JPH05247727A - Production of silicon carbide fiber - Google Patents

Production of silicon carbide fiber

Info

Publication number
JPH05247727A
JPH05247727A JP4049181A JP4918192A JPH05247727A JP H05247727 A JPH05247727 A JP H05247727A JP 4049181 A JP4049181 A JP 4049181A JP 4918192 A JP4918192 A JP 4918192A JP H05247727 A JPH05247727 A JP H05247727A
Authority
JP
Japan
Prior art keywords
fiber
silica
firing
silicon carbide
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4049181A
Other languages
Japanese (ja)
Inventor
Keihachirou Nakajima
慶八郎 中嶋
Hitoshi Kato
均 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP4049181A priority Critical patent/JPH05247727A/en
Publication of JPH05247727A publication Critical patent/JPH05247727A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain the subject fiber useful as a heat-resistant material, reinforcing fiber, electrically conductive material, radiation-resistant material, etc., in large quantities at a low cost by supporting silica on a cellulose fiber and baking the fiber at a specific temperature in vacuum or in argon gas atmosphere. CONSTITUTION:Viscose rayon staple is immersed in 4N sodium hydroxide solution at room temperature for 12hr, centrifuged to remove the liquid and immersed in an aqueous solution of sodium silicate at room temperature for 3hr. The fiber impregnated with sodium silicate is centrifuged to remove the liquid and brought into contact with carbon dioxide gas of 1kg/cm<2> pressure in a pressure vessel to effect the deposition of silica in the fiber. The obtained silica- supporting cellulose fiber is subjected to the primary baking in nitrogen atmosphere at a heating rate of 10 deg.C/hr between room temperature and 400 deg.C and 100 deg.C/hr between 400 deg.C and 900 deg.C, and then to the secondary baking in vacuum or in argon atmosphere at a heating rate of 3000 deg.C/hr between room temperature and 1000 deg.C and 1000 deg.C/hr between 1000 deg.C and 1500 deg.C to obtain the objective silicon carbide fiber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭化ケイ素繊維の新規な
製造法に関する。さらに詳しく述べれば、本発明は、耐
熱材料、強化繊維、導電性材料、耐放射線材料などとし
て有用な炭化ケイ素繊維の製造に関する。
FIELD OF THE INVENTION The present invention relates to a novel method for producing silicon carbide fibers. More specifically, the present invention relates to the production of silicon carbide fibers useful as heat resistant materials, reinforced fibers, conductive materials, radiation resistant materials and the like.

【0002】[0002]

【従来の技術】シリカと炭素を、不活性ガス雰囲気中で
高温で反応させると、炭化ケイ素が生成する事は古くか
ら知られている。また、セルロースなどの有機物を不活
性雰囲気中で焼成すると、炭素が残る事もよく知られて
いる。
2. Description of the Related Art It has long been known that silicon carbide is produced when silica and carbon are reacted at a high temperature in an inert gas atmosphere. It is also well known that when organic substances such as cellulose are baked in an inert atmosphere, carbon remains.

【0003】特開昭52−63427号には、含ケイ素
有機高分子を紡糸し、これを不活性ガス雰囲気中で焼成
する事により炭化ケイ素繊維を得る方法が開示されてい
る。この方法は、すでに分子中にケイ素を含む高分子繊
維を原料としている点を特徴とするものである。
Japanese Unexamined Patent Publication (Kokai) No. 52-63427 discloses a method of obtaining a silicon carbide fiber by spinning a silicon-containing organic polymer and firing it in an inert gas atmosphere. This method is characterized in that a polymer fiber containing silicon in the molecule has already been used as a raw material.

【0004】特公昭44−18574号には、炭素繊維
をケイ素などの蒸気もしくは、融液に接触させることに
より炭化ケイ素繊維を得る方法が開示されている。この
方法により得られる炭化ケイ素繊維は、粗大な結晶が凝
集したもので機械的強度に乏しいという欠点を有してい
る。
Japanese Patent Publication No. 44-18574 discloses a method for obtaining silicon carbide fibers by bringing carbon fibers into contact with steam such as silicon or a melt. The silicon carbide fiber obtained by this method has a defect that coarse crystals are aggregated and have poor mechanical strength.

