WO2010105656A1 - Optical structure - Google Patents

Optical structure Download PDF

Info

Publication number
WO2010105656A1
WO2010105656A1 PCT/EP2009/053057 EP2009053057W WO2010105656A1 WO 2010105656 A1 WO2010105656 A1 WO 2010105656A1 EP 2009053057 W EP2009053057 W EP 2009053057W WO 2010105656 A1 WO2010105656 A1 WO 2010105656A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
region
busbar
refractive index
light
Prior art date
Application number
PCT/EP2009/053057
Other languages
French (fr)
Inventor
John Christopher Rudin
Stephen Kitson
Original Assignee
Hewlett-Packard Development Company, L.P.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett-Packard Development Company, L.P. filed Critical Hewlett-Packard Development Company, L.P.
Priority to PCT/EP2009/053057 priority Critical patent/WO2010105656A1/en
Priority to TW099107450A priority patent/TW201044039A/en
Publication of WO2010105656A1 publication Critical patent/WO2010105656A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems

Definitions

  • the present invention relates to an optical structure containing a narrow conductor or fluid channel, notably to a display device incorporating such an optical structure.
  • Electro-optic display devices typically comprise one or more layers of an electro- optic material 2 sandwiched between a first substrate 3 and a second substrate 4 (Fig. 1 ). Electrodes are used to apply an electric field or induce a current across the electro-optic material to cause a change in an optical property of the material. Examples of electro-optic materials include liquid crystals and electrophoretic mixtures.
  • the electrode 8 needs to be transparent and cover the viewed area.
  • EO effects e.g. in-plane electrophoretic
  • the impedance of the conductors should be moderately low; consequently metal traces 7 (or a combination of metal trace 7 and conductive transparent material 8 such as
  • PEDOTPSS or ITO are required. These metal traces, or busbars, 7 are opaque. Typically a highly conductive trace will be in the order of 5 ⁇ m wide by 5 ⁇ m deep, within a display of moderate resolution (e.g. 150ppi) this represents a 3% loss at each layer for just a single conductive trace.
  • the metal surface can however reflect light, which mitigates the absorption to some degree; however this can have the effect of increasing the reflectivity of the dark state and reduce the overall contrast ratio of the display system.
  • the fluid channels may absorb incident light and reduce the display's contrast ratio.
  • Figure 1 is a schematic view of a prior art display device having stacked colour pixel layers
  • Figures 2a and 2b are schematic views of prior art display devices
  • Figure 3 is a schematic sectional view of part of the device of Figure 1 ;
  • FIGS 4 and 5 are schematic sectional views of parts of display devices in accordance with embodiments of the present invention.
  • Figure 6 is a graph modelling optical gain as a function of wedge angle for an optical structure in accordance with an aspect of the invention.
  • Figure 3 shows part of a prior art display device 1.
  • the device comprises a first display substrate 3 which includes a typical 'busbar' or 'narrowline' metallic structure 7.
  • the display substrate 3 comprises a cell wall 5, typically of a glass or plastics material, bonded to a resin material 6 in which the busbar 7 is located.
  • the substrate 3 may be formed by a transfer technique such as described in US 2006/0082710 or US 2007/0099095, the contents of both of which are incorporated herein by reference in their entirety.
  • the first substrate 3 is spaced apart from a second substrate (not shown) with a layer 2 of an electro-optic material sandwiched between.
  • the materials are selected such that the refractive indices of the cell wall 5, the resin layer 6, the layer 2 of electro-optic material, and the second substrate have substantially the same value (n 2 ).
  • the device shown in Figure 4 has a similar structure but in one embodiment with a first region 9 of material with a lower refractive index (ni) close to the busbar 7, while a second region 10, farther from the busbar 7 has a higher refractive index (n 2 ).
  • the optical structure is the substrate 3, which contains a feature 7 which is a narrow conductor in the form of the busbar.
  • the first region 9 functions as a light guide or modulator for reflecting or refracting incident light 14 around the feature 7.
  • the transition from the first region 9 to the second region 10 can be a step change in the local refractive index (n) as shown, or a gradual (gradient) index (GRIN) system, such as is used in a SELFOC lens.
  • GRIN gradual index
  • the material of the first region 9 to provide a waveguide structure to guide the light 14 around the narrow line 7 thereby reducing back-reflection and back-scatter from the busbar 7.
  • Typical values for n 2 are in the range 1.48 to 1.55, and typical values for ni are in the range 1.30-1.35 or less.
  • the first region 9 functions as a reflective 'wedge' ie, a triangular section extruded for the length of the busbar 7.
  • a wedge 9 of higher refractive index reduces the optical cross section of the busbar 7, so a preferred material is one which has a birefringence in the right direction.
  • a preferred material is one which has a birefringence in the right direction.
  • light at a low incident angle experiences a low refractive index
  • light at a high incident angle experiences a high refractive index.
  • Such varied refractive index may be achieved, for example, by using a suitably aligned liquid crystal polymer material.
  • the first substrate 3 has a first planar surface 11 on the side opposed to the layer 2 of electro-optic material.
  • the first region 9 has a surface 12 at least a part of which is preferably at an angle between 5° and 40° to the normal of the first planar surface 11 , notably between 5° and 10°.
  • the opaque busbar 7 itself provides a convenient means for the fabrication of such waveguide structures 9.
  • a polymer of low refractive index is electrodeposited onto the conductive trace prior to lamination and separation using a technique similar to those outlined in US 2006/0082710 and US 2007/0099095.
  • the resulting fabrication is effectively self-patterned from the busbar line itself.
  • a method of manufacturing the optical structure 3 may comprise using the feature 7 as a mask to pattern a region of a resist layer corresponding to the desired shape of the light guide 9, and developing the resist layer to etch away unwanted regions to leave the light guide 9 and feature 7 in a predetermined arrangement.
  • a third region 13 is disposed between the first region 9 and the second region 10.
  • the third region 13 has a higher refractive index n 3 than the first region 9 or the second region 10.
  • Light 14 is guided within the high index core structure 13 so as to pass around the busbar 7.
  • busbar 7 is illustrated as an electrode. It will be understood that the busbar may be electrically connected to a transparent electrode structure such as ITO or the like, where appropriate and in a manner known in the art per se.
  • busbar 7 it would also be possible to shape the busbar 7 to form part of the efficient optical system (e.g. by making it with a cross section which is diamond-shaped, elliptical, or semi-elliptical, with highly reflective sides in combination with a light guiding layer).
  • the main advantage of the present invention is that the light is substantially only guided around and not reflected back or absorbed by the metallic structure.
  • the optical guide structures 9,13 may be self- aligned to the conductive traces 7.

