JP2002229048A - Liquid crystal display and method of manufacturing the same - Google Patents

Liquid crystal display and method of manufacturing the same

Info

Publication number
JP2002229048A
JP2002229048A JP2001021997A JP2001021997A JP2002229048A JP 2002229048 A JP2002229048 A JP 2002229048A JP 2001021997 A JP2001021997 A JP 2001021997A JP 2001021997 A JP2001021997 A JP 2001021997A JP 2002229048 A JP2002229048 A JP 2002229048A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
crystal display
display device
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001021997A
Other languages
Japanese (ja)
Inventor
Norihiro Yoshida
典弘 吉田
Akio Murayama
昭夫 村山
Yoshitaka Yamada
義孝 山田
Yasuyuki Hanazawa
康行 花澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001021997A priority Critical patent/JP2002229048A/en
Publication of JP2002229048A publication Critical patent/JP2002229048A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To decrease the orientation defects of liquid crystal molecules which becomes the cause for light leakage. SOLUTION: The liquid crystal display device has an array substrate and a counter substrate and liquid crystal layers grasped as the cells of a liquid crystal composition between the array substrate and the counter substrate; the array substrate includes pixel electrodes 25, having reflection conductive layers 25R and transmission conductive layers 25T arranged as windows W for the reflection conductive layers 25R as well alignment layers for covering the reflection conductive layers 25R and the transmission conductive layers 25T. The windows W of the reflection conductive layers 25R are a rectangular shape, having the longitudinal direction approximately aligned to the rubbing direction of the alignment layers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は液晶層が一対の電極
基板間に液晶組成物のセルとして挟持される液晶表示装
置およびその製造方法に関し、特に透過光および反射光
を併用して画像を表示する液晶表示装置およびその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device in which a liquid crystal layer is sandwiched between a pair of electrode substrates as a cell of a liquid crystal composition, and a method of manufacturing the same. And a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年では、軽量、小型、高精細な液晶表
示装置がコンピュータを中心とする情報機器分野および
テレビなどを中心とする映像機器分野で盛んに開発され
ている。一般的な液晶表示装置は一対の電極基板間に液
晶層を挟持した構造を有し、光源光を液晶層で光学変調
することにより画像を表示する。
2. Description of the Related Art In recent years, lightweight, small, and high-definition liquid crystal display devices have been actively developed in the field of information equipment such as computers and the field of video equipment such as televisions. A general liquid crystal display device has a structure in which a liquid crystal layer is sandwiched between a pair of electrode substrates, and displays an image by optically modulating light from a light source using the liquid crystal layer.

【0003】この液晶表示装置は、例えば背面または背
面側方に配置されるバックライトからの光を透過させる
透過型および周囲からの光を反射させる反射型に分類さ
れる。これら透過型および反射型のいずれも、表示画像
が液晶表示装置に入射する周囲光の影響を受ける。透過
型での表示画像は周囲光が明るすぎる場合に見にくくな
り、反射型での表示画像は周囲光が暗すぎる場合に見に
くくなる。
[0003] The liquid crystal display devices are classified into a transmissive type that transmits light from a backlight disposed on the back side or the side of the rear side and a reflective type that reflects light from the surroundings. In both the transmission type and the reflection type, the display image is affected by ambient light entering the liquid crystal display device. A display image of the transmission type becomes difficult to see when the ambient light is too bright, and a display image of the reflection type becomes difficult to see when the ambient light is too dark.

【0004】このような問題を解決するため、例えば特
開平11−316382は光透過率の高い光透過導電層
と反射効率の高い光反射導電層とを各画素内に配置して
透過光および反射光を併用する方式を開示する。この方
式では、一方の電極基板が光透過性絶縁基板およびこの
絶縁基板を覆う有機絶縁膜を有し、光透過導電層が有機
絶縁膜の一部に形成された開口内に配置され、光反射導
電層が光透過導電層の周囲において有機絶縁膜上に配置
される。これら光透過導電層および光反射導電層は配向
膜により覆われる。
In order to solve such a problem, for example, Japanese Patent Application Laid-Open No. 11-316382 discloses a method in which a light-transmitting conductive layer having a high light transmittance and a light-reflecting conductive layer having a high reflection efficiency are arranged in each pixel to transmit and reflect light. A method that uses light in combination is disclosed. In this method, one electrode substrate has a light-transmitting insulating substrate and an organic insulating film covering the insulating substrate, a light-transmitting conductive layer is disposed in an opening formed in a part of the organic insulating film, and a light reflecting A conductive layer is disposed on the organic insulating film around the light transmitting conductive layer. The light transmitting conductive layer and the light reflecting conductive layer are covered with an alignment film.

【0005】[0005]

【発明が解決しようとする課題】ところで、この配向膜
はラビング布で所定方向にラビング処理されることによ
り液晶分子の配向を制御する。しかし、ラビング布は開
口付近の段差のために均一に配向膜をラビングできない
ため、配向不良による光漏れが発生し、これがコントラ
ストを低下させる結果となっている。
The alignment film is rubbed in a predetermined direction with a rubbing cloth to control the alignment of liquid crystal molecules. However, since the rubbing cloth cannot rub the alignment film uniformly due to a step near the opening, light leakage due to poor alignment occurs, which results in lowering the contrast.

【0006】本発明の目的は、上述のような課題に鑑
み、光漏れの原因となる液晶分子の配向不良を低減でき
る液晶表示装置およびその製造方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a liquid crystal display device and a method of manufacturing the same, which can reduce liquid crystal molecule alignment defects that cause light leakage in view of the above-mentioned problems.

【0007】[0007]

【課題を解決するための手段】本発明によれば、第1お
よび第2電極基板と、これら第1および第2電極基板間
に液晶組成物のセルとして挟持される液晶層とを備え、
第1電極基板は光反射部およびこの光反射部の窓として
配置される光透過部を持つ電極、並びにこれら光反射部
および光透過部を覆う配向膜を含み、光反射部の窓は配
向膜のラビング方向に略一致する長手方向を持つ形状で
ある液晶表示装置が提供される。
According to the present invention, there are provided first and second electrode substrates, and a liquid crystal layer sandwiched between the first and second electrode substrates as a cell of a liquid crystal composition,
The first electrode substrate includes a light reflecting portion and an electrode having a light transmitting portion disposed as a window of the light reflecting portion, and an alignment film covering the light reflecting portion and the light transmitting portion. A liquid crystal display device having a longitudinal direction substantially corresponding to the rubbing direction of the liquid crystal display device.

