JPH05243378A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH05243378A
JPH05243378A JP7849592A JP7849592A JPH05243378A JP H05243378 A JPH05243378 A JP H05243378A JP 7849592 A JP7849592 A JP 7849592A JP 7849592 A JP7849592 A JP 7849592A JP H05243378 A JPH05243378 A JP H05243378A
Authority
JP
Japan
Prior art keywords
cells
standard
cell
integrated circuit
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7849592A
Other languages
Japanese (ja)
Inventor
Akira Miyazaki
陽 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7849592A priority Critical patent/JPH05243378A/en
Publication of JPH05243378A publication Critical patent/JPH05243378A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the development cost and the development period of the title integrated circuit in a redesigning operation by a method wherein fundamental cells according to a gate array system are inserted into a cell row according to a standard system, only a process after a wiring process is changed and a circuit correction operation is executed. CONSTITUTION:Fundamental cells 7 according to a gate array system are arranged in unarranged regions 9 in a cell row 8 in which standard cells 6 have been arranged in the transverse direction. The standard cells 6 and the fundamental cells 7 are arranged in such a way that both of them are provided with power-supply interconnections on the side of a high-potential side and with those on the side of a low potential in identical positions. When a feedthrough cell through which an interconnection is passed is installed at the inside of the standard cell row 8, the fundamental cells 7 are arranged also in its region. It is possible to comply with the change and the correction of the title integrated circuit after its trial production when a wiring operation is executed to the fundamental cells 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体集積回路に関
し、特にスタンダードセル方式により設計された半導体
集積回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit, and more particularly to a semiconductor integrated circuit designed by the standard cell system.

【0002】[0002]

【従来の技術】セミカスタム半導体集積回路の設計手段
としてゲートアレイ方式とスタンダードセル方式とがあ
る。前者は、拡散工程が完了して基本セルが行列状に配
置されているウェハに配線工程を施して半導体集積回路
を作成する手法である。この方式では、設計および生産
TATが短くできるという長所があるものの、集積度が
上がらずまた性能的にも劣るという欠点がある。
2. Description of the Related Art There are a gate array system and a standard cell system as means for designing a semi-custom semiconductor integrated circuit. The former is a method of producing a semiconductor integrated circuit by performing a wiring process on a wafer on which basic cells are arranged in a matrix after the diffusion process is completed. Although this method has an advantage that the design and production TAT can be shortened, it has a drawback that the integration degree does not increase and the performance is inferior.

【0003】一方、スタンダードセル方式は、同じ高さ
に設計された登録済みの機能ブロックを配置し、相互に
配線する手法であって、ゲートアレイ方式と異なり製造
工程には拡散処理も含まれるため、特に製造面でのTA
Tは長期化する。しかし、各機能ブロックが最適化され
て独自に設計されているため、高密度化が可能でありま
た良好な特性が期待できる。
On the other hand, the standard cell method is a method of arranging registered functional blocks designed at the same height and wiring them to each other. Unlike the gate array method, the manufacturing process also includes diffusion processing. , Especially in terms of manufacturing TA
T becomes longer. However, since each functional block is optimized and uniquely designed, high density is possible and good characteristics can be expected.

【0004】[0004]

【発明が解決しようとする課題】従来のスタンダードセ
ル方式では、高集積化された高性能の集積回路を実現で
きるものの、試作後に回路修正を行う場合、最初の拡散
工程から再試作しなければならなくなるので、再試作時
のTATの遅れが大きくまた開発費用が著しく増加する
という問題点があった。よって、本発明の目的とすると
ころは、スタンダードセル方式の長所を損うことなく、
回路修正を大きな工数を要することなく容易に行いうる
ようにすることである。
In the conventional standard cell method, a highly integrated and high performance integrated circuit can be realized, but when the circuit is modified after the trial manufacture, the trial manufacture must be repeated from the first diffusion step. Since it disappears, there is a problem that the delay of TAT at the time of re-trial production is large and the development cost is remarkably increased. Therefore, the object of the present invention is to maintain the advantages of the standard cell method,
It is to make it possible to easily modify a circuit without requiring a large number of steps.