【0005】仏国特許第1,560,688号には、S
iOガスをCOガスと高温で反応させることにより微細
繊維状の炭化ケイ素を得る方法が開示されている。ま
た、特開昭49−9500号には、ニッケル触媒の存在
下で炭素と四塩化ケイ素とを反応させて微細繊維状の炭
化ケイ素を得る方法が開示されている。これらの方法で
得られるウィスカー状炭化ケイ素繊維は、一般に寸法が
非常に小さく(径が1ミクロン程度、長さは1ミリ以下
の物が多い)、このため取扱いが難しく、十分な性能を
発揮しにくく、また、均質な製品を安価にかつ大量に得
る事が難しい。
French Patent No. 1,560,688 describes S
A method for obtaining fine fibrous silicon carbide by reacting iO gas with CO gas at high temperature is disclosed. Further, JP-A-49-9500 discloses a method of reacting carbon and silicon tetrachloride in the presence of a nickel catalyst to obtain fine fibrous silicon carbide. The whisker-like silicon carbide fibers obtained by these methods are generally very small in size (the diameter is about 1 micron and the length is often less than 1 mm), and therefore they are difficult to handle and exhibit sufficient performance. In addition, it is difficult to obtain a homogeneous product inexpensively and in large quantities.

【0006】米国特許出願第541,188号(198
4)には、コロイド状シリカとレーヨン繊維とを水中に
懸濁させ、これを乾燥した後アルゴン雰囲気中で焼成
し、炭化ケイ素繊維を得る方法が開示されている。しか
し、この方法を含めて、その他のいずれの方法において
も、炭化ケイ素繊維が安価には製造できないという欠点
があった。
US Patent Application No. 541,188 (198)
4) discloses a method in which colloidal silica and rayon fibers are suspended in water, dried, and fired in an argon atmosphere to obtain silicon carbide fibers. However, there is a drawback that the silicon carbide fiber cannot be manufactured at low cost by any other method including this method.

【0007】[0007]

【発明が解決しようとする課題】本発明は、入手が容易
で安価な原料から簡単なプロセスで、強度や耐熱性に優
れた炭化ケイ素繊維を大量、且つ安価に製造する方法を
提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention is intended to provide a method for producing a large amount of silicon carbide fibers excellent in strength and heat resistance at low cost by a simple process from easily available and inexpensive raw materials. It is a thing.

【0008】[0008]

【課題を解決するための手段】本発明の炭化ケイ素繊維
の製造方法は、シリカを担持させたセルロース繊維を実
質的に真空、もしくはアルゴン雰囲気中で1100〜2
300℃で焼成する事を特徴とするものである。
The method for producing a silicon carbide fiber according to the present invention comprises a silica fiber-supported cellulose fiber in a vacuum or in an argon atmosphere in the range of 1100 to 2: 1.
It is characterized by firing at 300 ° C.

【0009】[0009]

【作用】本発明に用いられるセルロース繊維は、セルロ
ースを主成分とする物であればどのようなものでもよ
く、例えば天然リグノセルロース繊維や、再生セルロー
ス繊維から選ぶことができる。天然リグノセルロース繊
維としては、木材から製造される木材パルプ繊維、草本
類から製造される非木材パルプ繊維、綿繊維の類などが
ある。再生セルロース繊維としては、ビスコースレーヨ
ン、銅アンモニアレーヨン、硝化法人絹、ケン化アセテ
ートなどを用いる事が出来る。
The cellulose fiber used in the present invention may be any one as long as it contains cellulose as a main component, and can be selected from, for example, natural lignocellulose fiber and regenerated cellulose fiber. Examples of natural lignocellulosic fibers include wood pulp fibers manufactured from wood, non-wood pulp fibers manufactured from herbs, and cotton fibers. As the regenerated cellulose fiber, viscose rayon, cuprammonium rayon, nitrifying silk, saponified acetate, etc. can be used.

