JPH05243098A - Manufacture of solid-state electrolytic capacitor - Google Patents

Manufacture of solid-state electrolytic capacitor

Info

Publication number
JPH05243098A
JPH05243098A JP7842192A JP7842192A JPH05243098A JP H05243098 A JPH05243098 A JP H05243098A JP 7842192 A JP7842192 A JP 7842192A JP 7842192 A JP7842192 A JP 7842192A JP H05243098 A JPH05243098 A JP H05243098A
Authority
JP
Japan
Prior art keywords
solution
acid
pyrrole
electrolyte
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7842192A
Other languages
Japanese (ja)
Inventor
Akihiro Shimada
晶弘 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP7842192A priority Critical patent/JPH05243098A/en
Publication of JPH05243098A publication Critical patent/JPH05243098A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To elevate the formation property of a solution, enhance the recovery performance of surface oxide and reduce leakage current by admixing organic acid and inorganic acid aimed to promote cathode oxidation or electrolyte comprising their salt to a pyrrole solution or an oxidizing agent-dissolved solvent solution or their mixed solution. CONSTITUTION:The main body of a capacitor element 1 is immersed in a solution 4 comprising a pyrrole solution to which electrolyte is added for the formation, an oxidizing agent solution or their mixed solution contained in a vessel 5. An anode lead wire 2 is set to positive while a cathode lead wire 3 is set to negative. They are connected to a direct current power source 6 where saturation is carried out under the supply of power. This construction makes it possible to protect a surface oxide layer from damage and prevent an increase in leakage current and hence attain low leakage current. Since it is possible to saturate the solution and recover the surface oxide simultaneously, the aging treatment after the completion of products can be simplified while the efficiency of manufacturing process of a solid-state electrolytic capacitor can be enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、固体電解コンデンサ
の製造方法に関するもので、特に有機導電体であるポリ
ピロールを固体電解質として用いた電解コンデンサの製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly to a method for manufacturing an electrolytic capacitor using polypyrrole, which is an organic conductor, as a solid electrolyte.

【0002】[0002]

【従来の技術】固体電解コンデンサは、アルミニウム、
タンタルなどの誘電体皮膜が形成され得る、いわゆる弁
金属を陽極に用い、誘電体酸化皮膜層の上面に二酸化マ
ンガン、二酸化鉛などの無機酸化物あるいは、テトラシ
アノキノジメタン錯塩、ポリピロール、ポリアセチレ
ン、ポリアニリン、ポリフランなど各種の有機物導電体
を電解質として形成してなる。
2. Description of the Related Art Solid electrolytic capacitors are made of aluminum,
A dielectric film such as tantalum may be formed, so-called valve metal is used for the anode, and manganese dioxide, an inorganic oxide such as lead dioxide on the upper surface of the dielectric oxide film layer, or a tetracyanoquinodimethane complex salt, polypyrrole, polyacetylene, It is formed by using various organic conductors such as polyaniline and polyfuran as electrolytes.

【0003】固体電解コンデンサの陽極体は、単位あた
りの静電容量を高めるために表面積を拡大を図ってい
る。そこで陽極には多孔質の焼結体や、箔状の電極表面
をエッング加工したものが用いられている。
The anode body of a solid electrolytic capacitor has an increased surface area in order to increase the capacitance per unit. Therefore, a porous sintered body or a foil-shaped electrode whose surface is subjected to an etching process is used as the anode.

【0004】このため固体状の電解質の形成は困難で、
通常は溶媒に電解質を溶解させた溶液や加熱融解した液
状物の状態で電解質材料を陽極に含浸し、熱変成や重合
反応によって目的の固体電解質に変成させて用いる。
Therefore, it is difficult to form a solid electrolyte,
Usually, the electrolyte material is used by impregnating the anode with an electrolyte material in the state of a solution in which an electrolyte is dissolved in a solvent or a liquid that is heated and melted, and is transformed into a target solid electrolyte by thermal transformation or polymerization reaction.

【0005】従来から固体電解質には、二酸化マンガン
を用いたものが知られている。二酸化マンガンは、硝酸
マンガンの水溶液に陽極を含浸し、これを加熱焼成して
二酸化マンガンに変成している。
Conventionally, solid electrolytes using manganese dioxide have been known. For manganese dioxide, an aqueous solution of manganese nitrate is impregnated with an anode, which is heated and fired to be converted into manganese dioxide.