Abstract

An optical structure (3) contains a feature (7) comprising a narrow conductor or fluid channeland a light guide (9) for guiding or reflecting incident light (14) around the feature (7). The optical structure (3) may be included in a display device (1).

Description

OPTICAL STRUCTURE
The present invention relates to an optical structure containing a narrow conductor or fluid channel, notably to a display device incorporating such an optical structure.
BACKGROUND
Electro-optic display devices typically comprise one or more layers of an electro- optic material 2 sandwiched between a first substrate 3 and a second substrate 4 (Fig. 1 ). Electrodes are used to apply an electric field or induce a current across the electro-optic material to cause a change in an optical property of the material. Examples of electro-optic materials include liquid crystals and electrophoretic mixtures.
It is desirable to improve the optical efficiency of display devices. This is particularly true for reflective displays based on a 'stacked' architecture where colour selection is effected by electrical addressing of layers of Cyan, Yellow, Magenta and optionally Black (or scattering) pixels (Fig. 1 ). In the simplest case light 14 entering the front of the display 1 has to travel through addressing electrode structures on both opposed substrates 3,4 before being reflected back through the same six electrode structures again. Any losses in each electrode structure are thereby raised to the power of 12. (e.g. a 2% loss in each layer represents an overall loss of 22%). Addressing structures are essential in all types of display structures; for vertically addressed electro-optic (EO) systems (Fig. 2a), e.g. Guest-Host dyed LC, the electrode 8 needs to be transparent and cover the viewed area. For horizontally addressed EO effects (Fig. 2b) e.g. in-plane electrophoretic, there may be a number of electrode traces 7 placed across the pixel area. In all cases to effect a large area display the impedance of the conductors should be moderately low; consequently metal traces 7 (or a combination of metal trace 7 and conductive transparent material 8 such as
PEDOTPSS or ITO) are required. These metal traces, or busbars, 7 are opaque. Typically a highly conductive trace will be in the order of 5 μm wide by 5 μm deep, within a display of moderate resolution (e.g. 150ppi) this represents a 3% loss at each layer for just a single conductive trace.
The metal surface can however reflect light, which mitigates the absorption to some degree; however this can have the effect of increasing the reflectivity of the dark state and reduce the overall contrast ratio of the display system.
Similarly, in electrophoretic or electrowetting displays, the fluid channels may absorb incident light and reduce the display's contrast ratio.
Aspects of the present invention are specified in the independent claims. Preferred features are specified in the dependent claims.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will now be further described, by way of example only, with reference to the following drawings, in which:
Figure 1 is a schematic view of a prior art display device having stacked colour pixel layers;
Figures 2a and 2b are schematic views of prior art display devices;
Figure 3 is a schematic sectional view of part of the device of Figure 1 ;
Figures 4 and 5 are schematic sectional views of parts of display devices in accordance with embodiments of the present invention; and
Figure 6 is a graph modelling optical gain as a function of wedge angle for an optical structure in accordance with an aspect of the invention.
DETAILED DESCRIPTION
Figure 3 shows part of a prior art display device 1. The device comprises a first display substrate 3 which includes a typical 'busbar' or 'narrowline' metallic structure 7. The display substrate 3 comprises a cell wall 5, typically of a glass or plastics material, bonded to a resin material 6 in which the busbar 7 is located. The substrate 3 may be formed by a transfer technique such as described in US 2006/0082710 or US 2007/0099095, the contents of both of which are incorporated herein by reference in their entirety. The first substrate 3 is spaced apart from a second substrate (not shown) with a layer 2 of an electro-optic material sandwiched between. The materials are selected such that the refractive indices of the cell wall 5, the resin layer 6, the layer 2 of electro-optic material, and the second substrate have substantially the same value (n2). Some incident light 14 is reflected or scattered from the upper surface of the busbar 7; likewise on the return journey, light is reflected from the metal and suffers further losses before being reflected back out of the stack.
