JPH05243486A - Capacitance element and its manufacture - Google Patents

Capacitance element and its manufacture

Info

Publication number
JPH05243486A
JPH05243486A JP3117192A JP3117192A JPH05243486A JP H05243486 A JPH05243486 A JP H05243486A JP 3117192 A JP3117192 A JP 3117192A JP 3117192 A JP3117192 A JP 3117192A JP H05243486 A JPH05243486 A JP H05243486A
Authority
JP
Japan
Prior art keywords
film
electrode
capacitance
capacitive element
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3117192A
Other languages
Japanese (ja)
Other versions
JP2827661B2 (en
Inventor
Shinichi Miyazaki
紳一 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4031171A priority Critical patent/JP2827661B2/en
Priority to US07/998,038 priority patent/US5406447A/en
Publication of JPH05243486A publication Critical patent/JPH05243486A/en
Application granted granted Critical
Publication of JP2827661B2 publication Critical patent/JP2827661B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent decrease of capacitance value of a capacitance element wherein dielectric having especially large relative permeability is used as a capacitance film, in a capacitance element which has a small occupied area and is suitable for high scaled integration. CONSTITUTION:A first electrode 5 having barrier metal in the uppermost layer is formed on a semiconductor substrate 1, an interlayer film 7 as an insulating film is formed, an aperture is selectively formed, a capacitance film 8 composed of perovskite system oxide film dielectric or Ta2O5 is selectively formed, and a second electrode 9 which is on a capacitance film and has barrier metal in the lowest layer is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は占有面積が小さく、高集
積化に適した容量素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a capacitive element which occupies a small area and is suitable for high integration.

【0002】[0002]

【従来の技術】半導体集積回路において容量素子(コン
デンサ)はDCカット、ピーキング用、或はDRAM
(Dynamic RAM)におけるデータ蓄積用容量
等、重要な位置を占めてきた。従来、容量素子としては
PN接合の拡散容量やMOS(Metal Oxide
Semiconductor)、MIS(Metal
Insulator Semiconductor)が
用いられてきた。
2. Description of the Related Art In a semiconductor integrated circuit, a capacitive element (capacitor) is for DC cutting, peaking, or DRAM.
It has occupied an important position such as a data storage capacity in (Dynamic RAM). Conventionally, a PN junction diffusion capacitance or a MOS (Metal Oxide) has been used as a capacitance element.
Semiconductor, MIS (Metal)
The Insulator Semiconductor) has been used.

【0003】特に図4に示すようなP型半導体基板14
上で分離変膜2で囲まれたN型高濃度層16を一方の電
圧としたMIS容量素子のMIS容量はInsulat
or(絶縁物)15として半導体製造プロセス中で頻用
されるシリコン酸化膜(SiO2 )や窒化膜、あるいは
その多層膜が多用されてきた。
In particular, a P-type semiconductor substrate 14 as shown in FIG.
The MIS capacitance of the MIS capacitance element in which the N-type high concentration layer 16 surrounded by the separation variable film 2 is used as one voltage is
As the or (insulator) 15, a silicon oxide film (SiO 2 ), a nitride film, or a multilayer film thereof which is frequently used in the semiconductor manufacturing process has been frequently used.

【0004】これら絶縁膜15として使用される酸化膜
や窒化膜は例えば、MOSFETやバイポーラトランジ
スタといった半導体素子そのもののゲート酸化膜やベー
ス保護用としても用いられることから、ほとんど工程数
を増やすことなくしかも数10オングストローム(A)
の単位で膜厚のコントロールでき、精度のよい容量素子
として重宝されてきた。尚、図4で容量素子の他方の電
極は絶縁膜15上の広い電極17である。
Since the oxide film and the nitride film used as the insulating film 15 are also used for protecting the gate oxide film and the base of the semiconductor element itself such as MOSFET and bipolar transistor, the number of steps is hardly increased and moreover. Number 10 Angstrom (A)
The film thickness can be controlled in units of, and it has been useful as a highly accurate capacitive element. The other electrode of the capacitive element in FIG. 4 is a wide electrode 17 on the insulating film 15.