【0006】固体電解質は、誘電体酸化皮膜層に直接接
して、真の陰極としての機能する。このため固体電解質
層の電導度は、固体電解コンデンサの損失や高周波イン
ピーダンスに直接影響を及ぼす。近年固体電解コンデン
サは周波数の高い用途が急増しており、これに伴い固体
電解質層の電導度の向上が要求されている。
The solid electrolyte directly contacts the dielectric oxide film layer and functions as a true cathode. Therefore, the conductivity of the solid electrolyte layer directly affects the loss and high frequency impedance of the solid electrolytic capacitor. In recent years, the use of solid electrolytic capacitors with a high frequency is rapidly increasing, and along with this, it is required to improve the electric conductivity of the solid electrolyte layer.

【0007】二酸化マンガンは、電導度が10-2〜10
-1s/cm程度であり、最近の高周波領域での使用に十
分でなく、より高い電導度を有する固体電解質が求めら
れている。
Manganese dioxide has an electric conductivity of 10 -2 to 10
It is about -1 s / cm, which is not sufficient for use in the recent high frequency region, and there is a demand for a solid electrolyte having higher conductivity.

【0008】このような中で最近、導電性の有機物が固
体電解質として注目されている。導電性有機物には各種
のものがあるが、中でも複素五員環化合物であるピロー
ルの重合体に、適当なドーパントで電導度を付与したも
のは、10〜102 s/cm程度の高い電導度が得られ
ることから、ポリピロールを用いた固体電解コンデンサ
の商品化が注目されている。
Under these circumstances, a conductive organic substance has recently attracted attention as a solid electrolyte. There are various kinds of conductive organic substances, and among them, a polymer of pyrrole, which is a five-membered heterocyclic compound, to which conductivity is imparted with an appropriate dopant has a high conductivity of about 10 to 10 2 s / cm. Therefore, commercialization of solid electrolytic capacitors using polypyrrole has attracted attention.

【0009】[0009]

【発明が解決しようとする課題】ポリピロールを固体電
解質に用いた電解コンデンサは、高い電導度から優れた
電気特性が得られる。しかし重合体の機械的強度が弱い
ことや、誘電体酸化皮膜の欠損部の修復機能が十分でな
いことから、漏れ電流が高く、しかもこの漏れ電流を皮
膜修復によって低く抑えるのが困難であった。
An electrolytic capacitor using polypyrrole as a solid electrolyte has excellent electrical characteristics due to its high conductivity. However, since the mechanical strength of the polymer is weak and the function of repairing the defective portion of the dielectric oxide film is not sufficient, the leakage current is high and it is difficult to suppress this leakage current to a low level by film repair.

【0010】従来からも、漏れ電流低減のためにポリピ
ロール重合膜を形成後、電極を化成液中に浸漬して陽極
酸化反応(化成処理)を行わせ再度重合を繰り返すなど
の方法が試みられている。しかし、ポリピロールの重合
膜が形成後に化成処理を行ったのでは、陽極酸化反応が
ポリピロールの重合膜に遮られて十分な皮膜修復が行わ
れない欠点があり、必要以上に重合過程と化成処理を繰
り返さねばならなかった。
Conventionally, there has been tried a method of forming a polypyrrole polymer film in order to reduce the leakage current, then immersing the electrode in a chemical conversion solution to perform an anodizing reaction (chemical conversion treatment), and repeating the polymerization again. There is. However, if the chemical conversion treatment is performed after the polymer film of polypyrrole is formed, there is a drawback that the anodizing reaction is blocked by the polymer film of polypyrrole and the film cannot be sufficiently repaired. I had to repeat.

【0011】そこで本発明者は、ピロール溶液、酸化剤
溶液あるいはこれらの混合溶液に陽極を浸漬して重合反
応を行う過程で陽極に電圧を印加して、同時に化成反応
を進行させ、酸化皮膜の修復を行うことで漏れ電流の低
減を検討してきた。しかし、化成に適合した電解質を含
まない溶液での化成性では皮膜形成に限界があり、緻密
な修復酸化皮膜を形成させるためには、溶液の化成性す
なわち陽極酸化の能力を高める必要がある。
Therefore, the inventor of the present invention applies a voltage to the anode in the course of carrying out the polymerization reaction by immersing the anode in a pyrrole solution, an oxidant solution or a mixed solution thereof, and at the same time, the chemical conversion reaction is allowed to proceed to form an oxide film. We have been considering reducing leakage current by repairing. However, there is a limit to the film formation by the chemical conversion in a solution that does not contain an electrolyte that is suitable for chemical conversion, and in order to form a dense repair oxide film, it is necessary to enhance the chemical conversion of the solution, that is, the anodic oxidation ability.