【0010】再生セルロース繊維は、長繊維の状態で
も、これを切断した短繊維の状態でも差し支えない。セ
ルロース繊維の径(繊度)には特に制限はない。再生セ
ルロース繊維は、セルロースのみからなる繊維以外に、
二酸化チタンの様な添加物を含んだ繊維であってもよ
い。
The regenerated cellulose fibers may be in the form of long fibers or short fibers obtained by cutting them. The diameter (fineness) of the cellulose fiber is not particularly limited. Regenerated cellulose fibers are, in addition to fibers made of only cellulose,
It may be a fiber containing an additive such as titanium dioxide.

【0011】本発明方法において、シリカをセルロース
繊維に担持させるためには、例えば、ケイ酸ナトリウム
などの水溶性ケイ酸化合物の水溶液にセルロース繊維を
浸漬し、脱液後に炭酸ガスや酸水溶液を用いてセルロー
ス繊維中に含浸された水溶性ケイ酸化合物を中和しこれ
を析出させて、シリカ(二酸化ケイ素)を繊維内部に担
持させる方法などを用いることができる。
In the method of the present invention, in order to support silica on the cellulose fiber, for example, the cellulose fiber is immersed in an aqueous solution of a water-soluble silicic acid compound such as sodium silicate, and after removing the liquid, carbon dioxide gas or an acid aqueous solution is used. It is possible to use a method in which the water-soluble silicic acid compound impregnated in the cellulose fiber is neutralized and precipitated to support silica (silicon dioxide) inside the fiber.

【0012】この方法で、シリカを担持させたセルロー
ス繊維のシリカ担持率(シリカ重量/シリカ担持繊維重
量)は、0から60重量%程度まで任意に調整する事が
可能であるが、本発明の方法に好適なシリカ担持率は、
シリカ担持セルロース繊維の合計重量に対し5〜50重
量%である。
According to this method, the silica-supporting ratio of the silica-supported cellulose fibers (weight of silica / weight of silica-supporting fiber) can be arbitrarily adjusted to about 0 to 60% by weight. The suitable silica loading rate for the method is
It is 5 to 50% by weight based on the total weight of the silica-supported cellulose fibers.

【0013】シリカを担持させたセルロース繊維を焼成
する際の雰囲気は、実質的に真空、もしくはアルゴン雰
囲気である事が必要である。シリカを担持させたセルロ
ース繊維を焼成する場合、一回の焼成操作で最高温度ま
で昇温させ、これを焼くことも可能であるが、セルロー
スが熱分解して炭素質に変化して行く過程で揮発性物質
や、タールが発生するため、焼成を二回に分けて行うこ
とが望ましい。即ち、一回目の焼成(一次焼成)では1
000℃以下の温度において不活性ガス(アルゴンガス
又は窒素ガスなど)の気流中で焼成して、揮発性成分や
タールを除去し、一旦冷却後、繊維を高温炉に移し、二
回目の焼成(二次焼成)で所定の最高温度まで焼成する
方法が実用上望ましい。
The atmosphere at the time of firing the cellulose fiber supporting silica needs to be substantially vacuum or argon atmosphere. When firing the silica-supported cellulose fibers, it is possible to raise the temperature to the maximum temperature in a single firing operation and fire this, but in the process of the cellulose pyrolyzing and changing to carbonaceous material. Since volatile substances and tar are generated, it is desirable to perform firing in two steps. That is, the first firing (first firing) is 1
Firing in a stream of an inert gas (argon gas, nitrogen gas, etc.) at a temperature of 000 ° C. or lower to remove volatile components and tar, once cooling, the fiber is transferred to a high-temperature furnace, and second firing ( A method of firing to a predetermined maximum temperature in the secondary firing) is practically desirable.

