスピンナー上に用意する(図1a)。
(1) Of a pair of substrates, Cr on a glass substrate 1 vertically insulated by a separation film 11 made of SiO 2
A glass substrate 1 having a BM 3 made of ITO and a Y electrode 2 made of ITO on a separation film is prepared on a spinner (FIG. 1a).

【0032】(2)ポジ型の感光性ポリイミド(例え
ば、日産化学製RN−901)をBM3及びY電極2を
形成したガラス基板1上にスピンコートにより所望のセ
ルギャップ厚みに等しい厚さ(たとえば1.5μm)に
塗布して光分解性膜12を作製する(図1b)。
(2) A positive photosensitive polyimide (for example, RN-901 manufactured by Nissan Chemical Industries, Ltd.) is spin-coated on the glass substrate 1 on which the BM 3 and the Y electrode 2 are formed, to a thickness equal to a desired cell gap thickness (for example, 1.5 μm) to produce a photodegradable film 12 (FIG. 1b).

【0033】(3)プリベークの後、ガラス基板側より
光を照射する、いわゆる背面露光を行う。この場合、光
は、Y電極の延びる方向で平行光、X電極の延びる方向
で放射状の非平行光となる異方性光源を採用する。する
と、Y電極に垂直に光13が通過することになる(図1
c)。背面露光に関しては、後で詳述する。
(3) After pre-baking, so-called back exposure, in which light is irradiated from the glass substrate side, is performed. In this case, an anisotropic light source is used in which the light becomes parallel light in the direction in which the Y electrode extends and becomes non-parallel light in the radial direction in the direction in which the X electrode extends. Then, the light 13 passes perpendicularly to the Y electrode (FIG. 1).
c). The back exposure will be described later in detail.

【0034】(4)光が透過する部分の光分解性膜12
は現像液に溶解されやすい状態に分解される。現像する
と分解されたY電極上の光分解性膜は除去され、一方、
BM3上方の光分解性膜は残って分離膜11上に突出
し、Y電極に平行なY突起体14が形成される(図1
d)。
(4) The photodegradable film 12 in the portion where light is transmitted
Is decomposed into a state easily dissolved in a developer. Upon development, the photodegradable film on the Y electrode that has been decomposed is removed, while
The photodegradable film above the BM 3 remains and protrudes above the separation film 11 to form a Y projection 14 parallel to the Y electrode.
d).

【0035】(5)次に基板全面に基板間異物によるシ
ョートを防止するため、スパッタリングにより800Å
のSiO2製の絶縁膜4を形成する(図1e)。
(5) Then, in order to prevent a short circuit due to foreign matter between the substrates over the entire surface of the substrate, 800 ° C. by sputtering.
Forming a SiO 2 made of an insulating film 4 (FIG. 1e).

【0036】(6)続いて、絶縁膜4上に希釈剤として
N−メチルピロリドン、平坦化剤としてジアルキルエー
テルを採用したポリアミック酸を塗布し、350℃に加
熱することで厚さ約100Åの配向膜5を形成する(図
1f)。
(6) Subsequently, a polyamic acid employing N-methylpyrrolidone as a diluent and dialkyl ether as a flattening agent is applied on the insulating film 4 and heated to 350 ° C. to obtain an orientation having a thickness of about 100 °. A film 5 is formed (FIG. 1f).

【0037】次に、図2は本発明の突起体を有する強誘
電性液晶表示セルの断面図である。
Next, FIG. 2 is a sectional view of a ferroelectric liquid crystal display cell having a projection according to the present invention.

【0038】図2に示すように、ガラス基板1上の光を
遮断するBM3の範囲内でY電極2の延在方向と平行に
延びるY突起体14が、ガラス基板1とガラス基板に対
向する対向ガラス基板7との間を支えるように形成され
ている。
As shown in FIG. 2, a Y projection 14 extending in parallel to the extending direction of the Y electrode 2 within the range of the BM 3 for blocking light on the glass substrate 1 faces the glass substrate 1 and the glass substrate. It is formed so as to support between the glass substrate 7 and the counter glass substrate 7.