【0005】[0005]

【課題を解決するための手段】本発明の半導体集積回路
は、それぞれ特定の論理機能を有するスタンダードセル
が複数個並べられたスタンダードセル列が複数本配置さ
れているものであり、そして1または複数のスタンダー
ドセル列においては、スタンダードセル間および/また
はスタンダードセル列の端部に、配線を施すことにより
特定の論理機能を実現できる基本セルが配置されている
ことを特徴としている。
A semiconductor integrated circuit according to the present invention has a plurality of standard cell rows in which a plurality of standard cells each having a specific logic function are arranged, and one or more standard cell rows are arranged. In the standard cell column of, the basic cell is arranged between the standard cells and / or at the end of the standard cell column, and a basic cell capable of realizing a specific logic function is arranged by wiring.

【0006】[0006]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。図1の(a)および(b)は、それぞれ本
発明の実施例に用いられるスタンダードセル(機能ブロ
ック)と基本セルのレイアウト図である。図1の(a)
に示すように、スタンダードセル6には第1Al領域
1、第2Al領域2、p型拡散領域3、n型拡散領域4
およびポリシリコン電極5が設けられ、ここに、2入力
CMOSNORゲートが構成されている。
Embodiments of the present invention will now be described with reference to the drawings. 1A and 1B are layout diagrams of a standard cell (functional block) and a basic cell used in an embodiment of the present invention, respectively. Figure 1 (a)
As shown in FIG. 1, the standard cell 6 includes a first Al region 1, a second Al region 2, a p-type diffusion region 3, and an n-type diffusion region 4.
Further, a polysilicon electrode 5 is provided, and a 2-input CMOS NOR gate is formed here.

【0007】セルの上辺および下辺の第1Al領域1の
配線は最高電位および最低電位を与える配線であって、
この配線は他のスタンダードセルの同種の配線と同じ位
置で同じ幅に設定されている。よって、スタンダードセ
ル同士が横方向に並べられたときには、最高および最低
電位配線が接続されることになる。
The wirings in the first Al region 1 on the upper and lower sides of the cell are wirings which give the highest potential and the lowest potential,
This wiring is set to the same position and the same width as the wiring of the same type of other standard cells. Therefore, when standard cells are arranged side by side, the highest and lowest potential wirings are connected.

【0008】図1の(b)には、第1Al領域1、p型
拡散層3、n型拡散層4およびポリシリコン電極5によ
って構成される、CMOS型ゲートアレイの基本セル7
が示されている。この基本セル7の最高電位および最低
電位を与える第1Al領域1もスタンダードセルのそれ
と同じ位置と同じ幅に設定されている。
FIG. 1B shows a basic cell 7 of a CMOS type gate array which is composed of a first Al region 1, a p-type diffusion layer 3, an n-type diffusion layer 4 and a polysilicon electrode 5.
It is shown. The first Al region 1 that gives the highest potential and the lowest potential of the basic cell 7 is also set to the same position and width as that of the standard cell.

【0009】本発明ではこれら2種類のセルを用いて設
計を行う。まず、最初の設計時には、全てスタンダード
セルタイプのセル6を用いて、通常のスタンダードセル
方式のセル配置配線を行う。しかしながら設計時に生成
するスタンダードセル列8は、全てが同一の幅にはなら
ないので、図2に示したように、いくつかのセル列8の
両端に未配置領域9が生ずる。本実施例では、この未配
置領域9に前述した基本セル7を配置する。
In the present invention, design is performed using these two types of cells. First, at the time of the initial design, standard standard cell type cell 6 is used to perform normal standard cell type cell placement and routing. However, all the standard cell rows 8 generated at the time of design do not have the same width, and therefore, unarranged regions 9 are formed at both ends of some cell rows 8 as shown in FIG. In this embodiment, the above-mentioned basic cell 7 is arranged in this non-arranged region 9.