【0014】焼成炉は、不活性ガス(アルゴンガス)中
の雰囲気で、又は実質的に真空において所定温度におけ
る焼成ができるものであればどのようなものでも使用す
ることができる。1500℃以上での焼成の場合、炭素
抵抗炉の使用が望ましい。一次焼成の際の昇温速度は、
室温から500℃付近までは10〜100℃/hrの昇温
速度が望ましく、500℃から1000℃付近までは5
0〜200℃/hrの昇温速度が望ましい。
Any firing furnace can be used as long as it can perform firing at a predetermined temperature in an atmosphere of an inert gas (argon gas) or substantially in vacuum. For firing at 1500 ° C. or higher, it is desirable to use a carbon resistance furnace. The rate of temperature rise during the primary firing is
A temperature rising rate of 10 to 100 ° C / hr is desirable from room temperature to around 500 ° C, and 5 from 500 ° C to around 1000 ° C.
A heating rate of 0 to 200 ° C./hr is desirable.

【0015】二次焼成の際の昇温速度には特に制限はな
い。二次焼成の際の最高温度は、1100〜2300℃
であることが好適である。二次焼成温度が1100℃未
満であると、炭化ケイ素の生成が不十分であり、また、
それが2300℃より高くなると生成した炭化ケイ素の
分解が甚だしくなる。焼成工程において最高温度を保持
する時間には特に制限はなく、0時間(保持しないです
ぐに冷却する)から、24時間程度まで適宜選択するこ
とができる。昇温の際に、最高温度に達するまでの適宜
温度において、所定保持時間を設けることも差し支えな
い。例えば、1500℃で1時間保持し、その後に20
00℃に昇温し、この2000℃で1時間保持するなど
の焼成スケジュールをとることも差し支えない。冷却速
度には、特に制限はない。
There is no particular limitation on the rate of temperature rise during the secondary firing. The maximum temperature during the secondary firing is 1100 to 2300 ° C.
Is preferred. When the secondary firing temperature is less than 1100 ° C., the formation of silicon carbide is insufficient, and
If the temperature is higher than 2300 ° C, the decomposition of the silicon carbide produced will be significant. There is no particular limitation on the time for holding the maximum temperature in the firing step, and it can be appropriately selected from 0 hours (cooling immediately without holding) to about 24 hours. When raising the temperature, a predetermined holding time may be provided at an appropriate temperature until the maximum temperature is reached. For example, hold at 1500 ℃ for 1 hour, then 20
A firing schedule may be taken such that the temperature is raised to 00 ° C. and the temperature is kept at 2000 ° C. for 1 hour. The cooling rate is not particularly limited.

【0016】[0016]

【実施例】以下、実施例により本発明をさらに詳しく解
説する。
EXAMPLES The present invention will be described in more detail below with reference to examples.

【0017】実施例1 (1)シリカ担持セルロース繊維の調製 ビスコースレーヨンステープル(1.5デニール、3mm
長)絶乾100gを、4規定の水酸化ナトリウム溶液に
室温で12時間浸漬し、1500G(重力加速度)で3
分間遠心脱液し、これを3号ケイ酸ナトリウム水溶液に
室温で3時間浸漬した。このケイ酸ナトリウム含浸繊維
を1500Gで3分間遠心脱液した後、これを加圧容器
中で1kg/cm2 の圧力の炭酸ガスと接触させシリカを繊
維中に沈着させた。このシリカ担持繊維を水中で解繊
し、洗浄後乾燥させた。このシリカ担持繊維の灰分含有
率を測定するため、これを空気中で900℃で焼成し、
灰分を求めたところ、乾燥繊維のシリカ含有率は30%
であった。
Example 1 (1) Preparation of silica-supporting cellulose fiber Viscose rayon staple (1.5 denier, 3 mm
Long) 100 g of absolute dryness was dipped in 4N sodium hydroxide solution at room temperature for 12 hours, and it was dried at 1500 G (gravitational acceleration) for 3
The solution was centrifugally deliquored and then immersed in a No. 3 sodium silicate aqueous solution at room temperature for 3 hours. The sodium silicate-impregnated fiber was centrifugally deliquored at 1500 G for 3 minutes, and then contacted with carbon dioxide gas at a pressure of 1 kg / cm 2 in a pressure vessel to deposit silica in the fiber. The silica-supported fiber was defibrated in water, washed, and dried. In order to measure the ash content of this silica-supported fiber, it was calcined in air at 900 ° C,
When the ash content was calculated, the silica content of the dry fiber was 30%.
Met.