【0039】透明なガラス基板1上に、表面がSiO2
やアクリル系透明樹脂などの分離膜11で被われた金属
Cr製の不透明なBM3と、さらに分離膜上にITO製
の透明な短冊状のY電極2とが積層されている。
On a transparent glass substrate 1, the surface is made of SiO 2
An opaque BM 3 made of metal Cr covered with a separation film 11 of, for example, acrylic resin or a transparent resin, and a transparent strip-shaped Y electrode 2 made of ITO are further laminated on the separation film.

【0040】BM3上方にY電極に平行なY突起体14
が強誘電性液晶9に接し、また対向ガラス基板7上の配
向膜5に接している。
The Y projection 14 parallel to the Y electrode is provided above BM3.
Are in contact with the ferroelectric liquid crystal 9 and are in contact with the alignment film 5 on the opposing glass substrate 7.

【0041】互いに直交するY電極2とX電極8上にス
パッタリングによるSiO2製の絶縁膜4、スピンコー
ティングによる芳香族系ポリイミド膜(例えば、東レ製
SP−710)などからなる配向膜5がそれぞれ形成さ
れている。
An insulating film 4 made of SiO 2 by sputtering and an alignment film 5 made of an aromatic polyimide film (for example, SP-710 manufactured by Toray) are formed on the Y electrode 2 and the X electrode 8 orthogonal to each other by sputtering. Is formed.

【0042】図示していないが、配向のためのラビン
グ、一対の基板の封着、液晶の注入、液晶注入口の封止
は以下のように行われる。配向処理として配向膜の表面
にラビングを行う。その際のラビング方向はY突起体に
平行な平行ラビングとする。
Although not shown, rubbing for alignment, sealing of a pair of substrates, injection of liquid crystal, and sealing of a liquid crystal injection port are performed as follows. Rubbing is performed on the surface of the alignment film as an alignment treatment. The rubbing direction at this time is parallel rubbing parallel to the Y protrusion.

【0043】次にエッジ部に熱硬化型樹脂(例えば、三
井東圧化学製XN−21−F)あるいは紫外線硬化樹脂
を印刷塗布し、加熱又は紫外線の照射により両基板の接
着による封着を行い、液晶を注入する。
Next, a thermosetting resin (for example, XN-21-F manufactured by Mitsui Toatsu Chemicals) or an ultraviolet curable resin is applied to the edge portion by printing, and the two substrates are sealed by heating or irradiation with ultraviolet rays. Inject liquid crystal.

【0044】注入する強誘電性液晶は常温で粘度の高い
スメクティック相を示し薄いセルギャップにおいて注入
が困難となるので、加熱により等方性液体状態にしてセ
ルへの注入を行う。
Since the ferroelectric liquid crystal to be injected exhibits a high viscosity smectic phase at room temperature and is difficult to be injected in a thin cell gap, the liquid crystal is injected into the cell by heating in an isotropic liquid state.

【0045】注入後、液晶セルを徐冷することにより、
モノドメイン強誘電性液晶表示セルとし、エポキシ樹脂
で注入口を閉じて封止する。
After the injection, the liquid crystal cell is gradually cooled,
A monodomain ferroelectric liquid crystal display cell is formed, and the injection port is closed and sealed with epoxy resin.

【0046】本発明の突起体は強誘電性液晶を挟む一対
の電極の内、一方の電極に平行にBM上に背面露光によ
り自己整合的に形成されることを特徴としているので、
露光する光源からの線状光の進路の様子を続いて示す。
The projection of the present invention is characterized in that it is formed in a self-aligned manner on the BM in parallel with one of the pair of electrodes sandwiching the ferroelectric liquid crystal by back exposure.
The path of the linear light from the light source to be exposed will be described below.