【0010】このようにレイアウトすることにより、た
とえ試作後に回路の変更や修正のため機能ブロックの追
加が必要となった時でも、セル列8の両端に配置された
基本セル7を使用して配線工程以降の修正のみで対応で
きる。
By arranging in this way, even when it is necessary to add a functional block for changing or modifying a circuit after trial manufacture, wiring is performed using the basic cells 7 arranged at both ends of the cell row 8. It can be handled only by modifying after the process.

【0011】図3は、本発明の第2の実施例を示すレイ
アウト図である。同図において、10は配線領域、11
はパッド、12はI/Oバッファである。通常、スタン
ダードセル方式の配置・配線プログラムを用いる場合、
フィードスルーセルと呼ばれるダミーデータを必要とす
る。すなわち、第2Al領域の配線を通過させるための
セルでありこのセルにはスタンダードセルの間隔を広げ
た際その両端のセル同士の最高・最低電位配線を接続す
るための電源配線が配置されている。
FIG. 3 is a layout diagram showing a second embodiment of the present invention. In the figure, 10 is a wiring area, and 11
Is a pad, and 12 is an I / O buffer. Normally, when using the standard cell type placement / wiring program,
It requires dummy data called feedthrough cells. That is, it is a cell for passing a wire in the second Al region, and a power supply wire for connecting the highest and lowest potential wires between the cells at both ends of the standard cell when the interval between the standard cells is widened is arranged in this cell. ..

【0012】本発明の第2の実施例においては、図3に
示すように、スタンダードセル列の両端に基本セル7を
配置する外、この基本セル7をスタンダードセル列8の
内部に配置されるフィードスルーセルとして用いる。こ
のように構成することにより、第1の実施例よりも、さ
らに多くの基本セル7を配置しておくことが可能とな
り、また設計の自由度が増すことにより機能ブロック追
加による回路の修正が一層容易になる。
In the second embodiment of the present invention, as shown in FIG. 3, the basic cells 7 are arranged at both ends of the standard cell row, and the basic cells 7 are arranged inside the standard cell row 8. Used as a feedthrough cell. With such a configuration, it is possible to arrange a larger number of basic cells 7 than in the first embodiment, and the degree of freedom in design is increased, so that the modification of the circuit by the addition of the functional block is further facilitated. It will be easier.

【0013】[0013]

【発明の効果】以上説明したように、本発明は、素子面
積の小さいスタンダードセル方式の論理セルを配置した
セル列の端部にある未配置領域と配線を通過させるため
の前記セル列内のフィードスルーセルの領域にゲートア
レイ方式の基本セルを配置したものであるので、本発明
によれば、高密度で高性能の集積回路を得ることができ
るとともに、試作後の回路修正が配線の変更のみで可能
となり、再設計時の開発費用削減とTATの短縮を図る
ことができる。
As described above, according to the present invention, the unarranged region at the end of the cell row in which the standard cell type logic cell having a small element area is arranged and the inside of the cell row for passing the wiring are provided. Since the gate array type basic cell is arranged in the area of the feedthrough cell, according to the present invention, a high-density and high-performance integrated circuit can be obtained, and the circuit modification after trial manufacture changes the wiring. This is possible only by reducing the development cost and TAT at the time of redesign.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例で用いられるスタンダードセ
ルと基本セルのレイアウト図。
FIG. 1 is a layout diagram of standard cells and basic cells used in an embodiment of the present invention.

【図2】 本発明の第1の実施例を示すレイアウト図。FIG. 2 is a layout diagram showing a first embodiment of the present invention.