The device shown in Figure 4 has a similar structure but in one embodiment with a first region 9 of material with a lower refractive index (ni) close to the busbar 7, while a second region 10, farther from the busbar 7 has a higher refractive index (n2). In this embodiment, the optical structure is the substrate 3, which contains a feature 7 which is a narrow conductor in the form of the busbar. The first region 9 functions as a light guide or modulator for reflecting or refracting incident light 14 around the feature 7.
The transition from the first region 9 to the second region 10 can be a step change in the local refractive index (n) as shown, or a gradual (gradient) index (GRIN) system, such as is used in a SELFOC lens. However the net effect is for the material of the first region 9 to provide a waveguide structure to guide the light 14 around the narrow line 7 thereby reducing back-reflection and back-scatter from the busbar 7. In the illustration of Figure 4, a practical solution with light guiding on one side only is shown - this would give a improvement in layer opacity. Typical values for n2 are in the range 1.48 to 1.55, and typical values for ni are in the range 1.30-1.35 or less. In an alternative embodiment, the first region 9 functions as a reflective 'wedge' ie, a triangular section extruded for the length of the busbar 7.
Both arrangements (lower refractive index or reflective wedge) work well for normal incidence collimated light, and substantially all of the light which would have impinged on the busbar 7 is transmitted at useful angles if the wedge angle is moderately low. For 'real' incident light, with a practical range of angular distribution, we have modelled the optical gain of such a wedge as a function of the wedge angle. The results of the modelling are shown in Figure 6. Low angles show a marked improvement, and overall the modelling shows about a 30% advantage would be achievable. As used herein, angles are specified with reference to external (in air/vacuum) angles of incidence relative to the normal of the top surface, ie normal incidence is perpendicular to the surface and is defined as 0°. Grazing incidence is about 89°. At higher external angles of incidence, a wedge 9 of higher refractive index reduces the optical cross section of the busbar 7, so a preferred material is one which has a birefringence in the right direction. Thus, in a preferred embodiment, light at a low incident angle experiences a low refractive index, while light at a high incident angle experiences a high refractive index. Such varied refractive index may be achieved, for example, by using a suitably aligned liquid crystal polymer material.
The first substrate 3 has a first planar surface 11 on the side opposed to the layer 2 of electro-optic material. To facilitate light guiding and/or reflection of light away from the busbar 7, the first region 9 has a surface 12 at least a part of which is preferably at an angle between 5° and 40° to the normal of the first planar surface 11 , notably between 5° and 10°.
The opaque busbar 7 itself provides a convenient means for the fabrication of such waveguide structures 9. In one example, a polymer of low refractive index is electrodeposited onto the conductive trace prior to lamination and separation using a technique similar to those outlined in US 2006/0082710 and US 2007/0099095. The resulting fabrication is effectively self-patterned from the busbar line itself. A method of manufacturing the optical structure 3 may comprise using the feature 7 as a mask to pattern a region of a resist layer corresponding to the desired shape of the light guide 9, and developing the resist layer to etch away unwanted regions to leave the light guide 9 and feature 7 in a predetermined arrangement.
In the variant shown in Figure 5, a third region 13 is disposed between the first region 9 and the second region 10. The third region 13 has a higher refractive index n3 than the first region 9 or the second region 10. Light 14 is guided within the high index core structure 13 so as to pass around the busbar 7.
In each embodiment, the busbar 7 is illustrated as an electrode. It will be understood that the busbar may be electrically connected to a transparent electrode structure such as ITO or the like, where appropriate and in a manner known in the art per se.
It would also be possible to shape the busbar 7 to form part of the efficient optical system (e.g. by making it with a cross section which is diamond-shaped, elliptical, or semi-elliptical, with highly reflective sides in combination with a light guiding layer).
The main advantage of the present invention is that the light is substantially only guided around and not reflected back or absorbed by the metallic structure. By using a transfer fabrication method, the optical guide structures 9,13 may be self- aligned to the conductive traces 7.
The articles 'a' and 'an' are used herein to mean 'at least one' unless the context otherwise requires.