【0012】そこでこの発明は、溶液の化成性を高めて
酸化皮膜の修復性を向上させて漏れ電流をより低減さ
せ、電気特性に優れた固体電解コンデンサを得ることを
目的としている。
[0012] Therefore, an object of the present invention is to obtain a solid electrolytic capacitor having excellent electrical characteristics by enhancing the chemical conversion property of the solution to improve the repairability of the oxide film to further reduce the leakage current.

【0013】[0013]

【課題を解決するための手段】この発明は、表面に誘電
体酸化皮膜層が形成された陽極をセパレータを介在させ
て巻回あるいは積層して形成したコンデンサ素子を、ピ
ロール溶液および酸化剤溶液各々に、またはピロール溶
液と酸化剤溶液との混合溶液に含浸し、同時に陽極と溶
液間に電圧を印加することによって、固体電解質の重合
反応によるポリピロールの固体電解質層の形成ととも
に、誘電体酸化皮膜層の劣化や損傷部分を修復する固体
電解コンデンサの製造方法において、ピロール溶液、酸
化剤溶液あるいはこれらの混合溶液に陽極酸化促進のた
めの有機酸、無機酸またはこれらの塩を電解質として添
加したことを特徴としている。
SUMMARY OF THE INVENTION According to the present invention, a capacitor element formed by winding or laminating an anode having a dielectric oxide film layer formed on its surface with a separator interposed, is formed by a pyrrole solution and an oxidant solution, respectively. Or by impregnating a mixed solution of a pyrrole solution and an oxidant solution, and simultaneously applying a voltage between the anode and the solution, a solid oxide layer of polypyrrole is formed by a polymerization reaction of the solid electrolyte, and a dielectric oxide film layer is formed. In the method for producing a solid electrolytic capacitor for repairing the deteriorated or damaged part of the organic acid, an inorganic acid or a salt thereof as an electrolyte is added to the pyrrole solution, the oxidant solution or a mixed solution thereof to accelerate anodic oxidation. It has a feature.

【0014】ピロール溶液あるいは酸化剤溶液に添加さ
れる電解質は、陽極材料や既に形成された酸化皮膜を溶
解させたりしない酸や塩基あるいは塩から選択されるべ
きである。特に陽極がアルミニウムの場合、強い酸性や
アルカリ性を示すものは好ましくない。一般には弱い酸
やこれらの塩が選択される。特に好ましいのは、無機酸
ではホウ酸、リン酸である。また有機酸では、カルボン
酸が適合しており、具体的には、アジピン酸、マレイン
酸、フタル酸、コハク酸、リンゴ酸などが例示できる。
The electrolyte added to the pyrrole solution or the oxidant solution should be selected from acids, bases or salts which do not dissolve the anode material or the oxide film already formed. Particularly when the anode is aluminum, it is not preferable that it exhibits strong acidity or alkalinity. Generally, weak acids and their salts are selected. Particularly preferred inorganic acids are boric acid and phosphoric acid. As the organic acid, a carboxylic acid is suitable, and specific examples thereof include adipic acid, maleic acid, phthalic acid, succinic acid, malic acid and the like.

【0015】またこれらは酸単体のみでなく、pH調整
のためにアンモニアを添加したり、アンモニウム塩ある
いはアミン塩として添加してもよい。これらはいずれも
化成液あるいは電解液を用いた電解コンデンサの電解質
として用いられているものである。
Further, not only these acids but also ammonia may be added for pH adjustment or ammonium salt or amine salt may be added. Each of these is used as an electrolyte of an electrolytic capacitor using a chemical conversion solution or an electrolytic solution.

【0016】これら電解質の添加量は特に限定はない
が、通常1%〜10%程度の範囲である。
The amount of these electrolytes added is not particularly limited, but is usually in the range of about 1% to 10%.