【0008】本発明によれば、さらに光反射部およびこ
の光反射部の窓として配置される光透過部を持つ電極、
並びに光反射部および光透過部を覆う配向膜を一方に含
む第1および第2電極基板を形成する工程と、第1およ
び第2電極基板間に液晶組成物のセルとして挟持される
液晶層を形成する工程とを備え、前記光反射部の窓が長
手方向を持つ形状であり、さらに窓の長手方向に略一致
する方向に配向膜をラビングする工程を備える液晶表示
装置の製造方法が提供される。
According to the present invention, there is further provided an electrode having a light reflecting portion and a light transmitting portion disposed as a window of the light reflecting portion;
A step of forming first and second electrode substrates each including an alignment film covering the light reflecting portion and the light transmitting portion; and forming a liquid crystal layer sandwiched between the first and second electrode substrates as a cell of a liquid crystal composition. Forming, wherein the window of the light reflecting portion has a shape having a longitudinal direction, and further comprising a step of rubbing the alignment film in a direction substantially coincident with the longitudinal direction of the window. You.

【0009】この液晶表示装置およびその製造方法にお
いて、光反射部の窓は配向膜のラビング方向に略一致す
る長手方向を持つ形状であり、この光反射部および光透
過部間に生じた段差を補償する。この場合、窓の長手方
向が配向膜のラビング方向から大きくずれている場合よ
りもラビング布が段差の影響で十分ラビングできない配
向膜の領域を削減できる。従って、光漏れの原因となる
配向不良を低減して、高いコントラストを得ることがで
きる。
In this liquid crystal display device and the method of manufacturing the same, the window of the light reflecting portion has a shape having a longitudinal direction substantially coinciding with the rubbing direction of the alignment film, and a step formed between the light reflecting portion and the light transmitting portion is eliminated. Compensate. In this case, a region of the alignment film where the rubbing cloth cannot be sufficiently rubbed due to the step difference can be reduced as compared with a case where the longitudinal direction of the window is largely deviated from the rubbing direction of the alignment film. Therefore, high contrast can be obtained by reducing alignment defects that cause light leakage.

【0010】[0010]

【発明の実施の形態】以下、本発明の第1実施形態に係
る液晶表示装置について添付図面を参照して説明する。
この液晶表示装置は透過光および反射光を併用して画像
を表示する方式である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a liquid crystal display according to a first embodiment of the present invention will be described with reference to the accompanying drawings.
This liquid crystal display device is a system that displays an image using both transmitted light and reflected light.

【0011】図1は液晶表示装置の部分的な断面構造を
示し、図2は図1に示す画素付近の平面構造を示す。こ
の液晶表示装置は図1に示すようにアレイ基板AR、対
向基板CT、これら基板ARおよびCT間に挟持される
液晶層LQを備える。
FIG. 1 shows a partial cross-sectional structure of a liquid crystal display device, and FIG. 2 shows a planar structure near a pixel shown in FIG. As shown in FIG. 1, this liquid crystal display device includes an array substrate AR, a counter substrate CT, and a liquid crystal layer LQ sandwiched between these substrates AR and CT.

【0012】アレイ基板ARは光透過性の絶縁基板2
1、この絶縁基板21上でマトリクス状に配置される複
数の画素電極25、これら画素電極25の列に沿って配
置される複数の信号線13、これら画素電極25の行に
沿って配置される複数の走査線14、各々対応走査線1
4および対応信号線13の交差位置近傍に画素用スイッ
チング素子として配置される複数の薄膜トランジスタ
(TFT)23、複数の走査線14および複数の信号線
13を駆動する駆動回路、および複数の画素電極25を
覆う配向膜27Aを含む。対向基板CTは光透過性の絶
縁基板22と、各々対応列の画素電極25に対向して行
方向に順番に並ぶ赤、緑、および青のストライプとして
絶縁基板22上に形成されるカラーフィルタ24と、カ
ラーフィルタ24を覆う透明対向電極29と、この対向
電極29を覆う配向膜27Bとを有する。また、位相差
板RT1および偏光板PL1が複数の画素電極25とは
反対側において絶縁基板21に貼り付けられ、位相差板
RT2および偏光板PL2がカラーフィルタ24とは反
対側において絶縁基板22に貼り付けられる。
The array substrate AR is a light-transmitting insulating substrate 2
1, a plurality of pixel electrodes 25 arranged in a matrix on the insulating substrate 21, a plurality of signal lines 13 arranged along columns of the pixel electrodes 25, and arranged along rows of the pixel electrodes 25 A plurality of scanning lines 14, each corresponding scanning line 1
A plurality of thin film transistors (TFTs) 23 arranged as pixel switching elements in the vicinity of the intersections between the pixel electrodes 4 and the corresponding signal lines 13, a driving circuit for driving the plurality of scanning lines 14 and the plurality of signal lines 13, and a plurality of pixel electrodes 25 Is included. The counter substrate CT includes a light-transmissive insulating substrate 22 and a color filter 24 formed on the insulating substrate 22 as red, green, and blue stripes arranged in the row direction in opposition to the pixel electrodes 25 in the corresponding columns. And a transparent counter electrode 29 covering the color filter 24, and an alignment film 27B covering the counter electrode 29. Further, the phase difference plate RT1 and the polarizing plate PL1 are attached to the insulating substrate 21 on the side opposite to the plurality of pixel electrodes 25, and the phase difference plate RT2 and the polarizing plate PL2 are attached to the insulating substrate 22 on the side opposite to the color filter 24. Pasted.

【0013】この液晶表示装置では、液晶層LQが複数
の画素電極25にそれぞれ対応して複数の画素領域PX
に区画され、各画素領域PXが各々2本の隣接走査線1
4と2本の隣接信号線13との間に配置される。各薄膜
トランジスタ23は対応走査線14から供給される走査
パルスに応答して対応信号線13の電位を対応画素電極
25に供給する。各画素電極25は対応信号線13の電
位を画素電位として液晶層LQの対応画素領域PXに印
加し、この画素電位と対向電極29の電位との電位差に
基づいて画素領域PXの透過率を制御する。また、各画
素電極25は例えば銀、アルミニウム、あるいはこれら
の合金のような金属の反射導電層25Rおよびこの反射
導電層25Rの窓Wとして配置されるITO等の透過導
電層25Tを有する。反射導電層25Rは対向基板CT
側から液晶層LQを介して入射する光を高い反射率で反
射し散乱させる光反射部を構成し、透過導電層25Tは
アレイ基板ARの背面から入射する光を液晶層LQ側に
透過する光透過部を構成する。反射導電層25Rの窓W
は配向膜27Aのラビング方向に略一致する長手方向を
持つ長方形である。
In this liquid crystal display device, the liquid crystal layer LQ has a plurality of pixel regions PX corresponding to the plurality of pixel electrodes 25, respectively.
, And each pixel area PX has two adjacent scanning lines 1
4 and two adjacent signal lines 13. Each thin film transistor 23 supplies the potential of the corresponding signal line 13 to the corresponding pixel electrode 25 in response to a scanning pulse supplied from the corresponding scanning line 14. Each pixel electrode 25 applies the potential of the corresponding signal line 13 as a pixel potential to the corresponding pixel region PX of the liquid crystal layer LQ, and controls the transmittance of the pixel region PX based on the potential difference between this pixel potential and the potential of the counter electrode 29. I do. Each pixel electrode 25 has a reflective conductive layer 25R made of a metal such as silver, aluminum, or an alloy thereof, and a transparent conductive layer 25T such as ITO disposed as a window W of the reflective conductive layer 25R. The reflective conductive layer 25R is made of a counter substrate CT.
A light reflecting portion that reflects and scatters light incident from the side via the liquid crystal layer LQ with high reflectance is configured, and the transmissive conductive layer 25T transmits light incident from the back surface of the array substrate AR to the liquid crystal layer LQ side. Construct a transmission part. Window W of reflective conductive layer 25R
Is a rectangle having a longitudinal direction substantially coinciding with the rubbing direction of the alignment film 27A.