【0005】[0005]

【発明が解決しようとする課題】容量素子の容量Cは周
知のように次の(1)式で表わされる。
As is well known, the capacitance C of the capacitive element is expressed by the following equation (1).

【0006】 [0006]

【0007】従って、容量値Cを左右するパラメータと
してεr 、S,dがある。
Therefore, there are ε r , S and d as parameters that influence the capacitance value C.

【0008】しかしながら、従来の容量素子では容量膜
として比較的比誘電率の低い窒化膜(比誘電率=7)ま
たは酸化膜(比誘電率=4)或はそれらの多層膜を使用
しているため、一定以上の容量値Cをえるには面積Sを
大きくするか、膜厚dを極端に薄くするかのどちらかし
かなく前者の方法では高集積化の障害となり、後者の方
法では膜厚の制御性やリーク電流の増加等膜の信頼度に
問題を生じる可能性が高く、いずれの方法も妥当とは言
えず、今後ますます進展する高集積化、高信頼度化の課
題に充分応えることができない。
However, in the conventional capacitive element, a nitride film (relative permittivity = 7) or an oxide film (relative permittivity = 4) having a relatively low relative permittivity or a multilayer film thereof is used as the capacitor film. Therefore, in order to obtain the capacitance value C above a certain level, either the area S must be increased or the film thickness d must be extremely thin, which is an obstacle to high integration in the former method, and the film thickness in the latter method. There is a high possibility that problems will occur in the reliability of the film such as the controllability of the device and the increase of leakage current, and neither method can be said to be appropriate, and it will fully meet the challenges of higher integration and higher reliability that will continue to progress in the future. I can't.

【0009】一方、これらの課題解決のために近年、比
誘電率の大きなTa2 5 やPZT,SrTiO3 とい
った材料の薄膜が注目を浴びている。これらの薄膜は大
きな非誘電率を有するため、従来の容量素子と同一面積
でも数倍〜数十倍の容量値を実現できるが、その反面、
上部或は下部電極と容量膜との間に介在するごく薄い酸
化膜等の反応物により全体としての容量値が著しく低下
するという問題がある。これらの反応物は例えば、スパ
ッタ法等で薄膜を成長する時に容易に形成されてしまう
ことが多い。図5にその例を示す。図5では例えばTa
2 5 を容量膜に使用した時に、Ta2 5 と下部電極
との間に例えば酸化膜が介在することを示す。
On the other hand, in order to solve these problems, thin films made of materials such as Ta 2 O 5 , PZT, and SrTiO 3 having a large relative dielectric constant have been receiving attention in recent years. Since these thin films have a large non-dielectric constant, a capacitance value of several times to several tens of times can be realized even in the same area as a conventional capacitive element, but on the other hand,
There is a problem that the overall capacitance value is significantly reduced by a reaction product such as an extremely thin oxide film interposed between the upper or lower electrode and the capacitance film. These reactants are often easily formed when a thin film is grown by, for example, a sputtering method. FIG. 5 shows an example thereof. In FIG. 5, for example, Ta
It is shown that, when 2 O 5 is used for the capacitance film, for example, an oxide film is interposed between Ta 2 O 5 and the lower electrode.

【0010】この時の容量素子全体の容量値Cは次の
(2)式のようになる。
The capacitance value C of the entire capacitive element at this time is expressed by the following equation (2).

【0011】 [0011]

【0012】従って、(2)式から明らかなようにはる
かに比誘電率の小さい酸化膜が介在することにより全体
として容量値Cは大幅に低下してしまう。また、この時
の反応物は薄いことが多く、薄ければ薄いほど容量値へ
およぼす影響も小さいが、これらの生成をコントロール
することはほとんど不可能であるから反応物の出来具合
いによって全体の容量値Cが大きくバラつく原因にもな
り、安定な回路動作を不可能にするものである。
Therefore, as is clear from the equation (2), the capacitance value C is greatly reduced as a whole due to the interposition of the oxide film having a much smaller relative dielectric constant. In addition, the reaction products at this time are often thin, and the thinner the reaction products are, the smaller the influence on the capacity value is.However, it is almost impossible to control the formation of these products. This causes a large variation in the value C, which makes stable circuit operation impossible.