【0047】図3は放射状の光を半円柱レンズによりY
方向に平行でX方向に放射状の光に変換してBM上の光
分解性膜を透過させる露光光源とBMの有る基板との配
置図である。
FIG. 3 shows that radial light is converted into Y light by a semi-cylindrical lens.
FIG. 5 is a layout diagram of an exposure light source that converts light into radial light parallel to the X direction and transmits through a photodegradable film on the BM, and a substrate having the BM.

【0048】図3に示されるように、点状の露光光源1
5から全方向に放射状の光が放射されている。
As shown in FIG. 3, a point-like exposure light source 1
Radial light is radiated from 5 in all directions.

【0049】光を透過しない格子状のBM3及び光を透
過する行列状に並んだ画素10とを備えた一方の基板
と、露光光源との間に半円柱状のレンズ16が、Y電極
に平行でY−Y’方向に垂直に配置されている。
A semi-cylindrical lens 16 is arranged between one substrate having a lattice-shaped BM 3 that does not transmit light and pixels 10 arranged in a matrix that transmits light, and a light source in parallel with the Y electrode. Are arranged perpendicular to the YY ′ direction.

【0050】点状の露光光源15からの放射状の光13
は、半円柱状のレンズ16に入射することによってY−
Y’方向に平行で、X−X’方向に放射状の光になって
放出される。即ち、方向によって光の進行方向が異なる
異方性光になる。
Radial light 13 from a point exposure light source 15
Is incident on the semi-cylindrical lens 16 so that Y−
The light is emitted in the form of radial light parallel to the Y ′ direction and radial in the XX ′ direction. That is, the light becomes anisotropic light in which the traveling direction of the light differs depending on the direction.

【0051】そのため、一方の基板側から入射した放射
状の光によって画素10のX−X’方向に隣接するBM
上の光分解性膜はほとんど分解されてしまうが、他方の
基板側から入射した平行光によって画素のY−Y’方向
に隣接するBM上の光分解性膜は分解されないで現像時
に基板上の残ることになるのである。
Therefore, the BM adjacent to the pixel 10 in the XX ′ direction is generated by the radial light incident from one substrate side.
Although the upper photodegradable film is almost decomposed, the photodegradable film on the BM adjacent to the pixel in the YY ′ direction is not decomposed by the parallel light incident from the other substrate side, and is not decomposed on the substrate at the time of development. It will remain.

【0052】ここで、Y突起体のより詳細な位置につい
て以下に説明する。
Here, a more detailed position of the Y projection will be described below.

【0053】図4は本発明の強誘電性液晶表示セルのB
Mと、そしてそのBM上に配置されるY突起体の平面図
を示している。
FIG. 4 shows B of the ferroelectric liquid crystal display cell of the present invention.
FIG. 3 shows a plan view of M and a Y protrusion disposed on the BM.

【0054】図4に示されるように強誘電性液晶表示セ
ルの平面は格子状に設けられた光を通さないBM3と、
BMに囲まれY電極とX電極の交差部に行列状に配置さ
れた光を通す画素10とによって占められている。
As shown in FIG. 4, the plane of the ferroelectric liquid crystal display cell has a grid-shaped light-impermeable BM3,
It is occupied by pixels 10 that are surrounded by a BM and pass light arranged in a matrix at the intersection of the Y electrode and the X electrode.

【0055】本発明の特徴となるY突起体14はBM上
に自己整合によりY電極に平行に各行間に渡って形成さ
れる。
The Y projection 14 which is a feature of the present invention is formed on the BM by self-alignment and in parallel between the Y electrodes and between rows.

【0056】場合によっては、X電極に平行なY突起体
に比べて高さの低く、幅も狭いX突起体17が基板上に
残る。
In some cases, the X projection 17 having a smaller height and a smaller width than the Y projection parallel to the X electrode remains on the substrate.