【0014】アレイ基板ARでは、複数の薄膜トランジ
スタ23、複数の反射導電層25Tその他の配線が光透
過性絶縁基板21上に形成され、有機絶縁膜31で絶縁
基板21と共に覆われる。この有機絶縁膜31は各々対
応透過導電層25Tを部分的に露出する複数の開口31
Hおよびこれら開口31Hをそれぞれ囲むように複数の
画素領域PXに対応して配置される凹凸パターンを有す
る。各薄膜トランジスタ23は対応走査線14に接続さ
れるゲート、対応画素電極25の透過導電層25Tに接
続されるソース、および対応信号線13に接続されるド
レインを有する。各画素電極25の反射導電層25Rは
対応透過導電層25Tの外縁にコンタクトして有機絶縁
膜31上に形成される。この反射導電層25Rは有機絶
縁膜31の凹凸パターンに沿って所定の厚さで形成さ
れ、ランダムに配置される複数の半球状凸部25RAお
よびこれら半球状凸部25RAを囲んで配置される凹部
25RBを凹凸パターンとして含む。この反射導電層2
5Rはこの凹凸パターンにより入射光を散乱させるよう
に反射する。
In the array substrate AR, a plurality of thin film transistors 23, a plurality of reflective conductive layers 25T, and other wiring are formed on the light-transmitting insulating substrate 21 and are covered with the organic insulating film 31 together with the insulating substrate 21. This organic insulating film 31 has a plurality of openings 31 each partially exposing corresponding transmission conductive layer 25T.
H and a plurality of concavo-convex patterns arranged corresponding to the plurality of pixel regions PX so as to surround the openings 31H. Each thin film transistor 23 has a gate connected to the corresponding scanning line 14, a source connected to the transmission conductive layer 25T of the corresponding pixel electrode 25, and a drain connected to the corresponding signal line 13. The reflective conductive layer 25R of each pixel electrode 25 is formed on the organic insulating film 31 in contact with the outer edge of the corresponding transmissive conductive layer 25T. The reflective conductive layer 25R is formed with a predetermined thickness along the concave / convex pattern of the organic insulating film 31, and has a plurality of hemispherical convex portions 25RA arranged at random and concave portions arranged around these hemispherical convex portions 25RA. 25 RB is included as the concavo-convex pattern. This reflective conductive layer 2
5R reflects incident light by this concavo-convex pattern so as to be scattered.

【0015】次に、上述した液晶表示装置の製造工程を
説明する。
Next, the manufacturing process of the above-mentioned liquid crystal display device will be described.

【0016】アレイ基板ARの製造では、複数の薄膜ト
ランジスタ23、複数の透過導電層25T、その他の配
線が通常の成膜およびパターニングを繰り返して高歪点
ガラス板や石英板等の光透過性絶縁基板21上に形成さ
れる。続いて、例えばポジ型感光性の樹脂がスピンコー
ト法などにより絶縁基板21全体を覆う厚さ1μm〜4
μm程度の有機絶縁膜31として塗布される。絶縁基板
21のプリベーク後、有機絶縁膜31は開口用フォトマ
スクを用いて複数の開口31Hに対応する範囲で部分的
に露光され、さらに信号線13および走査線14に重な
らないように各画素領域PXの範囲においてランダムな
ピッチで配置された複数の円形遮光部を持つ凹凸パター
ン用フォトマスクを用いて露光される。ここでは、凹凸
パターン用露光量が10〜200mJに設定され、開口
用露光量が200〜2000mJに設定され、円形遮光
部の直径が2〜20μm程度に設定される。凹凸パター
ンの起伏形状および密度はフォトマスクの開口形状、密
度、露光量等により制御される。
In manufacturing the array substrate AR, a plurality of thin film transistors 23, a plurality of transmissive conductive layers 25T, and other wiring are repeatedly formed and patterned in a usual manner to form a light transmissive insulating substrate such as a high strain point glass plate or a quartz plate. 21 is formed. Subsequently, for example, a positive photosensitive resin having a thickness of 1 μm to 4 μm covering the entire insulating substrate 21 by spin coating or the like.
It is applied as an organic insulating film 31 of about μm. After the pre-baking of the insulating substrate 21, the organic insulating film 31 is partially exposed in a range corresponding to the plurality of openings 31H using a photomask for opening, and furthermore, each pixel region is not overlapped with the signal lines 13 and the scanning lines 14. Exposure is performed using a concavo-convex pattern photomask having a plurality of circular light-shielding portions arranged at random pitches in the range of PX. Here, the exposure amount for the concavo-convex pattern is set to 10 to 200 mJ, the exposure amount for the opening is set to 200 to 2,000 mJ, and the diameter of the circular light shielding portion is set to about 2 to 20 μm. The undulating shape and density of the concavo-convex pattern are controlled by the opening shape, density, exposure amount, and the like of the photomask.

【0017】続いて、有機絶縁膜31が上述の露光部分
を除去するために現像され、これにより複数の開口31
Hと共に有機絶縁膜31の凹凸パターンを形成する。こ
の段階では凹凸パターンが鋭角状の起伏となるため、絶
縁基板21の熱処理がこの凹凸パターンを角のとれた滑
らかな状態にするように行われる。
Subsequently, the organic insulating film 31 is developed to remove the above-mentioned exposed portions, whereby a plurality of openings 31 are formed.
With H, an uneven pattern of the organic insulating film 31 is formed. At this stage, since the concavo-convex pattern has an acute undulation, the heat treatment of the insulating substrate 21 is performed so as to make the concavo-convex pattern smooth with sharp corners.

【0018】続いて、Al,Ni,CrおよびAg等の
金属膜がスパッタ法により100nm程度の厚さで有機
絶縁膜31上に堆積され、フォトエッチング法で所定の
形状にパターニングされ、これにより各々対応透過導電
層25Tの外縁にコンタクトした複数の反射導電層25
Rを形成する。
Subsequently, a metal film such as Al, Ni, Cr, and Ag is deposited on the organic insulating film 31 to a thickness of about 100 nm by a sputtering method, and is patterned into a predetermined shape by a photo etching method. A plurality of reflective conductive layers 25 contacting the outer edge of the corresponding transparent conductive layer 25T
Form R.