【0013】[0013]

【課題を解決するための手段】本発明の特徴は、半導体
基板上にあって少なくとも1つ以上の配線材料よりなり
最上層にバリアメタルを有する第1の電極(下部電極)
と、該電極上にあって容量となるべき誘電体膜と、該誘
電体膜上にあって最下層にバリアメタルを有し、少なく
とも1つ以上の配線材料からなる第2の電極と(上部電
極)を有する容量素子及びその製造方法にある。Pt,
Pd,Ta,TiNのいずれかまたはその複合膜より成
る金属層をバリアメタルとすることが好ましい。又、ペ
ロブスカイト系酸化膜もしくはTa2 5 を誘電体膜と
することが好ましい。
A feature of the present invention is that a first electrode (lower electrode) on a semiconductor substrate, which is made of at least one or more wiring materials and has a barrier metal as an uppermost layer.
A dielectric film on the electrode to serve as a capacitance, and a second electrode on the dielectric film having at least one barrier metal and made of at least one wiring material (upper part). And a method for manufacturing the same. Pt,
It is preferable to use a metal layer made of any one of Pd, Ta, and TiN or a composite film thereof as a barrier metal. Further, it is preferable to use a perovskite oxide film or Ta 2 O 5 as the dielectric film.

【0014】[0014]

【実施例】図1に本発明をMIS容量に適用した第1の
実施例を示す。まず、半導体基板1に分離用酸化膜2を
形成した後、サブコンタクト3を開口し高濃度不純物層
4を形成する。ここで高濃度層はオーミックコンタクト
をとるためのものであり本例ではN型の不純物を用いて
いるが、これは基板の導電型に応じて変えればよくP型
基板ではP型不純物を使用すれば良い。(図1
(a))。
1 shows a first embodiment in which the present invention is applied to a MIS capacitor. First, after forming the isolation oxide film 2 on the semiconductor substrate 1, the sub-contact 3 is opened and the high-concentration impurity layer 4 is formed. Here, the high-concentration layer is for making ohmic contact, and in this example, N-type impurities are used. However, this may be changed according to the conductivity type of the substrate, and P-type impurities may be used in the P-type substrate. Good. (Fig. 1
(A)).

【0015】次に下部電極となるべき第1の電極5をス
パッタ法等により積層し、フォトリソグラフィー技術を
用いて選択的にフォトレジスト6を残置する。このと
き、第1の電極5は単層でも2つ以上の層を用いても良
いが、少なくともその最上層膜は後工程で容量膜を成膜
するにあたって容量膜と電極との界面に反応物が生成す
るのを防止できるもの(バリアメタル)であれば良い。
例えば、Pt(白金)やTiN(窒化チタン)、Pd
(パラジウム)等がある(図1(b))。当然ながらこ
れらバリアメタルの複合膜でもよい。また、これらのバ
リアとなるメタルの下の金属層は通常、用いられるAl
(アルミニウム)及びその合金(Al/Si/Cu、A
l/Si等)、ポリシリコン、高融点金属及びそのシリ
サイド、Au(金)等でよい。
Next, the first electrode 5 to be the lower electrode is laminated by the sputtering method or the like, and the photoresist 6 is selectively left by using the photolithography technique. At this time, the first electrode 5 may be a single layer or two or more layers, but at least the uppermost layer film is a reaction product at the interface between the capacitance film and the electrode when the capacitance film is formed in a later step. Any material (barrier metal) that can prevent the generation of is generated.
For example, Pt (platinum), TiN (titanium nitride), Pd
(Palladium) and the like (FIG. 1 (b)). Of course, a composite film of these barrier metals may be used. In addition, the metal layer below the metal that serves as a barrier is usually formed of Al.
(Aluminum) and its alloys (Al / Si / Cu, A
1 / Si, etc.), polysilicon, refractory metal and its silicide, Au (gold), etc.