【0057】図4のV−V線に沿った一方の基板の断面
図を図5に、図4のVI−VI線に沿った一方の基板の
断面図を図6に示す。
FIG. 5 is a cross-sectional view of one substrate along the line VV of FIG. 4, and FIG. 6 is a cross-sectional view of one substrate along the line VI-VI of FIG.

【0058】図5に示されるようにY突起体14はY電
極に平行に形成されると共に、BM3の幅と粗同じ幅と
なる。
As shown in FIG. 5, the Y projection 14 is formed in parallel with the Y electrode, and has a width roughly equal to the width of the BM 3.

【0059】一方、図6に示されるようにX突起体17
は極めて高さが低くなり、場合によっては分離膜11上
に残存することが無くなる。
On the other hand, as shown in FIG.
Is extremely low and does not remain on the separation membrane 11 in some cases.

【0060】X突起体が残存するか否かは露光光源と基
板との相対位置に依るのではなく、露光時間や現像時間
によって定まることが多いので、一方向に平行光である
必要は必ずしも無い。
Whether or not the X projection remains remains not depending on the relative position between the exposure light source and the substrate, but is often determined by the exposure time and the development time. Therefore, it is not always necessary that the light be parallel in one direction. .

【0061】つまり、このような突起体を形成するに
は、例えば、光源からの光をスリットにより長さに比べ
て幅を極めて狭くしてなる線状の光源を用いても良い。
That is, in order to form such a projection, for example, a linear light source in which the width of the light from the light source is made extremely narrower than the length by a slit may be used.

【0062】BMの有る基板に用いる背面露光用の光源
としてはBMの格子ピッチに対して十分に大きい長さを
有する線状の光源を用いる。この時、図7のように光源
の長さ方向とBMの一方向とを一致させて光照射を行
う。
As a light source for back exposure used for a substrate having a BM, a linear light source having a sufficiently large length with respect to the lattice pitch of the BM is used. At this time, as shown in FIG. 7, light irradiation is performed while the length direction of the light source and one direction of the BM match.

【0063】図7は線状光源を用い、BMを利用して自
己整合的にBM上に突起体を形成する本発明のガラス基
板と線状光源の配置斜視図である。
FIG. 7 is a perspective view showing the arrangement of a glass substrate of the present invention and a linear light source which form a projection on the BM in a self-aligned manner using a BM by using a linear light source.

【0064】図7に示されるように、Y電極に平行なX
−X’方向に線状の露光光源15を配置して、Z−Z’
方向にガラス基板上に積層されたポジ型の感光性レジス
ト(日産化学製RN−901)に基板側から光を照射す
る。
As shown in FIG. 7, X parallel to the Y electrode
The linear exposure light source 15 is arranged in the −X ′ direction,
A positive photosensitive resist (RN-901 manufactured by Nissan Chemical Industries, Ltd.) laminated on a glass substrate in the direction is irradiated with light from the substrate side.

【0065】以下の説明では本発明の光分解性膜の露光
状態の要旨を掴みやすいように誇張して表現するが、本
発明の突起体はBMの領域内に形成されるものである。
In the following description, the gist of the exposure state of the photodegradable film of the present invention is exaggerated so as to be easily grasped, but the protrusion of the present invention is formed in the BM region.

【0066】ガラス基板上で感光された感光性レジスト
のY−Y’方向での断面図を図8に示す。
FIG. 8 is a sectional view of the photosensitive resist exposed on the glass substrate in the YY ′ direction.

【0067】図8は露光光源が点光源と見なされるBM
上のY−Y’方向でのポジ型の感光性レジストの作用断
面図を示している。
FIG. 8 shows a BM in which the exposure light source is regarded as a point light source.
FIG. 4 shows an operation sectional view of a positive photosensitive resist in the YY ′ direction above.