【0017】電圧の印加は、陽極の誘電体酸化皮膜を形
成した化成電圧を越えない範囲が好ましい。化成電圧を
越える電圧を印加すると、酸化皮膜が所期の厚さ以上に
成長し単位あたり静電容量値を減少させてしまうおそれ
がある。
The voltage application is preferably within a range not exceeding the formation voltage for forming the dielectric oxide film of the anode. When a voltage exceeding the formation voltage is applied, the oxide film may grow more than the desired thickness and the capacitance value per unit may decrease.

【0018】また印加の電圧は、通常直流電源から供給
すればよいが、脈流やパルス状の電圧であって、極性を
変化させなければ差支えない。
The applied voltage may be normally supplied from a DC power source, but it may be a pulsating current or a pulsed voltage, and it does not matter if the polarity is not changed.

【0019】電流は印加の電圧や内部の抵抗分によって
規制されるが、一般には0.1mA〜10mA/cm2
程度である。
The current is regulated by the applied voltage and the internal resistance component, but generally 0.1 mA to 10 mA / cm 2
It is a degree.

【0020】印加時間も特に限定はないが、溶液に含浸
中の全期間であってもよいし、その一部であってもよ
い。また溶液中にコンデンサ素子を浸漬する形のみでな
く、コンデンサ素子に溶液を必要量滴下する方法であっ
てもよい。
The application time is also not particularly limited, but it may be the entire period during impregnation in the solution or a part thereof. Further, not only a method of immersing the capacitor element in the solution but also a method of dropping a required amount of the solution on the capacitor element may be used.

【0021】この発明で用いるピロール溶液および酸化
剤溶液については、ピロールモノマーを適当な酸化作用
で重合形成できるものであれば特に限定はないが、具体
的なものを例示すれば、ピロールを溶解する溶媒には、
メタノール、エタノール、アセトン、アセトニトリル、
水、テトラヒドロフランあるいはこれらの混合溶媒など
がある。
The pyrrole solution and the oxidizing agent solution used in the present invention are not particularly limited as long as they can polymerize and form a pyrrole monomer by an appropriate oxidizing action, but if a concrete example is shown, pyrrole is dissolved. The solvent is
Methanol, ethanol, acetone, acetonitrile,
Examples include water, tetrahydrofuran, or a mixed solvent thereof.

【0022】また酸化剤には、過硫酸アンモニウム、過
酸化水素などが用いられる。酸化剤の溶媒についても、
酸化剤を所定濃度溶解できるもの、含浸に支障を来さな
い粘度のもので、陽極などの材料に影響を及ぼさないも
のであれば特に限定はなく、上記のピロール溶液の溶媒
と共通であってもよい。
As the oxidizing agent, ammonium persulfate, hydrogen peroxide, etc. are used. Regarding the solvent of the oxidant,
There is no particular limitation as long as it can dissolve an oxidant in a predetermined concentration, has a viscosity that does not hinder impregnation, and does not affect materials such as the anode, and is common with the solvent of the above-mentioned pyrrole solution. Good.

【0023】[0023]

【作用】この発明では、ピロールを化学重合によって陽
極表面に重合形成する過程、すなわちピロール溶液又は
酸化剤溶液あるいはこれらの混合溶液に化学重合のため
に陽極を含浸するが、その際溶液中に陽極酸化反応促進
の電解質が含有し、かつ陽極と溶液間に電圧を印加する
ことで、溶液の含浸と陽極酸化反応が並行して進行す
る。しかも電解質の存在によって陽極の酸化皮膜の欠損
部や劣化部は速やかに修復されて漏れ電流の発生を抑止
する。
In the present invention, the process of polymerizing pyrrole on the surface of the anode by chemical polymerization, that is, the pyrrole solution or the oxidant solution or a mixed solution thereof is impregnated with the anode for chemical polymerization. By containing an electrolyte for promoting the oxidation reaction and applying a voltage between the anode and the solution, the impregnation of the solution and the anodization reaction proceed in parallel. Moreover, due to the presence of the electrolyte, the defective portion and the deteriorated portion of the oxide film of the anode are promptly repaired and the generation of the leakage current is suppressed.