【0019】続いて、複数の柱状スペーサ15が液晶層
LQの厚さとなる所定の間隙を確保するために所定領域
に形成され、配向膜27Aが低温キュア型のポリイミド
を印刷により画素電極25および有機絶縁膜31を覆う
ように3μm程度塗布しこれを反射導電層25Rの窓W
の長手方向(すなわち、反射導電層25Rと透過導電層
25Tとの段差が最も長く伸びる方向)に一致するラビ
ング方向にラビング布でラビング処理することにより形
成される。
Subsequently, a plurality of columnar spacers 15 are formed in a predetermined region in order to secure a predetermined gap corresponding to the thickness of the liquid crystal layer LQ. About 3 μm is applied so as to cover the insulating film 31, and this is applied to the window W of the reflective conductive layer 25R.
(Ie, the direction in which the step between the reflective conductive layer 25R and the transmissive conductive layer 25T extends the longest).

【0020】他方、対向基板CTの製造では、顔料など
を分散させたカラーフィルタ24が高歪点ガラス板や石
英板等の光透過性絶縁基板22上に形成される。透明対
向電極29は例えば1TOをスパッタ法で着色層24上
に堆積することにより形成される。続いて、配向膜27
Bが低温キュア型のポリイミドを印刷により透明対向電
極29を覆うように3μm程度塗布しこれをラビング布
でラビング処理することにより形成される。尚、配向膜
27Bのラビング処理は液晶層LQの液晶分子を略ホモ
ジニアス配列とするように配向膜27Aに対して配向軸
を合わせる。アレイ基板ARおよび対向基板CTは配向
膜27Aおよび27Bの形成後に一体化される。具体的
には、アレイ基板ARおよび対向基板CTが配向膜27
Aおよび27Bを内側にして向かい合わされ、エポキシ
系熱硬化樹脂の接着剤である周縁シール材を介して貼り
合わされる。液晶層LQはアレイ基板ARおよび対向基
板CT間において周縁シール材で囲まれた液晶注入空間
をセルとし、ネマチック液晶のような液晶組成物をこの
セルに注入し紫外線硬化樹脂で封止することにより得ら
れる。こうして液晶層LQがアレイ基板ARおよび対向
基板CT間に挟持された状態で、位相差板RT1および
偏光板PL1が複数の画素電極25とは反対側において
絶縁基板21に貼り付けられ、位相差板RT2および偏
光板PL2がカラーフィルタ24とは反対側において絶
縁基板22に貼り付けられる。液晶表示装置は上述のよ
うにして完成する。
On the other hand, in the manufacture of the counter substrate CT, a color filter 24 in which a pigment or the like is dispersed is formed on a light-transmitting insulating substrate 22 such as a glass plate or a quartz plate having a high strain point. The transparent counter electrode 29 is formed, for example, by depositing 1TO on the coloring layer 24 by a sputtering method. Subsequently, the alignment film 27
B is formed by applying a low-temperature cure type polyimide by printing to a thickness of about 3 μm so as to cover the transparent counter electrode 29, and subjecting this to a rubbing treatment with a rubbing cloth. In the rubbing treatment of the alignment film 27B, the alignment axis is aligned with the alignment film 27A so that the liquid crystal molecules of the liquid crystal layer LQ have a substantially homogeneous arrangement. The array substrate AR and the counter substrate CT are integrated after forming the alignment films 27A and 27B. Specifically, the array substrate AR and the counter substrate CT are
A and 27B face each other, and are bonded together via a peripheral sealing material that is an epoxy-based thermosetting resin adhesive. The liquid crystal layer LQ is formed by using a liquid crystal injection space surrounded by a peripheral sealing material between the array substrate AR and the counter substrate CT as a cell, injecting a liquid crystal composition such as a nematic liquid crystal into the cell, and sealing the cell with an ultraviolet curing resin. can get. With the liquid crystal layer LQ thus sandwiched between the array substrate AR and the counter substrate CT, the retardation plate RT1 and the polarizing plate PL1 are attached to the insulating substrate 21 on the side opposite to the plurality of pixel electrodes 25, and the retardation plate RT2 and the polarizing plate PL2 are attached to the insulating substrate 22 on the side opposite to the color filter 24. The liquid crystal display device is completed as described above.

【0021】上述した第1実施形態の液晶表示装置によ
れば、反射導電層25Rの窓Wは図1に示すように反射
導電層25Rおよび透過導電層25T間に有機絶縁膜3
1の厚さにより生じた段差を補償するよう配向膜27A
のラビング方向に略一致する長手方向を持つ長方形であ
る。窓Wの長手方向および配向膜27Aのラビング方向
を例えば12時間時計形式で表すとすれば、窓Wの長手
方向が信号線13に平行な6時−12時の方向に設定さ
れる場合に、配向膜27Aのラビング方向も6時−12
時の方向に設定される。このような液晶表示装置を実際
に駆動したところ、幅約4μmの配向不良領域が図3の
(a)に示すように窓Wの一短辺に沿って発生すること
が顕微鏡観察により確認された。しかし、目視観察で
は、透過光表示画像および反射光表示画像のいずれも高
品位であった。特に透過光表示の場合には、350とい
うコントラストを得ることができた。
According to the liquid crystal display device of the first embodiment described above, the window W of the reflective conductive layer 25R has the organic insulating film 3 between the reflective conductive layer 25R and the transmissive conductive layer 25T as shown in FIG.
1 so as to compensate for the step caused by the thickness of
Is a rectangle having a longitudinal direction substantially corresponding to the rubbing direction. Assuming that the longitudinal direction of the window W and the rubbing direction of the alignment film 27A are expressed in, for example, a 12-hour clock format, when the longitudinal direction of the window W is set to a direction of 6 o'clock to 12 o'clock parallel to the signal line 13, The rubbing direction of the alignment film 27A is also 6: 00-12.
Set to the hour direction. When such a liquid crystal display device was actually driven, it was confirmed by microscopic observation that an alignment defect region having a width of about 4 μm was generated along one short side of the window W as shown in FIG. . However, in the visual observation, both the transmitted light display image and the reflected light display image were of high quality. In particular, in the case of transmitted light display, a contrast of 350 could be obtained.