【0068】図8において、露光光源15からの光13
は放射状にポジ型の感光性レジストに照射され、透明な
Y電極2を通過する光となって、ポジ型の感光性レジス
トを光分解して光分解体18とする。
In FIG. 8, the light 13 from the exposure light source 15
Is irradiated radially onto a positive photosensitive resist and becomes light passing through a transparent Y electrode 2 to photodecompose the positive photosensitive resist into a photodecomposer 18.

【0069】一方、不透明なBM3により光13は遮ら
れてるので、露光後の熱処理により、ポジ型の感光性レ
ジストは二枚のガラス基板間を支えるY突起体14とな
る。
On the other hand, since the light 13 is blocked by the opaque BM 3, the heat treatment after exposure turns the positive photosensitive resist into a Y-projection 14 that supports between the two glass substrates.

【0070】ポジ型の感光性レジストの現像時間や露光
時間を長くすることで、Y突起体14はBM3内に収ま
ることになる。
By lengthening the development time and exposure time of the positive photosensitive resist, the Y projections 14 will fit within the BM 3.

【0071】続いて、図7のガラス基板上で感光された
感光性レジストのX−X’方向での断面図を図9に示
す。
Next, FIG. 9 shows a cross-sectional view of the photosensitive resist exposed on the glass substrate of FIG. 7 in the XX ′ direction.

【0072】図9は露光光源が線状光源と見なされる画
素上のX−X’方向でのポジ型の感光性レジストの作用
断面図を示している。
FIG. 9 is a sectional view showing the operation of a positive photosensitive resist in the XX 'direction on a pixel where the exposure light source is regarded as a linear light source.

【0073】露光光源15の一点からの光13は不透明
なBM3により遮られるにも関わらず、線状光となる図
7の露光光源によると、BM3上のポジ型の感光性レジ
ストはほとんど感光されてしまう。
Although the light 13 from one point of the exposure light source 15 is blocked by the opaque BM 3, it becomes linear light according to the exposure light source of FIG. Would.

【0074】そのため、線状光でX電極に平行に形成さ
れるX突起体17は極めて高さが小さくなるか、全く存
在しないようになる。
For this reason, the X projections 17 formed in parallel with the X electrodes by linear light have extremely small heights or do not exist at all.

【0075】このように、強誘電性液晶表示セルのBM
を利用すれば、自己整合的にガラス基板上に約5μm以
下の突起体を簡単に形成できる。
As described above, the BM of the ferroelectric liquid crystal display cell
Utilizing, it is possible to easily form a protrusion of about 5 μm or less on a glass substrate in a self-aligned manner.

【0076】以上のように作製された強誘電性液晶表示
セルに対して、セル内の15ケ所に於てセル間隔測定を
おこなった結果、設定値1.5μmに対して1.46〜
1.52μmとなり、従来のセルと比較して高精度のセ
ル間隔制御が可能であることが分かった。
The ferroelectric liquid crystal display cell manufactured as described above was measured for cell intervals at 15 locations in the cell.
It was 1.52 μm, and it was found that the cell interval control could be performed with higher accuracy than the conventional cell.

【0077】本願プロセスで作成した強誘電性液晶表示
セルの両側に偏光子をクロスニコルの状態で取り付けた
が、偏光板張り付け時、従来のスペーサ散布による製法
でのセルに発生した液晶配向の乱れは見られなかった。
A polarizer was attached in a crossed Nicols state on both sides of the ferroelectric liquid crystal display cell produced by the process of the present invention. Was not seen.

【0078】また、一般に有効な表示領域内に存在する
スペーサはしばしば、配向不均一部の発生起点となりや
すく表示のコントラストを低下させることが多い。
In general, spacers present in an effective display area often serve as a starting point of generation of a non-uniform alignment portion, and often lower the display contrast.

【0079】しかし、本発明の構成では有効表示領域内
にスペーサが配置されないのでコントラスト向上にも有
効である。
However, according to the structure of the present invention, no spacer is arranged in the effective display area, so that it is effective for improving the contrast.