【0024】[0024]

【実施例】以下実施例にしたがってこの発明を説明す
る。図1はこの発明による電圧印加の状態を示す説明図
である。図において、1はコンデンサ素子であり、高純
度アルミニウムの帯状の箔の表面に誘電体酸化皮膜層が
形成されたものに2の陽極引出しリード線が接続され、
これをセパレータと陰極側の電極引出しのための帯状電
極とともに重ね合わせて巻回してコンデンサ素子1とし
てある。前記の陰極側の帯状箔にも陰極引出しリード線
3が接続され、各々が巻回端面から上部に引き出されて
いる。
EXAMPLES The present invention will be described below with reference to examples. FIG. 1 is an explanatory view showing a state of voltage application according to the present invention. In the figure, reference numeral 1 is a capacitor element, and a positive electrode lead wire 2 is connected to a strip-shaped foil of high-purity aluminum on a surface of which a dielectric oxide film layer is formed,
This is laminated and wound together with the separator and the strip-shaped electrode for drawing out the electrode on the cathode side to form the capacitor element 1. The cathode lead wire 3 is connected to the above-mentioned strip-shaped foil on the cathode side, and each is led out upward from the winding end face.

【0025】このコンデンサ素子1の本体を、化成のた
めの電解質を添加したピロール溶液又は酸化剤溶液もし
くは両者の混合液からなる溶液4を入れた容器5の中に
含浸させる。そして、陽極引出しリード線2を正に、陰
極引出しリード線3を負側にして、6の直流電源に接続
して通電しながら含浸を行う。
The main body of the capacitor element 1 is impregnated into a container 5 containing a solution 4 consisting of a pyrrole solution or an oxidizer solution to which an electrolyte for chemical conversion is added, or a mixed solution of both. Then, the anode lead wire 2 is set to the positive side and the cathode lead wire 3 is set to the negative side.

【0026】なお、この実施例ではコンデンサ素子1の
内部に陽極に対向させて陰極側の電極を設置してあるの
で、直流電源6の負側をこの陰極に接続しているが、例
えば対向陰極を用いず、陽極とセパレータのみを巻回し
た素子などを用いる場合には、溶液を入れた容器5を陰
極として用いたり、容器5内に対向電極を設置して、直
流電源6の負側と接続して通電することもできる。
In this embodiment, since the cathode side electrode is installed inside the capacitor element 1 so as to face the anode, the negative side of the DC power supply 6 is connected to this cathode. When a device in which only the anode and the separator are wound is used without using the above, the container 5 containing the solution is used as the cathode, or a counter electrode is installed in the container 5 to connect the negative side of the DC power supply 6 to the device. It can also be connected and energized.

【0027】次に上記の手順に従って行った実験の結果
を示す。使用したコンデンサ素子は、陽極に幅3mm、
長さ18mmの帯状アルミニウム箔を用い、表面をエッ
チング加工後、22Vの直流で陽極酸化処理を行い、表
面に誘電体酸化皮膜層を形成した。
Next, the results of the experiment conducted according to the above procedure will be shown. The capacitor element used is 3 mm wide on the anode,
Using a strip-shaped aluminum foil having a length of 18 mm, the surface was etched and then anodized at a direct current of 22 V to form a dielectric oxide film layer on the surface.

【0028】セパレータには、幅4mm、厚さ100μ
mのガラスペーパーを用いた。さらに陰極箔には、幅4
mm、長さ25mmの帯状アルミニウム箔(陽極酸化処
理なし)を用い、前記陽極箔とともに巻回して円筒状の
コンデンサ素子を得た。なお陽極箔と陰極箔には、各々
所定の位置に電極引出しリード線が超音波溶接によって
接続され、巻回端面から引き出されている。
The separator has a width of 4 mm and a thickness of 100 μ.
m glass paper was used. In addition, the cathode foil has a width of 4
A strip-shaped aluminum foil having a length of 25 mm and a length of 25 mm (without anodic oxidation treatment) was used and wound together with the anode foil to obtain a cylindrical capacitor element. In addition, an electrode lead wire is connected to each of the anode foil and the cathode foil at a predetermined position by ultrasonic welding and is drawn from the winding end surface.

【0029】まず本発明例1として、このコンデンサ素
子をピロール溶液(ピロールモノマーのエタノール20
%溶液)に常温、常圧下で5分間含浸した。次に過硫酸
アンモニウム水溶液(濃度30%)に電解質としてアジ
ピン酸アンモニウム(濃度5%)を加え、常温、常圧下
で10分間含浸した。この際酸化剤溶液に含浸中のコン
デンサ素子に引出しリード線から22Vの直流電圧を5
分間印加した。この後、コンデンサ素子を溶液から引き
上げ、水洗、加熱乾燥を行った。この工程を5回繰り返
した後、コンデンサ素子外部を樹脂で封止して固体電解
コンデンサを完成させた。
First, as Example 1 of the present invention, the capacitor element was prepared by using a pyrrole solution (ethanol of pyrrole monomer 20
% Solution) at room temperature under normal pressure for 5 minutes. Next, ammonium adipate (concentration 5%) was added as an electrolyte to an ammonium persulfate aqueous solution (concentration 30%), and the mixture was impregnated at room temperature and atmospheric pressure for 10 minutes. At this time, a DC voltage of 22 V was applied to the capacitor element immersed in the oxidant solution by applying 22 V from the lead wire.
It was applied for a minute. Then, the capacitor element was pulled out of the solution, washed with water, and dried by heating. After repeating this step 5 times, the outside of the capacitor element was sealed with resin to complete the solid electrolytic capacitor.

【0030】次に本発明例2として、前記のアジピン酸
アンモニウム代えて、電解質にマレイン酸のトリエチル
アミン塩を(濃度5%)加えた酸化剤溶液とした他は、
本発明例1と同じ条件で固体電解コンデンサを完成させ
た。
Next, as Example 2 of the present invention, an oxidant solution was prepared in which the triethylamine salt of maleic acid (concentration 5%) was added to the electrolyte instead of the ammonium adipate described above.
A solid electrolytic capacitor was completed under the same conditions as in Inventive Example 1.

【0031】さらにこの発明の実施例と比較のため、電
解質を添加しない他は全く同一条件で固体電解コンデン
サを作成して比較例とした。
Further, for comparison with the embodiment of the present invention, a solid electrolytic capacitor was prepared under the same conditions except that an electrolyte was not added, and used as a comparative example.

【0032】完成した固体電解コンデンサの電気的特性
を調べたところ、表1の結果が得られた。なお、Tan
δは120Hzの値、漏れ電流は電圧印加後2分の値、
ESR(等価直列抵抗)は100KHzでの測定結果で
ある。
When the electrical characteristics of the completed solid electrolytic capacitor were examined, the results shown in Table 1 were obtained. In addition, Tan
δ is a value of 120 Hz, leakage current is a value of 2 minutes after voltage application,
ESR (equivalent series resistance) is a measurement result at 100 KHz.

【0033】[0033]

【表1】 [Table 1]

【0034】この結果からわかるように、この発明によ
る固体電解コンデンサは、比較例に比べて漏れ電流が大
幅に低減したことが認められた。
As can be seen from these results, it was confirmed that the solid electrolytic capacitor according to the present invention had a greatly reduced leakage current as compared with the comparative example.

【0035】[0035]

【発明の効果】以上述べたようにこの発明によれば、ポ
リピロールを固体電解質に用いた電解コンデンサにおい
て、酸化皮膜層の損傷や劣化による漏れ電流の増加を防
止して低い漏れ電流が達成できる。
As described above, according to the present invention, in an electrolytic capacitor using polypyrrole as a solid electrolyte, it is possible to prevent an increase in leakage current due to damage or deterioration of an oxide film layer and achieve a low leakage current.

【0036】また溶液の含浸と同時に酸化皮膜の修復が
図れるために、製品完成後のエージング処理を大幅に簡
素ができ、固体電解コンデンサの製造工程の効率を上げ
ることもできる。
Further, since the oxide film can be repaired at the same time as the impregnation with the solution, the aging treatment after the completion of the product can be greatly simplified and the efficiency of the manufacturing process of the solid electrolytic capacitor can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の固体電解コンデンサの製造過程を説
明する説明図である。
FIG. 1 is an explanatory view illustrating a manufacturing process of a solid electrolytic capacitor of the present invention.

【符号の説明】[Explanation of symbols]

1 コンデンサ素子 2 陽極引出しリード線 3 陰極引出しリード線 4 溶液 5 容器 6 直流電源 1 Capacitor element 2 Anode lead wire 3 Cathode lead wire 4 Solution 5 Container 6 DC power supply

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 表面に誘電体酸化皮膜層が形成された陽
極をセパレータを介在させて巻回あるいは積層して形成
したコンデンサ素子を、ピロール溶液および酸化剤溶液
各々に、又はピロール溶液と酸化剤溶液との混合溶液に
含浸し、かつ含浸中のコンデンサ素子に直流電圧を印加
し、重合反応によって前記誘電体酸化皮膜層表面にポリ
ピロールの固体電解質層を形成させる固体電解コンデン
サの製造方法において、前記含浸に用いるピロール溶
液、酸化剤溶液いずれかもしくは双方、あるいはこれら
の混合溶液に、陽極酸化促進のための有機酸、無機酸ま
たはこれらの塩からなる電解質を添加したことを特徴と
する固体電解コンデンサの製造方法。
1. A capacitor element formed by winding or laminating an anode having a dielectric oxide film layer formed on the surface thereof with a separator interposed, in a pyrrole solution and an oxidant solution, or in a pyrrole solution and an oxidizer. In a method for producing a solid electrolytic capacitor, which comprises impregnating a mixed solution with a solution, and applying a DC voltage to the capacitor element during the impregnation, and forming a solid electrolyte layer of polypyrrole on the dielectric oxide film layer surface by a polymerization reaction, A solid electrolytic capacitor characterized by adding an electrolyte composed of an organic acid, an inorganic acid or a salt thereof for accelerating anodization to a pyrrole solution used for impregnation, an oxidant solution or both, or a mixed solution thereof. Manufacturing method.
【請求項2】 ピロール溶液、酸化剤溶液またはこれら
の混合溶液に添加する電解質が、ホウ酸、リン酸、アジ
ピン酸、マレイン酸、フタル酸、コハク酸、リンゴ酸ま
たはその塩である請求項1記載の固体電解コンデンサの
製造方法。
2. The electrolyte added to the pyrrole solution, the oxidant solution or a mixed solution thereof is boric acid, phosphoric acid, adipic acid, maleic acid, phthalic acid, succinic acid, malic acid or a salt thereof. A method for producing the solid electrolytic capacitor described.
JP7842192A 1992-02-28 1992-02-28 Manufacture of solid-state electrolytic capacitor Pending JPH05243098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7842192A JPH05243098A (en) 1992-02-28 1992-02-28 Manufacture of solid-state electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7842192A JPH05243098A (en) 1992-02-28 1992-02-28 Manufacture of solid-state electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH05243098A true JPH05243098A (en) 1993-09-21

Family

ID=13661586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7842192A Pending JPH05243098A (en) 1992-02-28 1992-02-28 Manufacture of solid-state electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH05243098A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138133A (en) * 1998-10-30 2000-05-16 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacture
JP2008034440A (en) * 2006-07-26 2008-02-14 Nichicon Corp Method of manufacturing solid-state electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138133A (en) * 1998-10-30 2000-05-16 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacture
JP2008034440A (en) * 2006-07-26 2008-02-14 Nichicon Corp Method of manufacturing solid-state electrolytic capacitor

Similar Documents

Publication Publication Date Title
JP4916416B2 (en) Electrolytic capacitor manufacturing method and electrolytic capacitor
JP3705306B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH1197296A (en) Solid electrolytic capacitor and its manufacture
JPH05243098A (en) Manufacture of solid-state electrolytic capacitor
JP3026817B2 (en) Method for manufacturing solid electrolytic capacitor
JPH10340831A (en) Manufacture of solid electrolytic capacitor
US6334945B1 (en) Aging process for solid electrode capacitor
JP2003173933A (en) Solid-state electrolytic capacitor and its manufacturing method
JP3362600B2 (en) Manufacturing method of capacitor
JP3505370B2 (en) Organic solid electrolytic capacitor and method of manufacturing the same
JPH05243104A (en) Manufacture of solid electrolytic capacitor
JP2002008946A (en) Method of manufacturing solid electrolytic capacitor
JP4057206B2 (en) Manufacturing method of solid electrolytic capacitor
JP3891304B2 (en) Manufacturing method of solid electrolytic capacitor
JP3750476B2 (en) Manufacturing method of solid electrolytic capacitor
JPH11121280A (en) Solid electrolytic capacitor and manufacturing method therefor
JPH11191518A (en) Organic solid electrolytic capacitor and manufacture thereof
JPH0423411B2 (en)
JPH01232712A (en) Fixed electrolytic capacitor and manufacture thereof
JP2001044079A (en) Manufacture of capacitor
JPH11274007A (en) Solid electrolytic capacitor and manufacture thereof
JPH0274016A (en) Solid electrolytic condenser
JPH02298011A (en) Solid electrolytic capacitor
JP4484084B2 (en) Manufacturing method of solid electrolytic capacitor
JPH11186105A (en) Solid electrolytic capacitor and its manufacture