Claims

1. An optical structure containing a feature comprising a narrow conductor or fluid channel and a light guide for reflecting or refracting incident light around the feature.
2. An optical structure according to claim 1 , wherein the light guide is a waveguide structure which is birefringent and constructed so that light at lower angles of incidence will encounter a lower refractive index and light at higher angles of incidence will encounter a higher refractive index.
3. An optical structure according to claim 1 or claim 2, wherein the light guide is a waveguide structure which has a first region of lower refractive index (ni) close to the feature and a second region of higher refractive index (n2) farther from the feature.
4. An optical structure according to claim 3, wherein the first region is shaped so as to cause at least some light when incident through the first substrate, to be reflected and/or guided so as not to impinge on the feature.
5. A display device including an optical structure according to any preceding claim, wherein the feature is an opaque conductive busbar.
6. A display device according to claim 5, comprising a layer of an electro-optic material sandwiched between a first substrate and a second substrate, the first substrate being translucent and including the opaque busbar.
7. A display device according to claim 6, wherein the first substrate has a first planar surface on the side opposed to the layer of electro-optic material, and the first region has a surface at least a part of which is at an angle between 5° and 40° to the normal to said first planar surface.
8. A display device according to claim 7, wherein said angle is between 5° and 10°.
9. A display device according to any of claims 5-8, further comprising a third region adjacent to the first region, the third region having a refractive index (n3) which is higher than the refractive index (ni) of the first region.
10 A display device according to claim 9, wherein the third region is disposed between the first region and the second region.
11. A display device according to any of claims 5-10, wherein the busbar has at least one reflective surface and is shaped so as to promote internal reflection and/or light guiding of light incident through a face of the first substrate opposed to the layer of electro-optic material.
12. A substrate for a display device as specified in claim 5, the substrate being translucent and including an opaque busbar; wherein the substrate is provided with a light guide for reflecting or refracting incident light around the busbar.
13. A display device comprising a layer of an electro-optic material sandwiched between a first substrate and a second substrate, the first substrate being translucent and including an opaque busbar; wherein the first substrate has at least two regions of different refractive index, whereby at least some light incident through a face of the first substrate opposed to the layer of electro-optic material which, if all regions of the first substrate had the same refractive index, would impinge on the busbar, will be reflected and/or refracted so as not to impinge on the busbar.
14. A method of manufacturing an optical structure as specified in claim 1 , comprising using the feature as a mask to pattern a region of a photoresist layer corresponding to the desired shape of the light guide, and developing the resist layer to remove unwanted regions to leave the light guide and feature in a predetermined arrangement.
15. A method according to claim 14, wherein the photoresist is a negative material, and the step of removing unwanted regions comprises removing photoresist from unexposed regions; the method further comprising filling regions where material has been removed with a material of lower refractive index.
PCT/EP2009/053057 2009-03-16 2009-03-16 Optical structure WO2010105656A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/EP2009/053057 WO2010105656A1 (en) 2009-03-16 2009-03-16 Optical structure
TW099107450A TW201044039A (en) 2009-03-16 2010-03-15 Optical structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2009/053057 WO2010105656A1 (en) 2009-03-16 2009-03-16 Optical structure