【0016】更に第1電極をRIE等により選択的にエ
ッチングした後、絶縁膜である層間膜7を例えば、プラ
ズマ窒化膜等を用いて成膜した後、例えばドライエッチ
ング等により容量膜を形成する部分を選択的に開口す
る。ここで層間膜としては前述したプラズマ窒化膜の他
に、常圧CVD酸化膜、或はプラズマ酸化膜・SLON
膜等、またそれらの膜の複合膜が挙げられる(図1
(c))。
Further, after selectively etching the first electrode by RIE or the like, an interlayer film 7 as an insulating film is formed by using, for example, a plasma nitride film or the like, and then a capacitance film is formed by, for example, dry etching or the like. The part is selectively opened. Here, as the interlayer film, in addition to the above-mentioned plasma nitride film, an atmospheric pressure CVD oxide film or a plasma oxide film / SLON is used.
Membranes, etc., and composite membranes of these membranes can be mentioned (Fig. 1
(C)).

【0017】しかるのち、容量膜を積層し選択的にエッ
チングした後、第2の電極9をスパッタ法等で成膜して
選択的にエッチングして、容量素子は完成する。ここで
第2の電極9は第1の電極について述べたことと同様
に、容量膜と接する側の層がバリアメタルとなっていれ
ば、単層でも2つ以上の層でも良い。更に容量膜8とし
てはTa2 5 、PZT、SrTiO3 、BaSrTi
O3等が挙げられる。また、当然ながらこの第2の電極
ではバリアメタルの上層の金属が、通常用いられるA
l、及びその合金、高融点金属及びシリサイド、Au等
の金属となる(図1(d))。
After that, a capacitor film is laminated and selectively etched, and then the second electrode 9 is formed by a sputtering method or the like and selectively etched to complete the capacitor element. Here, the second electrode 9 may be a single layer or two or more layers, as in the case of the first electrode, as long as the layer in contact with the capacitance film is a barrier metal. Further, as the capacitance film 8, Ta 2 O 5 , PZT, SrTiO 3 , BaSrTi are used.
O3 etc. are mentioned. In addition, of course, in this second electrode, the metal in the upper layer of the barrier metal is A
1 and its alloys, refractory metals and silicides, and metals such as Au (FIG. 1D).

【0018】これらの一連の工程で容量膜や各バリアメ
タル、および上下の電極の厚さは必要とする容量値やバ
リア性の大小で決定できる。例えば、容量膜として厚さ
150nmのSrR:O3 (εr =200)を採用した
場合、単位面積当りの容量値として約12fF/μm2
が得られることになる。これは厚さ50nmの窒化膜
(εr =7)に比べて10倍近い値となる。
In these series of steps, the thickness of the capacitive film, each barrier metal, and the upper and lower electrodes can be determined by the required capacitance value and the magnitude of the barrier property. For example, when SrR: O 3r = 200) having a thickness of 150 nm is adopted as the capacitance film, the capacitance value per unit area is about 12 fF / μm 2
Will be obtained. This is a value that is nearly ten times that of a nitride film (ε r = 7) having a thickness of 50 nm.

【0019】図2に本発明の第2実施例を示す。本例は
MIM(Metal Insulator Meta
l)容量に適用した例である。まず、半導体基板1上に
分離用酸化膜2を生長し、第1の電極を形成する。この
第1の電極層に要求される特性は第1の実施例で示した
ことと同様である(図2(a))。次に写真食刻法を用
いて層間膜7を選択的に形成する(図2(b))。更に
誘電体膜8を形成した後、第2の電極9および第1の電
極引出し用配線10を形成して容量素子は完成する(図
2(c))。
FIG. 2 shows a second embodiment of the present invention. In this example, MIM (Metal Insulator Meta)
1) It is an example applied to a capacity. First, the isolation oxide film 2 is grown on the semiconductor substrate 1 to form the first electrode. The characteristics required for this first electrode layer are the same as those shown in the first embodiment (FIG. 2A). Next, the interlayer film 7 is selectively formed by using the photolithography method (FIG. 2B). Further, after forming the dielectric film 8, the second electrode 9 and the first electrode lead-out wiring 10 are formed to complete the capacitor element (FIG. 2C).