【0080】ここで用いる絶縁膜にはSiO2、シリコ
ン窒化物、シリコン炭化物などをスパッタ、蒸着あるい
はCVDなどの手段で形成してもよい。
The insulating film used here may be formed of SiO 2 , silicon nitride, silicon carbide or the like by means of sputtering, vapor deposition or CVD.

【0081】さらに、配向膜としては、ポリビニルアル
コール、ポリイミド、ポリアミド、ナイロンなどを用い
てもよい。
Further, as the alignment film, polyvinyl alcohol, polyimide, polyamide, nylon or the like may be used.

【0082】尚、本実施例の液晶は強誘電性液晶に限る
ものではなく、より低粘度のΔn・dが適当なネマティ
ック液晶であっても良い。
The liquid crystal of this embodiment is not limited to a ferroelectric liquid crystal, but may be a nematic liquid crystal having a lower viscosity Δn · d.

【0083】このように、本発明の液晶表示セルの製造
方法によればセルの大きさが十インチ内外であっても画
素を損ねることなく均一なギャップの液晶表示セルが構
成される。
As described above, according to the method of manufacturing a liquid crystal display cell of the present invention, a liquid crystal display cell having a uniform gap without damaging pixels is formed even when the size of the cell is within or outside 10 inches.

【0084】[0084]

【発明の効果】本発明によれば、光分解性樹脂と線状光
を用いた異方性の背面露光方法を用いることでフォトマ
スクおよび露光時のパターン合わせプロセスを省略し
て、基板のBM上の特定方向のみに突起体を形成するこ
とが簡単にできる。
According to the present invention, a photomask and a pattern matching process at the time of exposure can be omitted by using an anisotropic backside exposure method using a photodegradable resin and linear light, and the BM of the substrate can be reduced. The protrusion can be easily formed only in the specific direction above.

【0085】あるいは、本発明は、スペーサとしての機
能を有する突起体を自己整合的に形成し、強誘電性液晶
表示セルを作成することで、セル間隔制御の精度の向
上、単一配向性の改善、パターンずれによる開口率の低
下の防止およびパネル完成後は外部からのパネルの押圧
などの機械的衝撃に対する耐性向上に有効である。
Alternatively, according to the present invention, a projection having a function as a spacer is formed in a self-aligned manner to produce a ferroelectric liquid crystal display cell, thereby improving the accuracy of cell spacing control and improving the single alignment property. This is effective for improving the improvement, preventing the aperture ratio from being lowered due to the pattern shift, and improving the resistance to mechanical shock such as external pressing of the panel after the panel is completed.

【0086】さらに、有効表示画素内にスペーサがない
ことから、表示のコントラスト向上にも有効である。
Further, since there is no spacer in the effective display pixel, it is effective for improving the display contrast.

【0087】また、本発明は、強誘電性液晶セルを作成
するにあたり、ガラス基板上に形成されているBMを利
用することで、基板と別体のマスク無しでしかも高精度
に位置合わせされたスペーサとしての機能を有する連続
突起体を簡易に形成することが可能である。また高密度
でスペーサを形成するのでセルギャップの均一性向上や
セル完成後の耐衝撃性の向上に有効である。
Further, in the present invention, in producing a ferroelectric liquid crystal cell, the BM formed on a glass substrate is used, so that the alignment can be performed with high accuracy without a mask separate from the substrate. It is possible to easily form a continuous projection having a function as a spacer. Further, since the spacers are formed at a high density, it is effective for improving the uniformity of the cell gap and the impact resistance after the cell is completed.

【0088】有効表示画素内にスペーサ粒子が散布され
ていないので、表示コントラストの向上にも有効であ
る。
Since the spacer particles are not scattered in the effective display pixels, it is effective for improving the display contrast.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の自己整合型の突起体の製造工程図であ
る。
FIG. 1 is a manufacturing process diagram of a self-aligned projection according to the present invention.