【0022】第1比較例として、配向膜27Aのラビン
グ方向を7時半−1時半の方向と9時−3時の方向とに
変更することを除いて第1実施形態と同様な液晶表示装
置を製造し、これを実際に駆動する実験を行った。する
と、ラビング方向が7時半−1時半の方向である場合、
配向不良領域が図3の(b)に示すように窓Wの一長辺
および一短辺の両方に沿って発生することが顕微鏡観察
により確認された。このときコントラストを測定する
と、その結果は280であった。他方、ラビング方向が
9時−3時の方向である場合、配向不良領域が図3の
(c)に示すように窓Wの一長辺に沿って発生すること
が顕微鏡観察により確認された。このときコントラスト
を測定すると、その結果は260であった。すなわち、
配向膜27Aのラビング方向が窓Wの長手方向から大き
くずれると、ラビング布が段差の影響で十分ラビングさ
れない配向不良領域の長さを増大させてしまう。従っ
て、この配向不良領域に対応した光漏れにより300を
越えるような高いコントラストを得ることができない。
As a first comparative example, a liquid crystal display similar to that of the first embodiment, except that the rubbing direction of the alignment film 27A is changed to a direction of 7: 30-1: 30 and a direction of 9: 30-3: 00. An apparatus was manufactured and an experiment for actually driving the apparatus was performed. Then, when the rubbing direction is the direction of 7: 30-1: 30,
Microscopic observation confirmed that the misalignment region occurred along both one long side and one short side of the window W as shown in FIG. 3B. At this time, when the contrast was measured, the result was 280. On the other hand, when the rubbing direction was from 9 o'clock to 3 o'clock, it was confirmed by microscopy that a poorly-aligned region was generated along one long side of the window W as shown in FIG. At this time, when the contrast was measured, the result was 260. That is,
If the rubbing direction of the alignment film 27A greatly deviates from the longitudinal direction of the window W, the length of the poorly-aligned region in which the rubbing cloth is not sufficiently rubbed due to the influence of the step increases. Therefore, a high contrast exceeding 300 cannot be obtained due to the light leakage corresponding to the poor alignment region.

【0023】第2比較例として、対向基板CT側の配向
膜27Bをラビング処理しない垂直配向膜に変更しハイ
ブリッド型液晶配列を得るようにしたことを除いて第1
実施形態と同様な液晶表示装置を製造し、これを実際に
駆動する実験を行った。すると、配向膜27Aのラビン
グ方向も6時−12時の方向に設定される場合において
最も高いコントラストが得られるという上述の結果と同
様の傾向となった。尚、この比較例ではハイブリッド型
液晶配列としたが、TN型液晶配列としてもよい。
As a second comparative example, a first comparative example was adopted except that the alignment film 27B on the counter substrate CT side was changed to a vertical alignment film without rubbing treatment to obtain a hybrid liquid crystal alignment.
A liquid crystal display device similar to that of the embodiment was manufactured, and an experiment of actually driving the same was performed. Then, when the rubbing direction of the alignment film 27A is also set to the direction of 6 o'clock to 12 o'clock, a tendency similar to the above-described result that the highest contrast is obtained is obtained. Although the hybrid liquid crystal array is used in this comparative example, a TN liquid crystal array may be used.

【0024】次に、本発明の第2実施形態に係る液晶表
示装置を説明する。図4はこの液晶表示装置の部分的な
断面構造を示し、図5は図4に示す画素付近の平面構造
を示す。この液晶表示装置は以下のことを除いて第1実
施形態と同様に構成される。このため、図4および図5
において第1実施形態と同様な部分を同一参照符号で示
し、その説明を省略する。
Next, a liquid crystal display according to a second embodiment of the present invention will be described. FIG. 4 shows a partial cross-sectional structure of the liquid crystal display device, and FIG. 5 shows a planar structure near the pixel shown in FIG. This liquid crystal display device is configured similarly to the first embodiment except for the following. Therefore, FIGS. 4 and 5
In FIG. 7, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

【0025】この液晶表示装置は図1に示すような透過
導電膜25Tを持たない。その代わり、光透過部が光反
射部の窓Wとして反射導電層25Rに形成される3個の
切欠部25TCにより構成される。この切欠部25TC
に対応する領域の液晶は反射導電層25Rのエッジで生
じる漏れ電界を利用して駆動される。このため、有機絶
縁膜31の各開口31Hは透過導電膜25Tを露出する
ためではなく、対応反射導電層25Rを対応薄膜トラン
ジスタ23のソースに接続するためのコンタクトホール
として形成される。各切欠部25TCは幅4μm×長さ
50μmという寸法の長方形である。この長方形の長手
方向は図5に示すように配向膜27Aのラビング方向に
略一致する。次に、第1実施形態と異なるアレイ基板A
Rの製造工程を説明する。アレイ基板ARの製造では、
複数の薄膜トランジスタ23およびその他の配線が通常
の成膜およびパターニングを繰り返して高歪点ガラス板
や石英板等の光透過性絶縁基板21上に形成される。続
いて、例えばポジ型感光性の樹脂がスピンコート法など
により絶縁基板21全体を覆う厚さ1μm〜4μm程度
の有機絶縁膜31として塗布される。絶縁基板21のプ
リベーク後、有機絶縁膜31は開口用フォトマスクを用
いて複数の開口31Hに対応する範囲で部分的に露光さ
れ、さらに信号線13および走査線14に重ならないよ
うに各画素領域PXの範囲においてランダムなピッチで
配置された複数の円形遮光部を持つ凹凸パターン用フォ
トマスクを用いて露光される。ここでは、第1実施形態
と同様に、凹凸パターン用露光量が10〜200mJに
設定され、開口用露光量が200〜2000mJに設定
され、円形遮光部の直径が2〜20μm程度に設定され
る。凹凸パターンの起伏形状および密度はフォトマスク
の開口形状、密度、露光量等により制御される。
This liquid crystal display does not have the transmissive conductive film 25T as shown in FIG. Instead, the light transmitting portion is constituted by three notches 25TC formed in the reflective conductive layer 25R as the window W of the light reflecting portion. This notch 25TC
Are driven by utilizing a leakage electric field generated at the edge of the reflective conductive layer 25R. For this reason, each opening 31H of the organic insulating film 31 is formed not as an exposure of the transmissive conductive film 25T but as a contact hole for connecting the corresponding reflective conductive layer 25R to the source of the corresponding thin film transistor 23. Each notch 25TC is a rectangle having a size of 4 μm in width × 50 μm in length. The longitudinal direction of this rectangle substantially coincides with the rubbing direction of the alignment film 27A as shown in FIG. Next, an array substrate A different from the first embodiment
The manufacturing process of R will be described. In the manufacture of the array substrate AR,
A plurality of thin film transistors 23 and other wirings are formed on the light transmitting insulating substrate 21 such as a high strain point glass plate or a quartz plate by repeating normal film formation and patterning. Subsequently, for example, a positive photosensitive resin is applied as an organic insulating film 31 having a thickness of about 1 μm to 4 μm covering the entire insulating substrate 21 by spin coating or the like. After the pre-baking of the insulating substrate 21, the organic insulating film 31 is partially exposed in a range corresponding to the plurality of openings 31 H using a photomask for opening, and furthermore, each pixel region is not overlapped with the signal lines 13 and the scanning lines 14. Exposure is performed using a concavo-convex pattern photomask having a plurality of circular light-shielding portions arranged at random pitches in the range of PX. Here, similarly to the first embodiment, the exposure amount for the concavo-convex pattern is set to 10 to 200 mJ, the exposure amount for the opening is set to 200 to 2000 mJ, and the diameter of the circular light shielding portion is set to about 2 to 20 μm. . The undulating shape and density of the concavo-convex pattern are controlled by the opening shape, density, exposure amount, and the like of the photomask.