Publications (1)

Publication Number Publication Date
WO2010105656A1 true WO2010105656A1 (en) 2010-09-23

Family

ID=41343403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/053057 WO2010105656A1 (en) 2009-03-16 2009-03-16 Optical structure

Country Status (2)

Country Link
TW (1) TW201044039A (en)
WO (1) WO2010105656A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167729A (en) * 1987-12-23 1989-07-03 Hitachi Ltd Liquid crystal display panel
JPH05100222A (en) * 1991-10-08 1993-04-23 Sharp Corp Liquid crystal display device
JPH05249450A (en) * 1991-12-02 1993-09-28 Nec Corp Liquid crystal display
DE4332699A1 (en) * 1993-09-25 1995-03-30 Thomson Brandt Gmbh Process for increasing the effective opening ratio of liquid crystal light valves
JP2001356352A (en) * 2001-05-28 2001-12-26 Matsushita Electric Ind Co Ltd Liquid crystal display device and method for manufacturing the same
US20050134769A1 (en) * 2003-12-19 2005-06-23 Eastman Kodak Company Transflective film and display

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167729A (en) * 1987-12-23 1989-07-03 Hitachi Ltd Liquid crystal display panel
JPH05100222A (en) * 1991-10-08 1993-04-23 Sharp Corp Liquid crystal display device
JPH05249450A (en) * 1991-12-02 1993-09-28 Nec Corp Liquid crystal display
DE4332699A1 (en) * 1993-09-25 1995-03-30 Thomson Brandt Gmbh Process for increasing the effective opening ratio of liquid crystal light valves
JP2001356352A (en) * 2001-05-28 2001-12-26 Matsushita Electric Ind Co Ltd Liquid crystal display device and method for manufacturing the same
US20050134769A1 (en) * 2003-12-19 2005-06-23 Eastman Kodak Company Transflective film and display

Also Published As

Publication number Publication date
TW201044039A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
US5844644A (en) Liquid crystal display with microlenses between interdigital electrodes and method
US9046704B2 (en) Apparatus and method for guiding optical waves
US6567573B1 (en) Switchable optical components
EP2080046B1 (en) Photonic-based interconnects for interconnecting multiple integrated circuits
US9291812B2 (en) Light-modulating panel and light modulator
US7397989B2 (en) Optical switches
KR102557311B1 (en) Display apparatus
CN109445176B (en) Liquid crystal display panel, preparation method thereof and liquid crystal display device
US8483526B2 (en) Micro-size optical switch on silicon-on-insulator platform
GB2183056A (en) Liquid-crystal optical switching device
US10871643B2 (en) Display panel and display device
CN111490057B (en) Photosensitive element and display device
CN103926724B (en) A kind of display device of TFT drivings
TWI384309B (en) Display device
US8218226B2 (en) Surface-plasmon-based optical modulator
US10510537B2 (en) Pixel structure and driving method thereof, and display device
US20040165815A1 (en) Light deflector and optical switch including same
US8072671B2 (en) Display device
WO2010105656A1 (en) Optical structure
US6711315B1 (en) 3-D electro optical switch
US6130733A (en) Light scattering display having a structured solid state selectivity reflective layer formed inside the display cell
Baranikov et al. 80-degree field-of-view transmissive metasurface-based spatial light modulator
CN113031351A (en) Liquid crystal panel, display device and manufacturing method of liquid crystal panel
Badr et al. Silicon ring resonator electro-optical modulator utilizing epsilon-near-zero characteristics of indium tin oxide
US8363300B2 (en) Large aperture polymer electro-optic shutter device and method of manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09779151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09779151

Country of ref document: EP

Kind code of ref document: A1