【図2】本発明の突起体が配置された強誘電性液晶表示
セルの断面図である。
FIG. 2 is a cross-sectional view of a ferroelectric liquid crystal display cell on which a projection of the present invention is arranged.

【図3】本発明の突起体を製造するための光源とレンズ
と基板の配置斜視図である。
FIG. 3 is a perspective view showing the arrangement of a light source, a lens, and a substrate for manufacturing a projection according to the present invention.

【図4】本発明の突起体が形成された基板の平面図であ
る。
FIG. 4 is a plan view of a substrate on which a projection of the present invention is formed.

【図5】本発明の突起体が形成された基板のX電極に平
行な面での断面図である。
FIG. 5 is a cross-sectional view taken on a plane parallel to an X electrode of a substrate on which a protrusion of the present invention is formed.

【図6】本発明の突起体が形成された基板のY電極に平
行な面での断面図である。
FIG. 6 is a cross-sectional view taken on a plane parallel to a Y electrode of the substrate on which the protrusions of the present invention are formed.

【図7】本発明の突起体を製造するための線状光と基板
の配置斜視図である。
FIG. 7 is an arrangement perspective view of a linear light and a substrate for manufacturing the projection of the present invention.

【図8】本発明のY突起体を製造するための光源と基板
の作用断面図である。
FIG. 8 is an operation sectional view of a light source and a substrate for manufacturing a Y projection according to the present invention.

【図9】本発明のX突起体を製造するための光源と基板
の作用断面図である。
FIG. 9 is an operation sectional view of a light source and a substrate for manufacturing the X projection according to the present invention.

【図10】従来の連続な突起体の有る強誘電性液晶表示
セルの断面図である。
FIG. 10 is a sectional view of a conventional ferroelectric liquid crystal display cell having continuous projections.

【図11】従来の突起体と画素がずれた場合の平面図で
ある。
FIG. 11 is a plan view in a case where a pixel is shifted from a conventional projection.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 Y電極 3 BM 4 絶縁膜 5 配向膜 6 突起体 7 対向ガラス基板 8 X電極 9 強誘電性液晶 10 画素 11 分離膜 12 光分解性膜 13 光 14 Y突起体 15 露光光源 16 レンズ 17 X突起体 18 光分解体 DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Y electrode 3 BM 4 Insulating film 5 Alignment film 6 Projection 7 Counter glass substrate 8 X electrode 9 Ferroelectric liquid crystal 10 Pixel 11 Separation film 12 Photodegradable film 13 Light 14 Y projection 15 Exposure light source 16 Lens 17 X protrusion 18 Photodecomposition

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−2833(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02F 1/13 101 G02F 1/1333 500 G02F 1/1334 G02F 1/1339 500 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-2833 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G02F 1/13 101 G02F 1/1333 500 G02F 1/1334 G02F 1/1339 500

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一対の平行基板間に突起体を有する液晶
表示セルの製造方法において、突起体が基板上のブラッ
クマトリクスパターンをマスクとして用い、線状光で背
面露光パタニングして形成されることを特徴とする液晶
表示セルの製造方法。
1. A method for manufacturing a liquid crystal display cell having a projection between a pair of parallel substrates, wherein the projection is formed by back exposure patterning with linear light using a black matrix pattern on the substrate as a mask. A method for manufacturing a liquid crystal display cell, comprising:
JP5270798A 1993-10-28 1993-10-28 Liquid crystal display cell manufacturing method Expired - Lifetime JP3071076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5270798A JP3071076B2 (en) 1993-10-28 1993-10-28 Liquid crystal display cell manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5270798A JP3071076B2 (en) 1993-10-28 1993-10-28 Liquid crystal display cell manufacturing method

Publications (2)

Publication Number Publication Date
JPH07120767A JPH07120767A (en) 1995-05-12
JP3071076B2 true JP3071076B2 (en) 2000-07-31