【0020】図3は本発明の多層配線プロセスに応用し
た第3の実施例であり、第3の電極12、第2の層間膜
11上にスルーホールを介して本発明の容量素子が形成
された場合を示している。本例では容量素子の第1電極
5がスルーホール13と電気的に接触している場合であ
るが、第2電極9が第3の電極12とスルーホール13
で接触している場合も全く同様にできることは言うまで
もない。
FIG. 3 shows a third embodiment applied to the multi-layer wiring process of the present invention, in which the capacitive element of the present invention is formed on the third electrode 12 and the second interlayer film 11 via through holes. Shows the case. In this example, the first electrode 5 of the capacitive element is in electrical contact with the through hole 13, but the second electrode 9 is the third electrode 12 and the through hole 13.
It goes without saying that the same can be done when contact is made with.

【0021】[0021]

【発明の効果】以上、述べたように本発明では比誘電率
が大きい誘電体膜を容量膜に使用する上で、障害となる
誘電体と上下電極層との酸化膜等の反応物が生成しない
ため、従来の容量素子に比してはるかに小さい占有面積
で同等以上の容量値を実現でき、高集積化に大きく貢献
できると共に常に安定した容量値を得ることができる。
As described above, in the present invention, when a dielectric film having a large relative permittivity is used as a capacitance film, a reaction product such as an oxide film between the dielectric and the upper and lower electrode layers, which becomes an obstacle, is generated. Therefore, a capacitance value equal to or larger than that of the conventional capacitance element can be realized with a much smaller occupied area, a large contribution can be made to high integration, and a stable capacitance value can always be obtained.

【0022】また、本発明ではMIS容量は言うまでも
なく、MIM容量も容易に実現できるため従来の容量素
子に比べ、はるかに寄生的な容量を低減でき高周波、高
速の回路動作が可能となる。
In the present invention, not only the MIS capacitance but also the MIM capacitance can be easily realized, so that the parasitic capacitance can be reduced and the circuit operation at high frequency and high speed can be performed as compared with the conventional capacitive element.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例の説明図。FIG. 1 is an explanatory diagram of a first embodiment.

【図2】第2の実施例の説明図。FIG. 2 is an explanatory diagram of a second embodiment.

【図3】第3の実施例の説明図。FIG. 3 is an explanatory diagram of a third embodiment.

【図4】従来技術を示す説明図。FIG. 4 is an explanatory diagram showing a conventional technique.

【図5】従来技術を示す説明図。FIG. 5 is an explanatory diagram showing a conventional technique.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 分離用酸化膜 3 サブコンタクト 4 高濃度不純物層 5 第1の電極 6 フォトレジスト 7 層間膜 8 容量膜 9 第2の電極 10 第1の電極引出し用配線 11 第2の層間膜 12 第3の電極 13 スルーホール 14 P型半導体基板 15 絶縁膜 16 N型高濃度層 17 電極 18 反応物 1 Semiconductor Substrate 2 Separation Oxide Film 3 Sub-Contact 4 High Concentration Impurity Layer 5 First Electrode 6 Photoresist 7 Interlayer Film 8 Capacitance Film 9 Second Electrode 10 First Electrode Lead Wire 11 Second Interlayer Film 12 Third electrode 13 Through hole 14 P-type semiconductor substrate 15 Insulating film 16 N-type high concentration layer 17 Electrode 18 Reactant

