JPH05239571A - Production of ti-al intermetallic compound - Google Patents

Production of ti-al intermetallic compound

Info

Publication number
JPH05239571A
JPH05239571A JP4044937A JP4493792A JPH05239571A JP H05239571 A JPH05239571 A JP H05239571A JP 4044937 A JP4044937 A JP 4044937A JP 4493792 A JP4493792 A JP 4493792A JP H05239571 A JPH05239571 A JP H05239571A
Authority
JP
Japan
Prior art keywords
intermetallic compound
reaction synthesis
room temperature
temperature
ductility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4044937A
Other languages
Japanese (ja)
Inventor
Bokujiyun Kin
睦淳 金
Kazuhisa Shibue
和久 渋江
Masaki Kumagai
正樹 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP4044937A priority Critical patent/JPH05239571A/en
Publication of JPH05239571A publication Critical patent/JPH05239571A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a Ti-Al intermetallic compound excellent in oxidation resistance at high temp. as well as in ductility at ordinary temp. by performing prescribed homogenizing treatment. CONSTITUTION:A Ti type material and an Al type material are mixed, deaerated, and subjected to vacuum sealing. The resulting sealed powder mixture is subjected to plastic deformation at a temp. not higher than the reaction synthesis temp. to undergo reaction sintering. Further, after the reaction synthesis, homogenizing heat treatment is done in a nonoxidizing atmosphere for >=0.2hr at a temp. in the range between 1170 and <1400 deg.C where Ti3Al is allowed to disappear. By this method, the Ti-Al intermetallic compound having a composition consisting of 40-50 atomic % and the balance essentially Ti can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車分野,航空宇宙
分野,産業機械分野等の軽量耐熱或は高比剛性が要求さ
れる分野に使用されるTi−Al系金属間化合物の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Ti-Al intermetallic compound used in fields such as automobile fields, aerospace fields, industrial machinery fields, etc., where light weight heat resistance or high specific rigidity is required. ..

【0002】[0002]

【従来の技術】近年、例えば自動車分野においては、軽
量化や高性能化が求められ、その内燃機関(エンジン)
用部品においても軽量化が要求されている。例えばエン
ジンバルブにおいては、従来より、鋼或はNi合金が使
用されているが、これらは密度が約8g/cm3と大きなも
のである。従って、このバルブを軽量化すれば、バルブ
の慣性質量を小さくすることができるので、エンジンの
高回転化が可能となり、よって自動車の高性能化が図ら
れるものと期待されている。
2. Description of the Related Art In recent years, for example, in the field of automobiles, there has been a demand for weight reduction and higher performance.
The parts are also required to be lighter. For example, in engine valves, steel or Ni alloy has been conventionally used, but these have a large density of about 8 g / cm 3 . Therefore, if the weight of this valve is reduced, the inertial mass of the valve can be reduced, so that the engine can be rotated at a high speed and the performance of the vehicle is expected to be improved.

【0003】そこで、軽量でしかも耐熱性を備えた材料
として、Ti−Al系金属間化合物が注目されている。
例えば排気バルブの作動温度付近の800℃におけるT
i−Al系金属間化合物の高温強度は、代表的なバルブ
鋼であるSUH35のものとほぼ同等であり、しかも密
度は約1/2である。このため、Ti−Al系金属間化
合物は有力な軽量耐熱材料と考えられている。
Therefore, as a material which is lightweight and has heat resistance, a Ti--Al based intermetallic compound has been attracting attention.
For example, T at 800 ° C near the operating temperature of the exhaust valve
The high temperature strength of the i-Al intermetallic compound is almost the same as that of SUH35, which is a typical valve steel, and the density is about 1/2. Therefore, the Ti-Al-based intermetallic compound is considered to be a powerful lightweight heat resistant material.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、Ti−
Al系金属間化合物は、主に以下の理由によりその実用
化が阻害されている。 難加工材のため、部品への形状付与が困難であるこ
と。
However, Ti-
Practical use of Al-based intermetallic compounds is hindered mainly due to the following reasons. Since it is a difficult-to-process material, it is difficult to give shape to parts.

【0005】耐酸化性が必ずしも十分ではないこと。 常温延性が乏しいこと。 そこで、これらの課題を克服するために、近年では種々
の研究開発が行われている。例えばTi−Al系金属間
化合物の形状付与の困難性の低減(特公平1−308
98号公報参照)や耐酸化性の向上(特願平3−18
453号参照)の研究等である。この研究の内容は、具
体的には、Ti粉末或はTi合金粉末とAl粉末或はA
l合金粉末とを、混合し脱気し更に真空封入した後に、
真空封入した混合粉末を反応合成温度以下で塑性変形
し、塑性変形した混合体を反応合成温度以上に加熱して
反応焼結することによってTi−Al系金属間化合物を
製造する技術に関するものである。
The oxidation resistance is not always sufficient. Poor room temperature ductility. Therefore, in order to overcome these problems, various researches and developments have been conducted in recent years. For example, reduction of difficulty in imparting a shape of Ti-Al intermetallic compound (Japanese Patent Publication No. 1-308
98) and improvement of oxidation resistance (Japanese Patent Application No. 3-18).
453)). The contents of this research are specifically Ti powder or Ti alloy powder and Al powder or A powder.
1 alloy powder, mixed, deaerated, and further vacuum sealed,
The present invention relates to a technique for producing a Ti—Al-based intermetallic compound by plastically deforming a vacuum-filled mixed powder at a temperature lower than the reaction synthesis temperature, and heating the plastically deformed mixture at a temperature higher than the reaction synthesis temperature to perform reaction sintering. ..