【0026】続いて、有機絶縁膜31が上述の露光部分
を除去するために現像され、これにより各々対応薄膜ト
ランジスタ23のソースを露出する複数の開口31Hと
共に有機絶縁膜31の凹凸パターンを形成する。この段
階では凹凸パターンが鋭角状の起伏となるため、絶縁基
板21の熱処理がこの凹凸パターンを角のとれた滑らか
な状態にするように行われる。
Subsequently, the organic insulating film 31 is developed to remove the above-mentioned exposed portions, thereby forming a concave / convex pattern of the organic insulating film 31 together with a plurality of openings 31H each exposing the source of the corresponding thin film transistor 23. At this stage, since the concavo-convex pattern has an acute undulation, the heat treatment of the insulating substrate 21 is performed so as to make the concavo-convex pattern smooth with sharp corners.

【0027】続いて、Al,Ni,CrおよびAg等の
金属膜がスパッタ法により100nm程度の厚さで有機
絶縁膜31上に堆積され、フォトエッチング法で各画素
領域PXについて図5に示す所定の形状にパターニング
され、これにより各々対応薄膜トランジスタ23のソー
スにコンタクトすると共に3個の切欠部25TCを持つ
複数の反射導電層25Rを形成する。
Subsequently, a metal film such as Al, Ni, Cr and Ag is deposited on the organic insulating film 31 to a thickness of about 100 nm by a sputtering method, and a predetermined etching shown in FIG. Is formed, whereby a plurality of reflective conductive layers 25R each having three notches 25TC and being in contact with the source of the corresponding thin film transistor 23 are formed.

【0028】続いて、複数の柱状スペーサ15が液晶層
LQの厚さとなる所定の間隙を確保するために所定領域
に形成され、配向膜27Aが低温キュア型のポリイミド
を印刷により画素電極25および有機絶縁膜31を覆う
ように3μm程度塗布し、これを図5に示すように反射
導電層25Rの窓Wの長手方向(すなわち、光反射部と
光透過部との段差が最も長く伸びる方向)に一致するラ
ビング方向にラビング布でラビング処理することにより
形成される。
Subsequently, a plurality of columnar spacers 15 are formed in a predetermined area in order to secure a predetermined gap corresponding to the thickness of the liquid crystal layer LQ. 5 μm is applied so as to cover the insulating film 31, and this is applied in the longitudinal direction of the window W of the reflective conductive layer 25 R as shown in FIG. 5 (that is, the direction in which the step between the light reflecting portion and the light transmitting portion extends the longest). It is formed by performing a rubbing process with a rubbing cloth in a rubbing direction that matches.

【0029】この後、対向基板CTの製造工程、並びに
アレイ基板ARと対向基板CTとの一体化工程が第1実
施形態と同様に行われる。
Thereafter, the steps of manufacturing the counter substrate CT and the step of integrating the array substrate AR and the counter substrate CT are performed in the same manner as in the first embodiment.

【0030】上述した第2実施形態の液晶表示装置によ
れば、反射導電層25Rの切欠部25TCが光反射部の
窓Wとして形成され、この窓Wが光反射部および光透過
部間に反射導電層25Rの厚さにより生じた段差を補償
するよう配向膜27Aのラビング方向に略一致する長手
方向を持つ長方形である。すなわち、窓Wの長手方向が
7時半−1時半の方向に設定される場合に、配向膜27
Aのラビング方向も7時半−1時半の方向に設定され
る。この場合、窓Wの長手方向が配向膜27Aのラビン
グ方向から大きくずれている場合よりもラビング布が段
差の影響で十分ラビングできない配向膜27Aの領域を
削減できる。従って、光漏れの原因となる配向不良を低
減して、高いコントラストを得ることができる。このよ
うな液晶表示装置を実際に駆動したところ、目視観察で
高品位な表示画像が確認された。また、透過光表示で2
0というコントラストを得ることができた。特に、複数
の切欠部25TCが10μm以下の幅で形成されるよう
な場合には、配向不良による光漏れで低下するコントラ
ストを大幅に改善することが可能である。
According to the above-described liquid crystal display device of the second embodiment, the notch 25TC of the reflective conductive layer 25R is formed as the window W of the light reflecting portion, and the window W reflects the light between the light reflecting portion and the light transmitting portion. It is a rectangle having a longitudinal direction substantially coinciding with the rubbing direction of the alignment film 27A so as to compensate for a step caused by the thickness of the conductive layer 25R. That is, when the longitudinal direction of the window W is set to the direction of 7: 30-1: 30, the alignment film 27
The rubbing direction of A is also set to the direction of 7: 30-1: 30. In this case, the area of the alignment film 27A where the rubbing cloth cannot be sufficiently rubbed due to the step difference can be reduced as compared with the case where the longitudinal direction of the window W is largely deviated from the rubbing direction of the alignment film 27A. Therefore, high contrast can be obtained by reducing alignment defects that cause light leakage. When such a liquid crystal display device was actually driven, a high-quality display image was confirmed by visual observation. In the transmitted light display, 2
A contrast of 0 was obtained. In particular, when the plurality of notches 25TC are formed with a width of 10 μm or less, it is possible to greatly improve the contrast that is reduced due to light leakage due to poor alignment.

【0031】第3比較例として、配向膜27Aのラビン
グ方向を6時−12時の方向と9時−3時の方向とに変
更することを除いて第2実施形態と同様な液晶表示装置
を製造し、これを実際に駆動する実験を行った。する
と、ラビング方向が6時−12時の方向である場合、コ
ントラストが透過光表示で8となる。他方、ラビング方
向が9時−3時の方向である場合、コントラストが透過
光表示で6になる。従って、この配向不良領域に対応し
た光漏れにより第2実施形態で得られた20を越えるよ
うな透過光表示のコントラストを得ることができない。
As a third comparative example, a liquid crystal display device similar to the second embodiment except that the rubbing direction of the alignment film 27A is changed to the direction of 6 o'clock to 12 o'clock and the direction of 9 o'clock to 3 o'clock. An experiment was conducted to manufacture and actually drive this. Then, when the rubbing direction is the direction from 6 o'clock to 12 o'clock, the contrast becomes 8 in transmitted light display. On the other hand, when the rubbing direction is from 9 o'clock to 3 o'clock, the contrast becomes 6 in transmitted light display. Therefore, the contrast of the transmitted light display exceeding 20 obtained in the second embodiment cannot be obtained due to the light leakage corresponding to the poor alignment region.