Family

ID=17491165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5270798A Expired - Lifetime JP3071076B2 (en) 1993-10-28 1993-10-28 Liquid crystal display cell manufacturing method

Country Status (1)

Country Link
JP (1) JP3071076B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101561684B (en) * 2009-03-19 2011-08-17 浙江海辰空间新能源有限公司 Photovoltaic power generation tingri automatic tracking control system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3966614B2 (en) 1997-05-29 2007-08-29 三星電子株式会社 Wide viewing angle LCD
TWI269250B (en) 1997-06-12 2006-12-21 Sharp Kk Liquid crystal display device
KR100309918B1 (en) 1998-05-16 2001-12-17 윤종용 Liquid crystal display having wide viewing angle and method for manufacturing the same
KR100354906B1 (en) 1999-10-01 2002-09-30 삼성전자 주식회사 A wide viewing angle liquid crystal display
KR100687490B1 (en) * 2000-02-10 2007-02-27 엘지.필립스 엘시디 주식회사 Method for fabricating Liquid crystal display device
JP4304290B2 (en) * 2002-10-23 2009-07-29 日本電気株式会社 Liquid crystal cell and liquid crystal device
JP2011242506A (en) 2010-05-17 2011-12-01 Sony Corp Display device manufacturing method and display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101561684B (en) * 2009-03-19 2011-08-17 浙江海辰空间新能源有限公司 Photovoltaic power generation tingri automatic tracking control system

Also Published As

Publication number Publication date
JPH07120767A (en) 1995-05-12

Similar Documents

Publication Publication Date Title
US7826028B2 (en) Liquid crystal display device
US6115098A (en) LCD having an LC layer with spacers arranged so that LC molecules are in axial symmetry upon application of voltage
JP4657786B2 (en) Liquid crystal display panel and manufacturing method thereof
JP4177658B2 (en) Liquid crystal display
US7557891B2 (en) Liquid crystal display device and method for fabricating the same
JP4929432B2 (en) Liquid crystal display device and manufacturing method thereof
JP3441047B2 (en) Liquid crystal display device and manufacturing method thereof
US20100238387A1 (en) Liquid crystal display device and method of manufacturing color filter substrate
JP2010055091A (en) Liquid crystal display, and method for manufacturing display
US20060290856A1 (en) Apparatus for fabricating alignment film and method for fabricating liquid crystal display panel using the same
KR20090041337A (en) Liquid crystal display panel
KR101490482B1 (en) Method of manufacturing liquid crystal display
JP2007183589A (en) Method of forming spacer and positioning protrusion simultaneously on liquid crystal display substrate
JP3071076B2 (en) Liquid crystal display cell manufacturing method
KR20050001942A (en) Mother glass substrate for liquid crystal display device
KR100892357B1 (en) Color Filter Panel for Liquid Crystal Display Device and A method for manufacturing the same
JP3941437B2 (en) LIQUID CRYSTAL DISPLAY DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
KR102112650B1 (en) Flexible liquid crystal display device and method of fabricating the same
US20140285742A1 (en) Display Panel and Method of Manufacturing the Same
JP2004301960A (en) Liquid crystal display panel
JP2010054552A (en) Liquid crystal display device
JP4460275B2 (en) Method for manufacturing substrate for liquid crystal display device and method for manufacturing liquid crystal display device using the same
KR101061762B1 (en) LCD and its manufacturing method
JP3503019B2 (en) Reflective liquid crystal display device and method of manufacturing the same
KR102440239B1 (en) Liquid Crystal Display Device And Method Of Fabricating The Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050119

Free format text: JAPANESE INTERMEDIATE CODE: A621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050119

A521 Written amendment

Effective date: 20050201

Free format text: JAPANESE INTERMEDIATE CODE: A523

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070330

A977 Report on retrieval

Effective date: 20080616

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20081021

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20081029

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20111107

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20111107

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20121107

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250