【図3】 本発明の第2の実施例を示すレイアウト図。FIG. 3 is a layout diagram showing a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…第1Al領域、 2…第2Al領域、 3…p
型拡散層、 4…n型拡散層、 5…ポリシリコン
電極、 6…スタンダードセル、 7…基本セル、
8…スタンダードセル列、 9…未配置領域、
10…配線領域、 11…パッド、 12…I/
Oバッファ。
1 ... 1st Al area | region, 2 ... 2nd Al area | region, 3 ... p
Type diffusion layer, 4 ... N type diffusion layer, 5 ... Polysilicon electrode, 6 ... Standard cell, 7 ... Basic cell,
8 ... Standard cell row, 9 ... Unplaced area,
10 ... Wiring region, 11 ... Pad, 12 ... I /
O buffer.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 9169−4M H01L 21/82 M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location 9169-4M H01L 21/82 M

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 それぞれ特定の論理機能を有するスタン
ダードセルが複数個並べられたスタンダードセル列が、
配線領域を介して複数本配置されている半導体集積回路
において、 1または複数のスタンダードセル列においては、スタン
ダードセル間および/またはスタンダードセル列の端部
に、配線を施すことにより特定の論理機能を実現できる
基本セルが配置されていることを特徴とする半導体集積
回路。
1. A standard cell row in which a plurality of standard cells each having a specific logic function are arranged,
In a semiconductor integrated circuit in which a plurality of semiconductor integrated circuits are arranged via a wiring region, in one or a plurality of standard cell rows, wiring is provided between standard cells and / or at the end of the standard cell row to provide a specific logical function. A semiconductor integrated circuit in which achievable basic cells are arranged.
JP7849592A 1992-02-28 1992-02-28 Semiconductor integrated circuit Pending JPH05243378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7849592A JPH05243378A (en) 1992-02-28 1992-02-28 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7849592A JPH05243378A (en) 1992-02-28 1992-02-28 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH05243378A true JPH05243378A (en) 1993-09-21

Family

ID=13663555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7849592A Pending JPH05243378A (en) 1992-02-28 1992-02-28 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH05243378A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6516457B1 (en) 1999-07-07 2003-02-04 Nec Corporation Method and system of data processing for designing a semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6516457B1 (en) 1999-07-07 2003-02-04 Nec Corporation Method and system of data processing for designing a semiconductor device

Similar Documents

Publication Publication Date Title
US6765245B2 (en) Gate array core cell for VLSI ASIC devices
KR100433025B1 (en) Semiconductor device, semiconductor circuit device, flip-flop circuit, exclusive-or circuit, multiplexer, and adder
JP3420694B2 (en) Standard cell integrated circuit
KR900000202B1 (en) Manufacturing of semiconductor integrated circuit device
EP0133958A2 (en) A masterslice semiconductor device
US20020034110A1 (en) CMOS basic cell and method for fabricating semiconductor integrated circuit using the same
US7081778B2 (en) Semiconductor integrated circuit related to a circuit operating on the basis of a clock signal
JPH0480538B2 (en)
US20060181307A1 (en) Semiconductor integrated circuit and method for laying-out and wiring the semiconductor integrated circuit
JP2001044397A (en) Semiconductor integrated circuit
EP0021661B1 (en) Semiconductor master-slice device
US4949157A (en) Large scale integrated circuit
JPH05243378A (en) Semiconductor integrated circuit
JP3289999B2 (en) Semiconductor integrated circuit
JP2839722B2 (en) Integrated circuit device
US5168342A (en) Semiconductor integrated circuit device and manufacturing method of the same
EP1009031B1 (en) Semiconductor integrated circuit device and method of producing the same
JP2671883B2 (en) Semiconductor integrated circuit device
JP3019764B2 (en) Semiconductor integrated circuit device and multi-stage connection structure of its circuit cells
JPS59132144A (en) Manufacture of semiconductor integrated circuit device
JP2807129B2 (en) Semiconductor integrated circuit
US7968917B2 (en) Semiconductor memory device
JPH01152642A (en) Semiconductor integrated circuit
JP3512893B2 (en) Semiconductor integrated circuit device
JPH07169838A (en) Semiconductor integrated circuit device