【0032】尚、本発明は上述の実施形態に限定され
ず、その要旨を逸脱しない範囲で様々に変形可能であ
る。例えば、第2実施形態の切欠部25TCは長方形で
なく、例えば楕円形のように長手方向をもつ他の形状で
あってもよい。さらに、切欠部25TCの数を3個以外
の数に変更してもよい。
The present invention is not limited to the above-described embodiment, and can be variously modified without departing from the gist thereof. For example, the cutout portion 25TC of the second embodiment is not rectangular, and may be another shape having a longitudinal direction such as an elliptical shape. Further, the number of cutouts 25TC may be changed to a number other than three.

【0033】[0033]

【発明の効果】以上のように本発明によれば、光漏れの
原因となる液晶分子の配向不良を低減できる液晶表示装
置およびその製造方法を提供できる。
As described above, according to the present invention, it is possible to provide a liquid crystal display device and a method for manufacturing the same, which can reduce defective alignment of liquid crystal molecules which causes light leakage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態に係る液晶表示装置の部
分的な断面構造を示す図である。
FIG. 1 is a diagram showing a partial cross-sectional structure of a liquid crystal display device according to a first embodiment of the present invention.

【図2】図1に示す画素付近の平面構造を示す図であ
る。
FIG. 2 is a diagram illustrating a planar structure near a pixel illustrated in FIG. 1;

【図3】図1に示す窓の長手方向を配向膜のラビング方
向に一致させる理由を説明するための図である。
FIG. 3 is a view for explaining the reason why the longitudinal direction of the window shown in FIG. 1 is matched with the rubbing direction of the alignment film.

【図4】本発明の第2実施形態に係る液晶表示装置の部
分的な断面構造を示す図である。
FIG. 4 is a diagram showing a partial cross-sectional structure of a liquid crystal display device according to a second embodiment of the present invention.

【図5】図4に示す画素付近の平面構造を示す図であ
る。
FIG. 5 is a diagram showing a planar structure near a pixel shown in FIG. 4;

【符号の説明】[Explanation of symbols]

25…画素電極 25T…透過導電層 25R…反射導電層 25TC…切欠部 27A…配向膜 AR…アレイ基板 CT…対向基板 LQ…液晶層 PX…画素領域 W…窓 25: Pixel electrode 25T: Transmissive conductive layer 25R: Reflective conductive layer 25TC: Notch 27A: Alignment film AR: Array substrate CT: Counter substrate LQ: Liquid crystal layer PX: Pixel area W: Window

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 義孝 埼玉県深谷市幡羅町一丁目9番地2号 株 式会社東芝深谷工場内 (72)発明者 花澤 康行 埼玉県深谷市幡羅町一丁目9番地2号 株 式会社東芝深谷工場内 Fターム(参考) 2H090 HB08Y KA05 LA06 LA09 LA15 MB01 MB03 2H091 FA02Y FA08X FA08Z FA11X FA11Z FA14Z FC26 FD06 GA13 HA07 LA17 2H092 JA24 JA41 MA13 NA25 PA02 PA08 PA10 PA11  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Yoshitaka Yamada, Inventor Yoshitaka Yamada, 1-9-9, Hara-cho, Fukaya-shi, Saitama Prefecture Toshiba Fukaya Plant Co., Ltd. (72) Inventor Yasuyuki Hanazawa 1-9-9, Harara-cho, Fukaya-shi, Saitama No.2 F-term in Toshiba Fukaya Plant (reference) 2H090 HB08Y KA05 LA06 LA09 LA15 MB01 MB03 2H091 FA02Y FA08X FA08Z FA11X FA11Z FA14Z FC26 FD06 GA13 HA07 LA17 2H092 JA24 JA41 MA13 NA25 PA02 PA08 PA10 PA11

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 第1および第2電極基板と、前記第1お
よび第2電極基板間に液晶組成物のセルとして挟持され
る液晶層とを備え、前記第1電極基板は光反射部および
前記光反射部の窓として配置される光透過部を持つ電
極、並びに前記光反射部および光透過部を覆う配向膜を
含み、前記光反射部の窓は前記配向膜のラビング方向に
略一致する長手方向を持つ形状であることを特徴とする
液晶表示装置。
1. A semiconductor device comprising: a first electrode substrate; a second electrode substrate; and a liquid crystal layer sandwiched between the first and second electrode substrates as a cell of a liquid crystal composition. An electrode having a light transmitting portion disposed as a window of the light reflecting portion; and an alignment film covering the light reflecting portion and the light transmitting portion, wherein the window of the light reflecting portion has a length substantially coinciding with a rubbing direction of the alignment film. A liquid crystal display device having a shape having a direction.
【請求項2】 前記光反射部は入射光を反射する反射導
電層により構成され、前記光透過部は入射光を透過する
少なくとも1個の透過導電層により構成されることを特
徴とする請求項1に記載の液晶表示装置。
2. The light-reflecting portion is formed by a reflective conductive layer that reflects incident light, and the light-transmitting portion is formed by at least one transmitting conductive layer that transmits incident light. 2. The liquid crystal display device according to 1.
【請求項3】 各透過導電層は光透過性の絶縁基板上に
形成され、前記反射導電層は各透過導電層を露出させて
前記絶縁基板を覆う絶縁膜上に形成されることを特徴と
する請求項2に記載の液晶表示装置。
3. The transmission conductive layer is formed on a light-transmitting insulating substrate, and the reflective conductive layer is formed on an insulating film that exposes each transmission conductive layer and covers the insulating substrate. The liquid crystal display device according to claim 2.
【請求項4】 前記光反射部は入射光を反射する反射導
電層により構成され、前記光透過部は入射光を透過する
ように前記反射導電層に形成される少なくとも1個の切
欠部により構成されることを特徴とする請求項1に記載
の液晶表示装置。
4. The light reflecting portion is constituted by a reflective conductive layer that reflects incident light, and the light transmitting portion is constituted by at least one cutout formed in the reflective conductive layer so as to transmit the incident light. The liquid crystal display device according to claim 1, wherein:
【請求項5】 前記切欠部は前記長手方向に直角な方向
において幅10μm以下で形成されることを特徴とする
請求項4に記載の液晶表示装置。
5. The liquid crystal display device according to claim 4, wherein the notch has a width of 10 μm or less in a direction perpendicular to the longitudinal direction.
【請求項6】 前記第2電極基板は前記電極に対向する
対向電極およびこの対向電極を覆う配向膜を含み、前記
第2電極基板の配向膜のラビング方向は前記液晶層の液
晶分子配列に所定の捻れを持たせるように前記第1電極
基板の配向膜のラビング方向に基づいて決定されること
を特徴とする請求項1に記載の液晶表示装置。
6. The second electrode substrate includes a counter electrode facing the electrode and an alignment film covering the counter electrode, and a rubbing direction of the alignment film of the second electrode substrate is predetermined according to a liquid crystal molecule arrangement of the liquid crystal layer. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is determined based on a rubbing direction of the alignment film of the first electrode substrate so as to have a twist.
【請求項7】 前記反射導電層は反射光を散乱させる凹
凸パターンを持つことを特徴とする請求項2または4に
記載の液晶表示装置。
7. The liquid crystal display device according to claim 2, wherein the reflective conductive layer has an uneven pattern for scattering reflected light.
【請求項8】 前記凹凸パターンは前記反射導電層の下
地の起伏に依存することを特徴とする請求項7に記載の
液晶表示装置。
8. The liquid crystal display device according to claim 7, wherein the concave / convex pattern depends on undulations of a base of the reflective conductive layer.
【請求項9】 光反射部および前記光反射部の窓として
配置される光透過部を持つ電極、並びに前記光反射部お
よび光透過部を覆う配向膜を一方に含む第1および第2
電極基板を形成する工程と、前記第1および第2電極基
板間に液晶組成物のセルとして挟持される液晶層を形成
する工程とを備え、前記光反射部の窓が長手方向を持つ
形状であり、さらに前記窓の長手方向に略一致する方向
に前記配向膜をラビングする工程を備えることを特徴と
する液晶表示装置の製造方法。
9. A first and a second electrode each including an electrode having a light reflecting portion and a light transmitting portion disposed as a window of the light reflecting portion, and an alignment film covering the light reflecting portion and the light transmitting portion.
A step of forming an electrode substrate; and a step of forming a liquid crystal layer sandwiched between the first and second electrode substrates as a cell of a liquid crystal composition, wherein the window of the light reflecting portion has a shape having a longitudinal direction. A method of manufacturing a liquid crystal display device, further comprising a step of rubbing the alignment film in a direction substantially coincident with a longitudinal direction of the window.
JP2001021997A 2001-01-30 2001-01-30 Liquid crystal display and method of manufacturing the same Pending JP2002229048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001021997A JP2002229048A (en) 2001-01-30 2001-01-30 Liquid crystal display and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001021997A JP2002229048A (en) 2001-01-30 2001-01-30 Liquid crystal display and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2002229048A true JP2002229048A (en) 2002-08-14