【0018】(2)焼成 上記のシリカ担持セルロース繊維を、窒素雰囲気中で、
室温から400℃までは10℃/hrの昇温速度で、また
400℃から900℃までは100℃/hrの昇温速度で
焼成した(一次焼成)。この一次焼成の焼成収率は50
%であった。一次焼成を行った繊維を、アルゴン雰囲気
中で、室温から1000℃までは3000℃/hrの昇温
速度で、また1000℃から1500℃までは1000
℃/hrの昇温速度で昇温し、1500℃に3時間保持し
(二次焼成)、その後に冷却した。この二次焼成の焼成
収率は、63%であった。
(2) Firing The above-mentioned silica-supported cellulose fibers were treated in a nitrogen atmosphere.
Firing was performed from room temperature to 400 ° C. at a heating rate of 10 ° C./hr, and from 400 ° C. to 900 ° C. at a heating rate of 100 ° C./hr (primary firing). The firing yield of this primary firing is 50.
%Met. The fiber that has been subjected to primary firing is heated in an argon atmosphere from room temperature to 1000 ° C. at a heating rate of 3000 ° C./hr, and from 1000 ° C. to 1500 ° C. at 1000 ° C.
The temperature was raised at a temperature rising rate of ° C / hr, the temperature was maintained at 1500 ° C for 3 hours (secondary firing), and then cooled. The firing yield of this secondary firing was 63%.

【0019】焼成された繊維を、X線回折法で分析した
結果、ベーター型炭化ケイ素を90%以上含む炭化ケイ
素繊維であることが確認された。焼成された繊維は、1
0ミクロンの直径および、1.5mmの長さを有するもの
であった。この繊維を空気中で900℃まで加熱したと
ころ、重量減少は見られなかった。
As a result of X-ray diffraction analysis of the fired fiber, it was confirmed that the fiber was silicon carbide fiber containing 90% or more of beta-type silicon carbide. 1 fired fiber
It had a diameter of 0 micron and a length of 1.5 mm. When this fiber was heated to 900 ° C. in air, no weight loss was observed.

【0020】実施例2 実施例1で調製したシリカ担持セルロース繊維を室温か
ら400℃までは10℃/hrの昇温速度で、また400
℃から900℃までは100℃/hrの昇温速度で焼成し
た(一次焼成)。この一次焼成の焼成収率は50%であ
った。次に一次焼成された繊維を、アルゴン雰囲気中
で、室温から1000℃までは3000℃/hrの昇温速
度で、また1000℃から1950℃までは1000℃
/hrの昇温速度で昇温し、1950℃に1時間保持し
(二次焼成)、その後冷却した。この二次焼成の焼成収
率は、51%であった。
Example 2 The silica-supported cellulose fiber prepared in Example 1 was heated from room temperature to 400 ° C. at a temperature rising rate of 10 ° C./hr and at 400 ° C.
Firing was performed at a temperature rising rate of 100 ° C./hr from 1 ° C. to 900 ° C. (primary firing). The firing yield of this primary firing was 50%. Next, the primary fired fiber was heated in an argon atmosphere from room temperature to 1000 ° C at a heating rate of 3000 ° C / hr, and from 1000 ° C to 1950 ° C at 1000 ° C.
The temperature was raised at a heating rate of / hr, the temperature was maintained at 1950 ° C. for 1 hour (secondary firing), and then cooled. The firing yield of this secondary firing was 51%.

【0021】焼成された繊維を、X線回折法で分析した
ところ、アルファ型炭化ケイ素を90%以上含む炭化ケ
イ素繊維であることが確認された。この繊維を空気中で
900℃まで加熱したところ、重量減少は見られなかっ
た。焼成された繊維は、10ミクロンの直径と、1.5
mmの長さを有するものであった。
When the fired fiber was analyzed by an X-ray diffraction method, it was confirmed to be a silicon carbide fiber containing 90% or more of alpha-type silicon carbide. When this fiber was heated to 900 ° C. in air, no weight loss was observed. The fired fiber has a diameter of 10 microns and a
It had a length of mm.

【0022】[0022]

【発明の効果】本発明方法により、耐熱性、および機械
的強度にすぐれた炭化ケイ素繊維を簡単なプロセスで、
かつ安価に、大量生産する事が可能である。
According to the method of the present invention, a silicon carbide fiber excellent in heat resistance and mechanical strength can be obtained by a simple process.
And it is possible to mass-produce at low cost.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シリカを担持させたセルロース繊維を、
実質的に真空、もしくはアルゴンガス雰囲気中で110
0〜2300℃で焼成する事を特徴とする、炭化ケイ素
繊維の製造方法。
1. A cellulosic fiber supporting silica,
110 in a substantially vacuum or argon gas atmosphere
A method for producing a silicon carbide fiber, which comprises firing at 0 to 2300 ° C.
JP4049181A 1992-03-06 1992-03-06 Production of silicon carbide fiber Pending JPH05247727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4049181A JPH05247727A (en) 1992-03-06 1992-03-06 Production of silicon carbide fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4049181A JPH05247727A (en) 1992-03-06 1992-03-06 Production of silicon carbide fiber

Publications (1)

Publication Number Publication Date
JPH05247727A true JPH05247727A (en) 1993-09-24

Family

ID=12823876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4049181A Pending JPH05247727A (en) 1992-03-06 1992-03-06 Production of silicon carbide fiber

Country Status (1)

Country Link
JP (1) JPH05247727A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100400393B1 (en) * 2001-07-25 2003-10-01 이재춘 Electrically heatable porous Si/SiC fiber media and method of making same
US7837916B2 (en) 2004-06-02 2010-11-23 Sateri International Co. Ltd. Method for manufacturing silicate-containing fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100400393B1 (en) * 2001-07-25 2003-10-01 이재춘 Electrically heatable porous Si/SiC fiber media and method of making same
US7837916B2 (en) 2004-06-02 2010-11-23 Sateri International Co. Ltd. Method for manufacturing silicate-containing fiber

Similar Documents

Publication Publication Date Title
US4786017A (en) High temperature-resistant fibrous silicon dioxide material
US5114635A (en) Process for producing carbon material and carbon/carbon composites
CN103046166A (en) Chemical gas-phase crosslinking method of polycarbosilane fibers
JP2663819B2 (en) Manufacturing method of silicon carbide fiber
JPH05247727A (en) Production of silicon carbide fiber
JPS62141126A (en) Production of activated carbon fiber
RU2758311C9 (en) Method for producing silicon carbide felt
JPH05279007A (en) Production of silicon carbide powder
CA1083311A (en) Preparation of carbon fibres
JPH08295565A (en) Production of silicon carbide material
JPH0142886B2 (en)
RU2771029C1 (en) Method for producing composite carbon-silicon carbide fibres with a &#34;core-skin&#34; structure
JPS6228204B2 (en)
JP7105881B2 (en) Manufacturing method of high thermal insulation and high strength silica airgel blanket
JPH0718520A (en) Production of silicon carbide fiber
JPS58223698A (en) Silicon carbide fiber and its production
JPS5959976A (en) Production of silicon carbide coated carbon fiber
JP2546801B2 (en) Method for manufacturing pitch for carbon material
JPS60130676A (en) Production of pitch for carbon material
JPS6126692A (en) Preparation of pitch for carbon material
JPH0797281A (en) Production of silicon carbide material
JPS6325085B2 (en)
JP3381575B2 (en) Nonwoven fabric or woven fabric of crystalline silicon carbide fiber and method for producing the same
JP3381589B2 (en) Crystalline silicon carbide fiber and method for producing the same
JP3154360B2 (en) Inorganic fiber reinforced ceramic composite