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上にあって少なくとも1つ以
上の配線材料よりなり最上層にバリアメタルを有する第
1の電極と、該電極上にあって容量となるべき誘電体膜
と、該誘電体膜上にあって最下層にバリアメタルを有
し、少なくとも1つ以上の配線材料からなる第2の電極
とを有することを特徴とする容量素子。
1. A first electrode on a semiconductor substrate made of at least one wiring material and having a barrier metal as an uppermost layer, a dielectric film on the electrode to be a capacitor, and the dielectric film. A capacitive element comprising a barrier metal as a lowermost layer on a body film and a second electrode made of at least one wiring material.
【請求項2】 前記請求項1のバリアメタルとして、P
t,Pd,Ta,TiNのいずれかまたはその複合膜よ
り成る金属層を有することを特徴とする容量素子。
2. The barrier metal according to claim 1, which is P
A capacitive element having a metal layer made of any one of t, Pd, Ta, and TiN or a composite film thereof.
【請求項3】 前記請求項1の誘電体膜として、ペロブ
スカイト系酸化膜誘電体膜を有することを特徴とする容
量素子。
3. A capacitive element comprising a dielectric film of a perovskite oxide film as the dielectric film of claim 1.
【請求項4】 前記請求項1の誘電体膜として、Ta2
5 より成る膜を有することを特徴とする容量素子。
4. The dielectric film according to claim 1, which is Ta 2
A capacitive element having a film made of O 5 .
【請求項5】 半導体基板上に少なくとも1つ以上の配
線材料より成り最上層にバリアメタルを有する第1の電
極を形成する工程と、絶縁膜の成長し選択的に形成する
工程と、前記誘電体層上にあって最下層にバリアメタル
を有し、少なくとも1つ以上の配線材料から成る第2の
電極を形成することを特徴とする容量素子の製造方法。
5. A step of forming a first electrode made of at least one wiring material and having a barrier metal on the uppermost layer on a semiconductor substrate, a step of growing and selectively forming an insulating film, and the dielectric layer. A method of manufacturing a capacitive element, comprising: forming a second electrode having a barrier metal on the lowermost layer on the body layer and made of at least one or more wiring materials.
【請求項6】 前記請求項5のバリアメタルとして、P
t,Pd,Ta,TiNのいずれかまたはその複合膜よ
り成る金属層を有することを特徴とする容量素子の製造
方法。
6. The barrier metal according to claim 5, which is P
A method of manufacturing a capacitive element, comprising a metal layer made of any one of t, Pd, Ta, and TiN or a composite film thereof.
【請求項7】 前記請求項5の誘電体膜として、ペロブ
スカイト系酸化膜誘電体膜を有することを特徴とする容
量素子の製造方法。
7. A method of manufacturing a capacitive element, comprising a perovskite oxide dielectric film as the dielectric film according to claim 5.
【請求項8】 前記請求項5の誘電体膜として、Ta2
5 より成る膜を有することを特徴とする容量素子の製
造方法。
8. The dielectric film according to claim 5 is Ta 2
A method of manufacturing a capacitive element comprising a film made of O 5 .
JP4031171A 1992-01-06 1992-02-19 Capacitive element and method of manufacturing the same Expired - Fee Related JP2827661B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4031171A JP2827661B2 (en) 1992-02-19 1992-02-19 Capacitive element and method of manufacturing the same
US07/998,038 US5406447A (en) 1992-01-06 1992-12-29 Capacitor used in an integrated circuit and comprising opposing electrodes having barrier metal films in contact with a dielectric film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4031171A JP2827661B2 (en) 1992-02-19 1992-02-19 Capacitive element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05243486A true JPH05243486A (en) 1993-09-21
JP2827661B2 JP2827661B2 (en) 1998-11-25