Family

ID=18887467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001021997A Pending JP2002229048A (en) 2001-01-30 2001-01-30 Liquid crystal display and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2002229048A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004008227A2 (en) * 2002-07-16 2004-01-22 Samsung Electronics Co., Ltd. Reflective-transmissive type liquid crystal display device and method for fabricating the same
JP2005196207A (en) * 2004-01-06 2005-07-21 Samsung Electronics Co Ltd Upper substrate and liquid crystal display apparatus having the same
JP2006267993A (en) * 2005-02-28 2006-10-05 Sanyo Epson Imaging Devices Corp Liquid crystal display device
KR100828534B1 (en) * 2002-08-14 2008-05-13 삼성전자주식회사 Reflective-transmitted type liquid crystal display and method for manufacturing thereof
US7394517B2 (en) 2003-01-17 2008-07-01 Sony Corporation Liquid crystal panel

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004008227A2 (en) * 2002-07-16 2004-01-22 Samsung Electronics Co., Ltd. Reflective-transmissive type liquid crystal display device and method for fabricating the same
WO2004008227A3 (en) * 2002-07-16 2004-06-24 Samsung Electronics Co Ltd Reflective-transmissive type liquid crystal display device and method for fabricating the same
US7463318B2 (en) 2002-07-16 2008-12-09 Samsung Electronics Co., Ltd. Reflective-transmissive type liquid crystal display device and method for fabricating the same
US7561232B2 (en) 2002-07-16 2009-07-14 Samsung Electronics Co., Ltd. Reflective-transmissive type liquid crystal display device and method for fabricating the same
KR100828534B1 (en) * 2002-08-14 2008-05-13 삼성전자주식회사 Reflective-transmitted type liquid crystal display and method for manufacturing thereof
US7394517B2 (en) 2003-01-17 2008-07-01 Sony Corporation Liquid crystal panel
KR100979074B1 (en) * 2003-01-17 2010-08-31 소니 주식회사 Liquid crystal display
JP2005196207A (en) * 2004-01-06 2005-07-21 Samsung Electronics Co Ltd Upper substrate and liquid crystal display apparatus having the same
KR101035844B1 (en) * 2004-01-06 2011-05-19 삼성전자주식회사 Upper substrate and liquid crystal display having the same
JP2006267993A (en) * 2005-02-28 2006-10-05 Sanyo Epson Imaging Devices Corp Liquid crystal display device
US7978291B2 (en) 2005-02-28 2011-07-12 Sony Corporation Liquid crystal display device

Similar Documents

Publication Publication Date Title
US7436472B2 (en) Liquid crystal display device and method with color filters having overcoat layer thereover formed on substrate except for fourth color filter formed on the overcoat layer
US6262783B1 (en) Liquid crystal display device with reflective electrodes and method for fabricating the same
US7050131B2 (en) Liquid crystal display device having black seal pattern and external resin pattern, and method of fabricating the same
US7126662B2 (en) Transflective liquid crystal display device comprising a patterned spacer wherein the buffer layer and the spacer are a single body and method of fabricating the same
US8558975B2 (en) Liquid crystal display device and method of fabricating the same
US7667807B2 (en) In-plane-switching-mode liquid crystal display device
JP2007047202A (en) Liquid crystal display device
JP2004151459A (en) Substrate for liquid crystal display and liquid crystal display equipped with the same
US7532299B2 (en) Method of fabricating a liquid crystal display device having column spacers and overcoat layer formed by double exposure
US7532289B2 (en) Method for fabricating color filter substrate for a liquid crystal display device with color filter having polarizing function
US6808868B2 (en) Method for manufacturing a substrate for a display panel
JP3695415B2 (en) Electro-optical panel substrate, manufacturing method thereof, electro-optical panel, and manufacturing method thereof
JP3941437B2 (en) LIQUID CRYSTAL DISPLAY DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
JP2003098537A (en) Electrooptic device, its manufacturing method, and electronic equipment
JP2002229048A (en) Liquid crystal display and method of manufacturing the same
US7791693B2 (en) Semi-transmission liquid crystal display device and fabricating method thereof
KR20070063056A (en) Color filter substrate for liquid crystal display and fabricating method thereof
JP2005241826A (en) Liquid crystal display device
KR100904520B1 (en) CF substrate for LCD and methode for fabricating the same
JP4360068B2 (en) Electro-optical device, manufacturing method thereof, and electronic apparatus
JP2002031797A (en) Liquid crystal display device and method of manufacturing the same
JP4661148B2 (en) Electro-optical device substrate, electro-optical device, electro-optical device manufacturing method, and electronic apparatus
JP2006072175A (en) Liquid crystal display, manufacturing method thereof and electronic device
JP4528531B2 (en) Liquid crystal display
JP3575764B2 (en) Manufacturing method of liquid crystal display device