【0006】しかしながら上述した反応焼結法の技術に
よっても、前記の常温延性については十分に改善され
ておらず、また、の耐酸化性についても950℃を越
える高温では局部的に酸化されることがあり、必ずしも
十分でない。本発明は、Ti−Al系金属間化合物の特
性の改善について多面的に研究を実施した結果として得
られたものであり、その目的は、所定の均質化処理を行
なうことにより、常温延性に優れしかも高温における耐
酸化性に優れたTi−Al系金属間化合物の製造方法を
提供することにある。
However, even by the above-mentioned reaction sintering technique, the room temperature ductility is not sufficiently improved, and the oxidation resistance of the above is locally oxidized at a high temperature exceeding 950 ° C. There is not always enough. The present invention has been obtained as a result of conducting multifaceted research on the improvement of the properties of Ti-Al-based intermetallic compounds, and its object is to achieve excellent room temperature ductility by performing a predetermined homogenization treatment. Moreover, it is to provide a method for producing a Ti-Al-based intermetallic compound having excellent oxidation resistance at high temperatures.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
の請求項1の発明は、Ti系材料とAl系材料との混
合,脱気及び真空封入を行った後に、この封入された混
合粉末を反応合成温度以下で塑性変形し、更に塑性変形
された混合体を反応合成温度以上に加熱して反応焼結を
行なって、Al:40〜50at%残部実質Tiからな
るTi−Al系金属間化合物を製造するTi−Al系金
属間化合物の製造方法であって、前記反応合成後に、非
酸化性雰囲気中にて、Ti3Alが消失する1170℃
以上1400℃未満の温度範囲で、0.2時間以上均質
化熱処理を施すことを特徴とするTi−Al系金属間化
合物の製造方法を要旨とする。
In order to achieve this object, the invention of claim 1 is to mix the Ti-based material and the Al-based material, perform deaeration and vacuum encapsulation, and then, enclose the mixed powder. Is plastically deformed below the reaction synthesis temperature, and the plastically deformed mixture is heated to the reaction synthesis temperature or higher to perform reaction sintering, and Al: 40-50 at% balance Ti-Al-based intermetallic a method of manufacturing a Ti-Al system intermetallic compound to produce a compound, wherein after the reaction synthesis, in a non-oxidizing atmosphere, 1170 ° C. for Ti 3 Al disappeared
The gist is a method for producing a Ti—Al-based intermetallic compound, which is characterized by performing homogenizing heat treatment for 0.2 hours or more in a temperature range of 1400 ° C. or higher.

【0008】請求項2の発明は、添加元素XとしてM
n,Cr,Vのうち少なくとも一種以上を反応合成後の
最終組成で0.5〜3at%、及び/又は添加元素Yと
してNb,Mo,W,Ta,Siのうち少なくとも一種
以上を反応合成後の最終組成で0.5〜3at%含むT
i−Al系金属間化合物を製造することを特徴とする前
記請求項1記載のTi−Al系金属間化合物の製造方法
を要旨とする。
According to the second aspect of the invention, the additional element X is M
0.5 to 3 at% of the final composition after reaction synthesis of at least one or more of n, Cr and V, and / or after reaction synthesis of at least one or more of Nb, Mo, W, Ta and Si as an additional element Y. The final composition of T contains 0.5 to 3 at%
The gist of the method for producing a Ti-Al intermetallic compound according to claim 1 is to produce an i-Al intermetallic compound.

【0009】請求項3の発明はTi−X合金粉末,Al
−X合金粉末,Ti−Y合金粉末,Al−Y合金粉末,
Ti−X−Y合金粉末,Al−X−Y合金粉末のうちの
少なくとも一種以上を用いて、Ti−Al系金属間化合
物を製造することを特徴とする前記請求項2記載のTi
−Al系金属間化合物の製造方法を要旨とする。
According to the invention of claim 3, Ti-X alloy powder, Al
-X alloy powder, Ti-Y alloy powder, Al-Y alloy powder,
The Ti-Al-based intermetallic compound is produced by using at least one or more of a Ti-XY alloy powder and an Al-XY alloy powder.
A gist is a method of manufacturing an Al-based intermetallic compound.

【0010】ここで、各請求項の数値を規定する理由を
説明する。 1)温度:1170〜1400℃ 下限未満では、不均質粗大粒を、全て均質な(Ti3
l(α2)+TiAl(γ))組織に変えられず、延性
が改良できないことがある。また、上限を越えると、材
料の一部が溶解したり或は結晶粒が急激に粗大化し、強
度の低下を招く。
Now, the reason for defining the numerical values of each claim will be described. 1) Temperature: 1170 to 1400 ° C. Below the lower limit, all the heterogeneous coarse particles are homogeneous (Ti 3 A
In some cases, the ductility cannot be improved because the structure cannot be changed to l (α 2 ) + TiAl (γ)). On the other hand, when the amount exceeds the upper limit, part of the material is dissolved or the crystal grains are abruptly coarsened, resulting in a decrease in strength.

【0011】2)温度:0.2時間以上 下限未満では、不均質粗大粒を、全て均質な(α2
γ)組織に変えられず、延性や耐酸化性が改良できない
ことがある。尚、通常では、250時間を越えると延性
や耐酸化性の向上が飽和してしまうので不経済である。
2) Temperature: 0.2 hours or more and less than the lower limit, all the heterogeneous coarse particles are homogeneous (α 2 +
γ) The structure may not be changed, and the ductility and oxidation resistance may not be improved. Incidentally, usually, if it exceeds 250 hours, the improvement of ductility and oxidation resistance is saturated, which is uneconomical.

【0012】3)Al:40〜50at% 上下限の範囲外においては、いずれも延性が低下する。 4) X:0.5〜3at% この範囲内の添加量にて常温延性の向上に効果がある
が、下限未満ではその効果が見られず、一方、上限を越
えるとその効果が飽和するとともに、密度を大きくする
悪作用がある。尚、このうち、Mnは、この範囲内にて
ポアの発生を防ぐ効果がある。
3) Al: 40 to 50 at% When the ratio is out of the upper and lower limits, the ductility decreases in all cases. 4) X: 0.5 to 3 at% Addition amounts within this range have the effect of improving room temperature ductility, but below the lower limit the effect is not observed, while above the upper limit the effect saturates. , There is a bad effect of increasing the density. Of these, Mn has the effect of preventing the generation of pores within this range.

【0013】5) Y:0.5〜3at% この範囲内の添加量にて耐酸化性の向上に効果がある
が、下限未満ではその効果が見られず、一方、上限を越
えるとその効果が飽和するとともに、密度を大きくする
悪作用がある。
5) Y: 0.5 to 3 at% Addition amounts within this range are effective in improving oxidation resistance, but below the lower limit, no such effect is observed, while above the upper limit, the effect is not achieved. Is saturated and has an adverse effect of increasing the density.

【0014】つまり、常温延性は前記X成分の添加によ
って一層向上し、高温耐酸化性についてはY成分を添加
したときに改善が顕著に見られ、それらを組み合わせた
場合に、特に優れた常温延性及び高温耐酸化性が達成さ
れる。また、各X,Y成分を添加する場合には、X,Y
成分とTi,Alとの合金粉末のかたちで添加すると、
金属間化合物が均質になり易いので好適である。
That is, the room temperature ductility is further improved by the addition of the X component, and the high temperature oxidation resistance is remarkably improved when the Y component is added. When these are combined, particularly excellent room temperature ductility is obtained. And high temperature oxidation resistance is achieved. When adding each X, Y component, X, Y
When added in the form of alloy powder of the components and Ti, Al,
It is suitable because the intermetallic compound is likely to be homogeneous.

【0015】尚、上述した均質化熱処理は、反応合成
後、引き続いて、例えばHIP(熱間静水圧圧縮)中で
行うこともできる。
The above-mentioned homogenizing heat treatment can be carried out subsequently to the reaction synthesis, for example, in HIP (hot isostatic pressing).

【0016】[0016]

【作用】本発明は、反応焼結法で得られるTi−Al系
金属間化合物の延性や耐酸化性の改善について多面的に
研究を実施した結果として得られたものであり、以下に
示す様に、反応焼結後の熱処理を制御することにより、
組成が均質で常温延性及び高温耐酸化性に優れたTi−
Al系金属間化合物を製造することができる。
The present invention was obtained as a result of multifaceted research on improvement of ductility and oxidation resistance of Ti-Al intermetallic compounds obtained by the reaction sintering method. By controlling the heat treatment after reaction sintering,
Ti-, which has a uniform composition and excellent room temperature ductility and high temperature oxidation resistance
An Al-based intermetallic compound can be manufactured.

【0017】反応焼結法により作製されたTi−Al材
において、常温延性が乏しいものや高温耐酸化性に劣る
ものを詳細に調査検討したところ、金属組織中にα
2(Ti3Al)相に取り囲まれたα−Ti相、或はTi
−リッチなα2相からなる50μm以上の粗大な不均質粒
(以下、粗大粒と略す)が存在し、これら粗大粒が破壊
の起点となり本材の延性を低下させていることや、粗大
粒の部分で酸化が進行し易いことが明かとなった。
When the Ti-Al material produced by the reaction sintering method was poor in room temperature ductility and poor in high temperature oxidation resistance, it was investigated and examined in detail.
Α-Ti phase surrounded by 2 (Ti 3 Al) phase, or Ti
-There are coarse inhomogeneous particles of 50 μm or more (hereinafter abbreviated as coarse particles) consisting of rich α 2 phase, and these coarse particles serve as the starting point of fracture and reduce the ductility of this material. It was revealed that the oxidation was easy to proceed in the area.

【0018】この粗大粒は、本プロセスにおいて、Ti
粉末とAl粉末とを、混合,脱気及び真空封入後、封入
した混合粉末を反応合成温度以下で塑性変形し、塑性変
形した混合体における50μm以上のTi粒に対応して
いる。これによって、本材の延性や耐酸化性を向上させ
るためには、粗大粒を消失させればよいことが明瞭とな
った。
In the present process, the coarse particles are
The powder and the Al powder are mixed, degassed, and vacuum sealed, and then the sealed mixed powder is plastically deformed at a temperature lower than the reaction synthesis temperature, which corresponds to Ti particles of 50 μm or more in the plastically deformed mixture. As a result, it became clear that coarse grains should be eliminated in order to improve the ductility and oxidation resistance of this material.

【0019】そこで、本発明では、反応合成後、非酸化
性雰囲気中にて、α2相が消失する温度つまり1170
℃以上で1400℃未満の温度範囲(図1の状態図参
照)で0.2時間以上にわたり、均質化熱処理を施すこ
とにより、α−Ti相或はTi−リッチなα2からなる
粗大粒を消失させ、それによって、常温延性及び高温耐
酸化性を改善するものである。
Therefore, in the present invention, the temperature at which the α 2 phase disappears, that is, 1170, in the non-oxidizing atmosphere after the reaction synthesis.
By subjecting to a homogenizing heat treatment in a temperature range of ℃ or more and less than 1400 ℃ (refer to the state diagram of FIG. 1) for 0.2 hours or more, coarse particles composed of α-Ti phase or Ti-rich α 2 are produced. It is eliminated, thereby improving the room temperature ductility and the high temperature oxidation resistance.

【0020】また、一般に金属間化合物中での拡散は遅
いため、不均質な粗大粒を均質相に変えるには極めて長
時間を要し不経済である。ところで、Ti−Al系平衡
状態図によれば(Binary Alloy Phase Diagram,ASM,198
6,p.193)、Ti−リッチなα2相は約1170℃で消失
しβ相に変わる。このβ相はbccの不規則構造であるた
め、hcpの規則結晶構造であるα2相に比べて拡散が極め
て速いことが予想される。また、hcp構造を有し拡散が
遅いα−Ti相も1170℃ではβ相に変わることが、
図1の状態図から分かる。これにより、1170℃以上
に保持することにより不均質な粗大粒中の拡散を速やか
にさせ、本材の均質状態(室温ではα2+γ)が短時間
で実現される。
Further, since diffusion in an intermetallic compound is generally slow, it takes an extremely long time to convert a heterogeneous coarse grain into a homogeneous phase, which is uneconomical. By the way, according to the Ti-Al system equilibrium phase diagram (Binary Alloy Phase Diagram, ASM, 198
6, p.193), the Ti-rich α 2 phase disappears at about 1170 ° C. and changes to the β phase. Since this β phase has a disordered structure of bcc, it is expected that diffusion will be extremely faster than that of the α 2 phase, which has an ordered crystal structure of hcp. In addition, the α-Ti phase, which has a hcp structure and is slow to diffuse, changes to the β phase at 1170 ° C.,
It can be seen from the state diagram of FIG. As a result, by maintaining the temperature at 1170 ° C. or higher, the diffusion in the inhomogeneous coarse grains is promptly achieved, and the homogeneous state (α 2 + γ at room temperature) of this material is realized in a short time.

【0021】[0021]

【実施例】以下、本発明を具体化した実施例を、比較例
とともに説明する。 (実施例1)Na法で作製されたスポンジチタン粉末
(149μm以下)と、ヘリウムガスアトマイズ法で作
製されたAl合金粉末(149μm以下)とを、最終組
成でTi−48at%Alとなる様に混合後、アルミニ
ウム容器に挿入し、本容器内を加熱しながら真空排気し
脱気処理を実施した。その後、容器ごと熱間押出を行っ
た。押出温度は430℃、押出比は450とした。得ら
れた押出材からアルミニウム容器を外削除去し、反応合
成用素材とした。
EXAMPLES Examples embodying the present invention will be described below together with comparative examples. (Example 1) Titanium sponge powder (149 μm or less) produced by the Na method and Al alloy powder (149 μm or less) produced by the helium gas atomization method were mixed so that the final composition would be Ti-48 at% Al. After that, it was inserted into an aluminum container, and vacuum evacuated while performing degassing while heating the inside of the container. Then, the container was hot extruded. The extrusion temperature was 430 ° C. and the extrusion ratio was 450. The aluminum container was removed from the obtained extruded material to obtain a raw material for reaction synthesis.

【0022】この押出材(下記表1の試料No.1〜4)
について、HIPにて反応合成(560℃)を行い、T
i−Al系金属間化合物とした後、引き続いてHIP中
にて、均質化処理を実施した。尚、HIP条件は、雰囲
気はアルゴンガス,圧力は150MPaとした。また、一
部の試料(表1の試料No.2,3)についてはHIP
後、更に真空中にて加熱して均質化処理を実施した。こ
の処理条件等を下記表1に示す。
This extruded material (Sample Nos. 1 to 4 in Table 1 below)
About, the reaction synthesis (560 ℃) was performed by HIP, and
After forming the i-Al intermetallic compound, the homogenization treatment was subsequently performed in HIP. The HIP conditions were that the atmosphere was argon gas and the pressure was 150 MPa. In addition, some samples (Sample Nos. 2 and 3 in Table 1) are HIP
After that, it was further heated in vacuum to carry out a homogenization treatment. The processing conditions and the like are shown in Table 1 below.

【0023】そして、前記製造方法によって得られたT
i−Al系金属間化合物について、引張試験片を作製し
(平行部径:φ5mm、標点間距離:15mm)、常温にて
引張試験(ひずみ速度:10-3/秒)を実施した。ま
た、高温酸化試験(950℃×50時間)を大気中にて
実施した。この試験の結果を下記表2に示す。
The T obtained by the above manufacturing method
Tensile test pieces were prepared for the i-Al intermetallic compound (diameter of parallel part: φ5 mm, gauge length: 15 mm) and a tensile test (strain rate: 10 −3 / sec) was performed at room temperature. Further, a high temperature oxidation test (950 ° C. × 50 hours) was carried out in the atmosphere. The results of this test are shown in Table 2 below.

【0024】この表2から明らかな様に、本実施例の試
料No.1〜4のものは、常温引張強さが全て370MPa以
上で、しかも常温伸びが0.52%以上であり、強度と
延性に優れ好適である。更に、酸化増量も13g/m2
下と少なく耐酸化性にも優れている。
As is apparent from Table 2, the samples Nos. 1 to 4 of this example all had a room temperature tensile strength of 370 MPa or more and a room temperature elongation of 0.52% or more. It is excellent in ductility and suitable. Further, the increase in oxidation is as small as 13 g / m 2 or less, and the oxidation resistance is excellent.

【0025】(実施例2)PREP(Plasma Arc Rotat
ing Electrode Process)法で作製されたTi粉末(2
50μm以下)と、アルゴンガスアトマイズ法で作製さ
れたAl粉末(149μm以下)とを、最終組成でTi
−48at%Alとなる様に混合後、アルミニウム容器
に挿入し、本容器内を加熱しながら真空排気し脱気処理
を実施した。混合後、アルミニウム容器に挿入し、本容
器内を加熱しながら真空排気し脱気処理を実施した。そ
の後、容器ごと熱間押出を行った。押出温度は400
℃、押出比は450とした。得られた押出材からアルミ
ニウム容器を外削除去し、反応合成用素材とした。
Example 2 PREP (Plasma Arc Rotat)
Ti powder (2)
(50 μm or less) and Al powder (149 μm or less) produced by an argon gas atomization method with a final composition of Ti
After mixing so as to be -48 at% Al, the mixture was inserted into an aluminum container, and the inside of the container was evacuated while being evacuated to perform deaeration treatment. After mixing, the mixture was inserted into an aluminum container, and the inside of the container was evacuated while heating to perform deaeration. Then, the container was hot extruded. Extrusion temperature is 400
C., extrusion ratio was 450. The aluminum container was removed from the obtained extruded material to obtain a raw material for reaction synthesis.

【0026】この押出材(表1の試料No.5)につい
て、HIP中にて反応合成後、引き続いて真空中で加熱
して均質化処理を実施した。尚、HIP条件は、雰囲気
はアルゴンガスで、圧力は150MPaとした。その後、
1200℃で真空中にて均質化処理を実施した。この処
理条件等を表1に示す。
This extruded material (Sample No. 5 in Table 1) was subjected to homogenization by heating in a vacuum after reaction synthesis in HIP. The HIP conditions were such that the atmosphere was argon gas and the pressure was 150 MPa. afterwards,
The homogenization treatment was carried out at 1200 ° C. in vacuum. The processing conditions and the like are shown in Table 1.

【0027】得られたTi−Al系金属間化合物につい
て、前記実施例1と同様に、常温にて引張試験を実施し
た。この試験の結果を表2に示す。この表2から明らか
な様に、試料No.5のものは、常温引張強さが393MPa
で、しかも常温伸びが0.89%であり、強度と延性に
一層優れ好適である。
A tensile test was conducted on the obtained Ti-Al intermetallic compound at room temperature in the same manner as in Example 1. The results of this test are shown in Table 2. As is clear from Table 2, the sample No. 5 has room temperature tensile strength of 393 MPa.
In addition, the room temperature elongation is 0.89%, and the strength and ductility are further excellent and suitable.

【0028】(実施例3)ヘリウムガスアトマイズ法で
製作されたAl粉末或はAl−X−Y合金粉末(297
μm以下)と、Na法で作製されたスポンジチタン粉末
(149μm以下)とを、最終組成で表1の試料No.6〜
22となる様に混合後、アルミニウム容器に挿入し、本
容器内を加熱しながら真空排気し脱気処理を実施した。
その後、容器ごと熱間押出を行った。押出温度は450
℃、押出比は350とした。得られた押出材からアルミ
ニウム容器を外削除去し、反応合成用素材とした。
(Example 3) Al powder or Al-XY alloy powder (297 produced by the helium gas atomizing method)
and a sponge titanium powder (149 μm or less) produced by the Na method in the final composition of Sample No. 6 to
After mixing so as to obtain No. 22, the mixture was inserted into an aluminum container, and the inside of the container was evacuated while being evacuated to perform deaeration treatment.
Then, the container was hot extruded. Extrusion temperature is 450
C. and the extrusion ratio was 350. The aluminum container was removed from the obtained extruded material to obtain a raw material for reaction synthesis.

【0029】この押出材(表1の試料No.6〜22)に
ついて、HIP(1300℃×10時間)にて反応合成
を行いTi−Al系金属間化合物とした。つまり反応合
成と均質化処理を連続して一連の処理として行った。こ
の処理条件を表1に示す。そして、得られたTi−Al
系金属間化合物について、前記実施例1と同様に、常温
にて引張試験を実施し、また高温酸化試験を実施した。
この試験の結果を表2に示す。
This extruded material (Sample Nos. 6 to 22 in Table 1) was subjected to reaction synthesis by HIP (1300 ° C. × 10 hours) to obtain a Ti—Al-based intermetallic compound. That is, the reaction synthesis and the homogenization treatment were continuously performed as a series of treatments. The processing conditions are shown in Table 1. And the obtained Ti-Al
With respect to the intermetallic compound, a tensile test was carried out at room temperature and a high temperature oxidation test was carried out in the same manner as in Example 1.
The results of this test are shown in Table 2.

【0030】この表2から明らかな様に、試料No.6〜
22のものは、常温引張強さが全て382MPa以上で、
しかも常温伸びが0.53%以上であり、強度と延性に
優れ好適である。更に、酸化増量も15g/m2以下と少
なく耐酸化性にも優れている。特に、表中にXで示すM
n,Cr,Vを所定量(0.5〜3at%)添加したも
の(試料No.8〜13,No.19〜22)では、常温引張
強さが全て415MPa以上で、しかも常温伸びが1.12
%以上であり、強度と延性に一層優れ好適である。 ま
た、表中にYで示すNb,Mo,W,Ta,Siを添加
したもの(試料No.14〜21)では、常温引張強さが
全て402MPa以上で、しかも常温伸びが0.66%以上
であり、強度と延性に優れ好適であるとともに、酸化増
量が6g/m2以下と小さく耐酸化性も極めて優れてい
る。
As is apparent from Table 2, sample No. 6-
No. 22 has room temperature tensile strength of 382 MPa or more,
Moreover, the room temperature elongation is 0.53% or more, which is preferable because it has excellent strength and ductility. Further, the increase in oxidation is as small as 15 g / m 2 or less, and the oxidation resistance is excellent. In particular, M indicated by X in the table
In the case of adding n, Cr, and V in a predetermined amount (0.5 to 3 at%) (Sample Nos. 8 to 13 and Nos. 19 to 22), the room temperature tensile strength is all 415 MPa or more and the room temperature elongation is 1 .12
% Or more, which is more excellent in strength and ductility, and is preferable. In addition, in the case where Nb, Mo, W, Ta, and Si shown by Y in the table are added (Sample Nos. 14 to 21), the room temperature tensile strength is 402 MPa or more, and the room temperature elongation is 0.66% or more. In addition to being excellent in strength and ductility, it is suitable, and the increase in oxidation is as small as 6 g / m 2 or less, and the oxidation resistance is also very excellent.

【0031】(実施例4)PREP法で作製されたTi
−4at%V合金粉末(250μm以下)と、アルゴン
ガスアトマイズ法で作製されたAl合金粉末(149μ
m以下)とを、最終組成でTi−48at%Al−2a
t%Vとなる様に混合後、アルミニウム容器に挿入し、
本容器内を加熱しながら真空排気し脱気処理を実施し
た。その混合後、アルミニウム容器に挿入し、本容器内
を加熱しながら真空排気し脱気処理を実施した。その
後、容器ごと熱間押出を行った。押出温度は440℃、
押出比は350とした。得られた押出材からアルミニウ
ム容器を外削除去し、反応合成用素材とした。
(Example 4) Ti produced by the PREP method
-4 at% V alloy powder (250 μm or less) and Al alloy powder (149 μ) produced by an argon gas atomizing method.
m) and the final composition of Ti-48 at% Al-2a
After mixing so that t% V, insert into an aluminum container,
While heating the inside of the container, the container was evacuated and deaerated. After the mixing, it was inserted into an aluminum container, and the interior of the container was evacuated while being heated to be deaerated. Then, the container was hot extruded. Extrusion temperature is 440 ° C,
The extrusion ratio was 350. The aluminum container was removed from the obtained extruded material to obtain a raw material for reaction synthesis.

【0032】この押出材(表1の試料No.23)につい
て、HIP中にて反応合成後、引き続いて均質化処理を
実施した。尚、HIP条件は、雰囲気はアルゴンガス
で、圧力は150MPaとした。その後、1200℃で真
空均質化処理を実施した。この処理条件等を表1に示
す。
This extruded material (Sample No. 23 in Table 1) was subjected to a reaction synthesis in HIP and then a homogenization treatment. The HIP conditions were such that the atmosphere was argon gas and the pressure was 150 MPa. Then, vacuum homogenization treatment was performed at 1200 ° C. The processing conditions and the like are shown in Table 1.

【0033】そして、得られたTi−Al系金属間化合
物について、前記実施例1と同様に、常温にて引張試験
を実施した。この試験の結果を表2に示す。この表2か
ら明らかな様に、試料No.23のものは、常温引張強さ
が435MPaで、しかも常温伸びが1.20であり、強度
と延性に非常に優れ好適である。
Then, with respect to the obtained Ti--Al based intermetallic compound, a tensile test was carried out at room temperature in the same manner as in Example 1. The results of this test are shown in Table 2. As is clear from Table 2, the sample No. 23 has a room temperature tensile strength of 435 MPa and a room temperature elongation of 1.20, and is very excellent in strength and ductility and is suitable.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】(実施例5)ヘリウムガスアトマイズ法で
製作したAl粉末(297μm以下)と、Na法で作製
されたスポンジチタン粉末(149μm以下)とを、最
終組成で表3の試料No.24〜27となる様に混合後、
アルミニウム容器に挿入し、本容器内を加熱しながら真
空排気し脱気処理を実施した。その後、容器ごと熱間押
出を行った。押出条件の加熱温度は450℃、押出比は
350とした。得られた押出材からアルミニウム容器を
外削除去し、反応合成用素材とした。
(Example 5) Al powder (297 μm or less) produced by the helium gas atomizing method and sponge titanium powder (149 μm or less) produced by the Na method were used as sample Nos. 24 to 27 in Table 3 in the final composition. After mixing so that
It was inserted into an aluminum container, and the interior of this container was evacuated while heating to degas. Then, the container was hot extruded. The heating temperature of the extrusion conditions was 450 ° C., and the extrusion ratio was 350. The aluminum container was removed from the obtained extruded material to obtain a raw material for reaction synthesis.

【0037】この押出材(表3の試料No.24〜27)
について、HIP(1300℃×10時間)にて反応合
成を行いTi−Al系金属間化合物とした。つまり、反
応合成と均質化処理を連続して一連の処理として行っ
た。その処理条件等を表3に示す。
This extruded material (Sample Nos. 24 to 27 in Table 3)
Was subjected to reaction synthesis by HIP (1300 ° C. × 10 hours) to obtain a Ti—Al-based intermetallic compound. That is, the reaction synthesis and the homogenization treatment were continuously performed as a series of treatments. Table 3 shows the processing conditions and the like.

【0038】そして、得られたTi−Al系金属間化合
物について、前記実施例1と同様に、常温にて引張試験
を実施し、また高温酸化試験を実施した。この試験の結
果を表4に示す。この表4から明らかな様に、試料No.
24〜27のものは、いずれも常温引張強さが397MP
a以上で、しかも常温伸びが0.55%以上で、更に酸化
増量が10g/m2以下であり好ましいが、X成分やY成
分の添加量が少ない試料No.24,26の場合には、必
ずしも顕著な延性や耐酸化性の性能の向上は見られな
い。尚、添加量の多い試料No.25,27の場合には、
効果が飽和していた。
Then, the Ti--Al based intermetallic compound thus obtained was subjected to a tensile test at room temperature and a high temperature oxidation test in the same manner as in Example 1. The results of this test are shown in Table 4. As is clear from Table 4, sample No.
All of 24-27 have room temperature tensile strength of 397MP.
It is preferable that it is a or more, the room temperature elongation is 0.55% or more, and the oxidation weight increase is 10 g / m 2 or less. No remarkable improvement in ductility and oxidation resistance performance is necessarily seen. In addition, in the case of sample Nos. 25 and 27 with a large addition amount,
The effect was saturated.

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【表4】 [Table 4]

【0041】(比較例1)前記実施例1で得られた押出
材(下記表5の試料No.28〜30)を用いて、HIP
中で反応合成後に均質化処理を実施した。この処理条件
を表5に示す。そして、得られたTi−Al系金属間化
合物について、前記実施例1と同様に、常温にて引張試
験を実施し、また高温耐酸化性試験を実施した。この結
果を表6に示す。
Comparative Example 1 Using the extruded material (Sample Nos. 28 to 30 in Table 5 below) obtained in Example 1 above, HIP was performed.
A homogenization treatment was carried out after the reaction synthesis in. Table 5 shows the processing conditions. Then, the obtained Ti-Al-based intermetallic compound was subjected to a tensile test at room temperature and a high temperature oxidation resistance test in the same manner as in Example 1. The results are shown in Table 6.

【0042】この表6から明らかな様に、比較例1の試
料No.28のものは、HIP温度が低いために常温伸び
が0.12と小さく、延性が低いので好ましくなく、更
に、酸化増量も20g/m2と大きく耐酸化性が悪い。ま
た、試料No.29のものは、HIP温度が高いために常
温引張強さが290MPaと小さく、強度が低いので好ま
しくない。更に、試料No.30のものは、HIP温度の
処理時間が短いために常温伸びが0.33と小さく、延
性が低いので好ましくなく、更に、酸化増量も23g/m
2と大きく耐酸化性が悪い。
As is clear from Table 6, the sample No. 28 of Comparative Example 1 is not preferable because the room temperature elongation is as small as 0.12 due to the low HIP temperature and the ductility is low, and further, the oxidation amount is increased. Also has a large oxidation resistance of 20 g / m 2 . Further, the sample No. 29 is not preferable because the room temperature tensile strength is as low as 290 MPa due to the high HIP temperature and the strength is low. Further, the sample No. 30 is not preferable because the room temperature elongation is as small as 0.33 due to the short HIP temperature treatment time and the ductility is low, and the oxidation weight increase is also 23 g / m 2.
It has a large value of 2 and poor oxidation resistance.

【0043】(比較例2)ヘリウムガスアトマイズ法で
製作したAl粉末(297μm以下)と、Na法で作製
されたスポンジチタン粉末(149μm以下)とを、最
終組成で表5の試料No.31,32となる様に混合後、
アルミニウム容器に挿入し、本容器内を加熱しながら真
空排気し脱気処理を実施した。その後、容器ごと熱間押
出を行った。押出温度は450℃、押出比は350とし
た。得られた押出材からアルミニウム容器を外削除去
し、反応合成用素材とした。
(Comparative Example 2) Al powder (297 μm or less) produced by the helium gas atomizing method and sponge titanium powder (149 μm or less) produced by the Na method were used as sample Nos. 31 and 32 in Table 5 in the final composition. After mixing so that
It was inserted into an aluminum container, and the interior of this container was evacuated while heating to degas. Then, the container was hot extruded. The extrusion temperature was 450 ° C. and the extrusion ratio was 350. The aluminum container was removed from the obtained extruded material to obtain a raw material for reaction synthesis.

【0044】この押出材(表5の試料No.31,32)
について、HIP(1300℃×10時間)にて反応合
成を行いTi−Al系金属間化合物とした。つまり、反
応合成と均質化処理を連続して一連の処理として行っ
た。その処理条件等を表5に示す。
This extruded material (Sample Nos. 31 and 32 in Table 5)
Was subjected to reaction synthesis by HIP (1300 ° C. × 10 hours) to obtain a Ti—Al-based intermetallic compound. That is, the reaction synthesis and the homogenization treatment were continuously performed as a series of treatments. Table 5 shows the processing conditions and the like.

【0045】そして、得られたTi−Al系金属間化合
物について、前記実施例1と同様に、常温にて引張試験
を実施し、更に高温耐酸化性試験を実施した。この試験
の結果を表6に示す。この表6から明らかな様に、比較
例2の試料No.31,32のものは、Alの含有量が前
記所定範囲外であるために、常温伸びが0.22%以下
であり、延性が低いので好ましくなく、更に試料No.3
1のものは酸化増量も18g/m2と大きく耐酸化性が悪
い。
Then, the Ti--Al based intermetallic compound thus obtained was subjected to a tensile test at room temperature and further to a high temperature oxidation resistance test in the same manner as in Example 1. The results of this test are shown in Table 6. As is clear from Table 6, the sample Nos. 31 and 32 of Comparative Example 2 have room temperature elongation of 0.22% or less and ductility because the Al content is out of the predetermined range. It is unfavorable because it is too low.
No. 1 has a large oxidation gain of 18 g / m 2 and is poor in oxidation resistance.

【0046】[0046]

【表5】 [Table 5]

【0047】[0047]

【表6】 [Table 6]

【0048】つまり、本実施例のTi−Al系金属間化
合物の製造方法によれば、上述した所定組成の材料を所
定の条件にて均質化処理を行なうので、常温引張強度や
伸びの性質が優れるとともに、高温耐酸化性に優れたT
i−Al系金属間化合物を製造することができる。それ
に対して、比較例のものは、その様な組成の材料又は条
件にて均質化処理を行わないので、常温引張強度や伸び
の性質に劣り、常温延性が高くなく、しかも高温耐酸化
性がそれほど高くないので各種の構造材料として必ずし
も好ましくない。
That is, according to the method of manufacturing the Ti-Al intermetallic compound of the present embodiment, the material having the above-mentioned predetermined composition is homogenized under predetermined conditions, so that the properties of normal temperature tensile strength and elongation are improved. T, which is excellent as well as excellent in high temperature oxidation resistance
An i-Al-based intermetallic compound can be produced. On the other hand, in the comparative example, since homogenization treatment is not performed under the material or conditions of such composition, the room temperature tensile strength and elongation properties are poor, the room temperature ductility is not high, and the high temperature oxidation resistance is high. Since it is not so expensive, it is not always preferable as various structural materials.

【0049】尚、本発明は、上記実施例に何等限定され
ず、本発明の要旨の範囲内において各種の態様で実施で
きることは勿論である。
The present invention is not limited to the above-described embodiments, and it goes without saying that the present invention can be implemented in various modes within the scope of the gist of the present invention.

【0050】[0050]

【発明の効果】以上詳述したことから明らかな様に、請
求項1のTi−Al系金属間化合物の製造方法では、所
定組成のAl及びTiの反応合成後に、非酸化性雰囲気
中にて1170以上1400℃未満の温度範囲で均質化
処理を行なうので、常温延性や高温耐酸化性が大きく優
れた軽量耐熱材料が得られる。
As is clear from the above description, in the method for producing the Ti-Al intermetallic compound according to the first aspect of the present invention, after the reaction synthesis of Al and Ti having a predetermined composition, it is performed in a non-oxidizing atmosphere. Since the homogenization treatment is performed in the temperature range of 1170 to 1400 ° C., a lightweight heat resistant material having excellent room temperature ductility and high temperature oxidation resistance can be obtained.

【0051】また、請求項2の発明では、前記X成分を
加えるので、一層常温延性が向上するという利点がある
とともに、前記Y成分を加えるので、一層高温耐酸化性
が向上するという利点がある。その上、請求項3の発明
では、材料として前記X,Y成分を含む種々の合金を使
用するので、得られる金属間化合物が容易に均質化して
常温延性や高温耐酸化性の優れた化合物が得られる。
Further, in the invention of claim 2, since the X component is added, there is an advantage that the room temperature ductility is further improved, and since the Y component is added, there is an advantage that the high temperature oxidation resistance is further improved. .. Moreover, in the invention of claim 3, since various alloys containing the X and Y components are used as the material, the obtained intermetallic compound is easily homogenized to obtain a compound excellent in room temperature ductility and high temperature oxidation resistance. can get.

【図面の簡単な説明】[Brief description of drawings]

【図1】 Ti−Al系金属間化合物の状態図である。FIG. 1 is a phase diagram of a Ti—Al-based intermetallic compound.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Ti系材料とAl系材料との混合,脱気
及び真空封入を行った後に、この封入された混合粉末を
反応合成温度以下で塑性変形し、更に塑性変形された混
合体を反応合成温度以上に加熱して反応焼結を行なっ
て、Al:40〜50at%残部実質TiからなるTi
−Al系金属間化合物を製造するTi−Al系金属間化
合物の製造方法であって、 前記反応合成後に、非酸化性雰囲気中にて、Ti3Al
が消失する1170℃以上1400℃未満の温度範囲
で、0.2時間以上均質化熱処理を施すことを特徴とす
るTi−Al系金属間化合物の製造方法。
1. A Ti-based material and an Al-based material are mixed, deaerated, and vacuum sealed, and then the sealed mixed powder is plastically deformed at a temperature lower than the reaction synthesis temperature. Al: 40 to 50 at% balance Ti substantially consisting of Ti by reaction sintering by heating above the reaction synthesis temperature.
A method of manufacturing a Ti-Al system intermetallic compound to produce a -Al-based intermetallic compound, after the reaction synthesis, in a non-oxidizing atmosphere, Ti 3 Al
A method for producing a Ti-Al-based intermetallic compound, which comprises performing a homogenizing heat treatment for 0.2 hours or more in a temperature range of 1170 ° C. or more and less than 1400 ° C.
【請求項2】 添加元素XとしてMn,Cr,Vのうち
少なくとも一種以上を反応合成後の最終組成で0.5〜
3at%、及び/又は添加元素YとしてNb,Mo,
W,Ta,Siのうち少なくとも一種以上を反応合成後
の最終組成で0.5〜3at%含むTi−Al系金属間
化合物を製造することを特徴とする前記請求項1記載の
Ti−Al系金属間化合物の製造方法。
2. The final composition after reaction synthesis of at least one of Mn, Cr, and V as the additional element X is 0.5 to 0.5.
3 at% and / or Nb, Mo, or Y as an additional element Y
The Ti-Al-based intermetallic compound according to claim 1, wherein a Ti-Al-based intermetallic compound containing 0.5 to 3 at% of the final composition after reaction synthesis of at least one of W, Ta and Si is produced. Method for producing intermetallic compound.
【請求項3】 Ti−X合金粉末,Al−X合金粉末,
Ti−Y合金粉末,Al−Y合金粉末,Ti−X−Y合
金粉末,Al−X−Y合金粉末のうちの少なくとも一種
以上を用いて、Ti−Al系金属間化合物を製造するこ
とを特徴とする前記請求項2記載のTi−Al系金属間
化合物の製造方法。
3. A Ti—X alloy powder, an Al—X alloy powder,
A Ti-Al-based intermetallic compound is manufactured by using at least one or more of Ti-Y alloy powder, Al-Y alloy powder, Ti-XY alloy powder, and Al-XY alloy powder. The method for producing a Ti-Al-based intermetallic compound according to claim 2.
JP4044937A 1992-03-02 1992-03-02 Production of ti-al intermetallic compound Pending JPH05239571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4044937A JPH05239571A (en) 1992-03-02 1992-03-02 Production of ti-al intermetallic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4044937A JPH05239571A (en) 1992-03-02 1992-03-02 Production of ti-al intermetallic compound

Publications (1)

Publication Number Publication Date
JPH05239571A true JPH05239571A (en) 1993-09-17

Family

ID=12705400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4044937A Pending JPH05239571A (en) 1992-03-02 1992-03-02 Production of ti-al intermetallic compound

Country Status (1)

Country Link
JP (1) JPH05239571A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007135806A1 (en) * 2006-05-18 2007-11-29 Osaka Titanium Technologies Co., Ltd. Process for producing spherical titanium alloy powder
WO2013013518A1 (en) * 2012-01-18 2013-01-31 深圳市新星轻合金材料股份有限公司 Sealing ring and preparation method therefor
RU2698081C1 (en) * 2019-03-26 2019-08-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) Method of producing monophase intermetallic alloy with high degree of homogeneity based on titanium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007135806A1 (en) * 2006-05-18 2007-11-29 Osaka Titanium Technologies Co., Ltd. Process for producing spherical titanium alloy powder
WO2013013518A1 (en) * 2012-01-18 2013-01-31 深圳市新星轻合金材料股份有限公司 Sealing ring and preparation method therefor
GB2503388A (en) * 2012-01-18 2013-12-25 Shenzhen Sunxing Light Alloys Materials Co Ltd Sealing ring and preparation method therefor
GB2503388B (en) * 2012-01-18 2015-01-14 Shenzhen Sunxing Light Alloys Materials Co Ltd Sealing ring and preparation method thereof
RU2698081C1 (en) * 2019-03-26 2019-08-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) Method of producing monophase intermetallic alloy with high degree of homogeneity based on titanium

Similar Documents

Publication Publication Date Title
US6902699B2 (en) Method for preparing cryomilled aluminum alloys and components extruded and forged therefrom
CN109182882B (en) Preparation method of high-strength oxide dispersion-strengthened Fe-based alloy
JP3395443B2 (en) High creep strength titanium alloy and its manufacturing method
JP2017122279A (en) Method for producing member made of titanium-aluminum based alloy, and the member
US20120180913A1 (en) Titanium alloy microstructural refinement method and high temperature-high strain rate superplastic forming of titanium alloys
JPH04154933A (en) Production of aluminum alloy having high strength and high toughness and alloy stock
JPH0543958A (en) Production of oxidation resistant titanium aluminide
JPH0941065A (en) High strength magnesium alloy and its production
JPH0832934B2 (en) Manufacturing method of intermetallic compounds
JPH05239571A (en) Production of ti-al intermetallic compound
JP6885900B2 (en) Ti-Fe-based sintered alloy material and its manufacturing method
JPH05255827A (en) Production of alloy based on tial intermetallic compound
JPH073375A (en) High strength magnesium alloy and production thereof
JPH05247562A (en) Manufacture of ti-al intermetallic compound
JP2588889B2 (en) Forming method of Ti-Al based intermetallic compound member
JPH05247561A (en) Manufacture of ti-al intermetallic compound
JP3252481B2 (en) Tungsten alloy having fine crystal grains and method for producing the same
JP2636114B2 (en) Production of TiAl-based intermetallic compounds by diffusion synthesis
JP2803455B2 (en) Manufacturing method of high density powder sintered titanium alloy
JPH0649569A (en) High strength tial intermetallic compound
JPH07188701A (en) Al3ti dispersion strengthened aluminum alloy, its powder, and their production
JPS63140049A (en) Forming method for ti-al intermetallic compound member
JPH06306513A (en) Production of high fatigue strength sintered titanium alloy
JPH0633165A (en) Manufacture of sintered titanium alloy
CN117248149A (en) Intermetallic compound phase coated nano oxide phase reinforced iron-based alloy and preparation method thereof