Family

ID=12323996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4031171A Expired - Fee Related JP2827661B2 (en) 1992-01-06 1992-02-19 Capacitive element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2827661B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0826237A1 (en) * 1995-05-19 1998-03-04 Micron Technology, Inc. METHOD OF FORMING A Ta2 05 DIELECTRIC LAYER
US6100574A (en) * 1997-04-29 2000-08-08 Telefonaktiebolaget Lm Ericsson Capacitors in integrated circuits
KR100457226B1 (en) * 2001-12-20 2004-11-16 동부전자 주식회사 Method for forming capacitor of semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194645A (en) * 1987-10-06 1989-04-13 Toshiba Corp Manufacture of semiconductor device
JPH03157965A (en) * 1989-11-15 1991-07-05 Nec Corp Semiconductor device
JPH03212970A (en) * 1990-01-18 1991-09-18 Seiko Epson Corp Ferroelectric device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194645A (en) * 1987-10-06 1989-04-13 Toshiba Corp Manufacture of semiconductor device
JPH03157965A (en) * 1989-11-15 1991-07-05 Nec Corp Semiconductor device
JPH03212970A (en) * 1990-01-18 1991-09-18 Seiko Epson Corp Ferroelectric device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0826237A1 (en) * 1995-05-19 1998-03-04 Micron Technology, Inc. METHOD OF FORMING A Ta2 05 DIELECTRIC LAYER
EP0826237A4 (en) * 1995-05-19 1998-09-23 Micron Technology Inc METHOD OF FORMING A Ta2 05 DIELECTRIC LAYER
US6017789A (en) * 1995-05-19 2000-01-25 Micron Technology, Inc. Method of forming a Ta2 O5 dielectric layer with amorphous diffusion barrier layer and method of forming a capacitor having a b. Ta.su2 O5 dielectric layer with amorphous diffusion barrier layer
US6198124B1 (en) 1995-05-19 2001-03-06 Micron Technology, Inc. Method of forming a Ta2O5 dielectric layer, method of forming a capacitor having a Ta2O5 dielectric layer, and capacitor construction
US6100574A (en) * 1997-04-29 2000-08-08 Telefonaktiebolaget Lm Ericsson Capacitors in integrated circuits
KR100457226B1 (en) * 2001-12-20 2004-11-16 동부전자 주식회사 Method for forming capacitor of semiconductor device

Also Published As

Publication number Publication date
JP2827661B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
KR100284721B1 (en) Semiconductor device
US5406447A (en) Capacitor used in an integrated circuit and comprising opposing electrodes having barrier metal films in contact with a dielectric film
US6525427B2 (en) BEOL decoupling capacitor
US6146939A (en) Metal-polycrystalline silicon-N-well multiple layered capacitor
US6184550B1 (en) Ternary nitride-carbide barrier layers
US7687867B2 (en) Inexpensive method of fabricating a higher performance capacitance density MIMcap integrable into a copper interconnect scheme
EP0697718A1 (en) Method of making electrical connections to materials with high dielectric constant
JP3822569B2 (en) Semiconductor device and manufacturing method thereof
US20070284662A1 (en) Microelectronic structure including high current density resistor
US5742472A (en) Stacked capacitors for integrated circuit devices and related methods
US20040061157A1 (en) Semiconductor device
JPH06204431A (en) Semiconductor device
JP2982855B2 (en) Semiconductor device and manufacturing method thereof
JP2002043517A (en) Semiconductor device and its manufacturing method
US7157761B2 (en) Capacitor with noble metal pattern
JP2002076293A (en) Method for manufacturing capacitor and semiconductor device
WO2008114609A1 (en) Semiconductor device and method for manufacturing the same
JPH05243486A (en) Capacitance element and its manufacture
US20230154843A1 (en) Semiconductor Device with Integrated Metal-Insulator-Metal Capacitors
JP2000323685A (en) Manufacture of semiconductor device and memory cell
US6501113B2 (en) Semiconductor device with capacitor using high dielectric constant film or ferroelectric film
JP2000332203A (en) Semiconductor device and manufacture thereof
JPH05211286A (en) Method for manufacturing capacitor element
JPH0547587A (en) Thin film capacitor and manufacture thereof
JP2002164506A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980818

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees