JPH05247561A - Manufacture of ti-al intermetallic compound - Google Patents

Manufacture of ti-al intermetallic compound

Info

Publication number
JPH05247561A
JPH05247561A JP4044938A JP4493892A JPH05247561A JP H05247561 A JPH05247561 A JP H05247561A JP 4044938 A JP4044938 A JP 4044938A JP 4493892 A JP4493892 A JP 4493892A JP H05247561 A JPH05247561 A JP H05247561A
Authority
JP
Japan
Prior art keywords
intermetallic compound
powder
alloy powder
room temperature
ductility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4044938A
Other languages
Japanese (ja)
Inventor
Bokujiyun Kin
睦淳 金
Kazuhisa Shibue
和久 渋江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP4044938A priority Critical patent/JPH05247561A/en
Publication of JPH05247561A publication Critical patent/JPH05247561A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a Ti-Al intermetallic compound excellent in oxidation resistance at a high temp. and ductility at ordinary temp. by executing prescribed homogenizing treatment. CONSTITUTION:This Ti-Al intermetallic compound consisting of 40 to 50at% Al, and the balance substantial Ti is manufactured by mixing, deaerating and vacuum-sealing a Ti-based material and an Al-based material thereafter subjecting the sealed mixture of powder to plastic deformation at the reacting and synthesizing temp. or below and heating the mixture subjected to the plastic deformation to the reacting and synthesizing temp. or above to subject the mixture to reaction sintering. As the Ti-based material, Ti powder or Ti alloy powder having <50mum grain size is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車分野,航空宇宙
分野,産業機械分野等の軽量耐熱或は高比剛性が要求さ
れる分野に使用されるTi−Al系金属間化合物の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Ti-Al intermetallic compound used in fields such as automobile fields, aerospace fields, industrial machinery fields, etc., where light weight heat resistance or high specific rigidity is required. ..

【0002】[0002]

【従来の技術】近年、例えば自動車分野においては、軽
量化や高性能化が求められ、その内燃機関(エンジン)
用部品においても軽量化が要求されている。例えばエン
ジンバルブにおいては、従来より、鋼或はNi合金が使
用されているが、これらは密度が約8g/cm3と大きなも
のである。従って、このバルブを軽量化すれば、バルブ
の慣性質量を小さくすることができるので、エンジンの
高回転化が可能となり、よって自動車の高性能化が図ら
れるものと期待されている。
2. Description of the Related Art In recent years, for example, in the field of automobiles, there has been a demand for weight reduction and higher performance.
The parts are also required to be lighter. For example, in engine valves, steel or Ni alloy has been conventionally used, but these have a large density of about 8 g / cm 3 . Therefore, if the weight of this valve is reduced, the inertial mass of the valve can be reduced, so that the engine can be rotated at a high speed and the performance of the vehicle is expected to be improved.

【0003】そこで、軽量でしかも耐熱性を備えた材料
として、Ti−Al系金属間化合物が注目されている。
例えば排気バルブの作動温度付近の800℃におけるT
i−Al系金属間化合物の高温強度は、代表的なバルブ
鋼であるSUH35のものとほぼ同等であり、しかも密
度は約1/2である。このため、Ti−Al系金属間化
合物は有力な軽量耐熱材料と考えられている。
Therefore, as a material which is lightweight and has heat resistance, a Ti--Al based intermetallic compound has been attracting attention.
For example, T at 800 ° C near the operating temperature of the exhaust valve
The high temperature strength of the i-Al intermetallic compound is almost the same as that of SUH35, which is a typical valve steel, and the density is about 1/2. Therefore, the Ti-Al-based intermetallic compound is considered to be a powerful lightweight heat resistant material.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、Ti−
Al系金属間化合物は、主に以下の理由によりその実用
化が阻害されている。 難加工材のため、部品への形状付与が困難であるこ
と。
However, Ti-
Practical use of Al-based intermetallic compounds is hindered mainly due to the following reasons. Since it is a difficult-to-process material, it is difficult to give shape to parts.

【0005】耐酸化性が必ずしも十分ではないこと。 常温延性が乏しいこと。 そこで、これらの課題を克服するために、近年では種々
の研究開発が行われている。例えばTi−Al系金属間
化合物の形状付与の困難性の低減(特公平1−308
98号公報参照)や耐酸化性の向上(特願平3−18
453号参照)の研究等である。この研究の内容は、具
体的には、Ti粉末或はTi合金粉末とAl粉末或はA
l合金粉末とを、混合し脱気し更に真空封入した後に、
真空封入した混合粉末を反応合成温度以下で塑性変形
し、塑性変形した混合体を反応温度以上に加熱して反応
焼結することによってTi−Al系金属間化合物を製造
する技術に関するものである。
The oxidation resistance is not always sufficient. Poor room temperature ductility. Therefore, in order to overcome these problems, various researches and developments have been conducted in recent years. For example, reduction of difficulty in imparting a shape of Ti-Al intermetallic compound (Japanese Patent Publication No. 1-308
98) and improvement of oxidation resistance (Japanese Patent Application No. 3-18).
453)). The contents of this research are specifically Ti powder or Ti alloy powder and Al powder or A powder.
1 alloy powder, mixed, deaerated, and further vacuum sealed,
The present invention relates to a technique for producing a Ti—Al-based intermetallic compound by plastically deforming a vacuum-filled mixed powder at a reaction synthesis temperature or lower, and heating the plastically deformed mixture at a reaction temperature or higher to perform reaction sintering.

【0006】しかしながら上述した反応焼結法の技術に
よっても、前記の常温延性については十分に改善され
ておらず、また、の耐酸化性についても950℃を越
える高温では局部的に酸化されることがあり、必ずしも
十分でない。本発明は、Ti−Al系金属間化合物の特
性の改善について多面的に研究を実施した結果として得
られたものであり、その目的は、所定の均質化処理を行
なうことにより、常温延性に優れしかも高温における耐
酸化性に優れたTi−Al系金属間化合物の製造方法を
提供することにある。
However, even by the above-mentioned reaction sintering technique, the room temperature ductility is not sufficiently improved, and the oxidation resistance of the above is locally oxidized at a high temperature exceeding 950 ° C. There is not always enough. The present invention has been obtained as a result of conducting multifaceted research on the improvement of the properties of Ti-Al-based intermetallic compounds, and its object is to achieve excellent room temperature ductility by performing a predetermined homogenization treatment. Moreover, it is to provide a method for producing a Ti-Al-based intermetallic compound having excellent oxidation resistance at high temperatures.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
の請求項1の発明は、Ti系材料とAl系材料との混
合,脱気及び真空封入を行った後に、この封入された混
合粉末を反応合成温度以下で塑性変形し、更に塑性変形
された混合体を反応合成温度以上に加熱して反応焼結を
行なって、Al:40〜50at%残部実質Tiからな
るTi−Al系金属間化合物を製造するTi−Al系金
属間化合物の製造方法であって、前記Ti系材料とし
て、粒径50μm未満のTi粉末又はTi合金粉末を用
いることを特徴とするTi−Al系金属間化合物の製造
方法を要旨とする。
In order to achieve this object, the invention of claim 1 is to mix the Ti-based material and the Al-based material, perform deaeration and vacuum encapsulation, and then, enclose the mixed powder. Is plastically deformed below the reaction synthesis temperature, and the plastically deformed mixture is heated to the reaction synthesis temperature or higher to perform reaction sintering, and Al: 40-50 at% balance Ti-Al-based intermetallic A method for producing a Ti-Al intermetallic compound for producing a compound, comprising using Ti powder or Ti alloy powder having a particle size of less than 50 μm as the Ti-based material. The manufacturing method is the main point.

【0008】請求項2の発明は、添加元素XとしてM
n,Cr,Vのうち少なくとも一種以上を反応合成後の
最終組成で0.5〜3at%、及び/又は添加元素Yと
してNb,Mo,W,Ta,Siのうち少なくとも一種
以上を反応合成後の最終組成で0.5〜3at%含むT
i−Al系金属間化合物を製造することを特徴とする前
記請求項1記載のTi−Al系金属間化合物の製造方法
を要旨とする。
According to the second aspect of the invention, the additional element X is M
0.5 to 3 at% of the final composition after reaction synthesis of at least one or more of n, Cr and V, and / or after reaction synthesis of at least one or more of Nb, Mo, W, Ta and Si as an additional element Y. The final composition of T contains 0.5 to 3 at%
The gist of the method for producing a Ti-Al intermetallic compound according to claim 1 is to produce an i-Al intermetallic compound.

【0009】請求項3の発明はTi−X合金粉末,Al
−X合金粉末,Ti−Y合金粉末,Al−Y合金粉末,
Ti−X−Y合金粉末,Al−X−Y合金粉末のうちの
少なくとも一種以上を用いて、Ti−Al系金属間化合
物を製造することを特徴とする前記請求項2記載のTi
−Al系金属間化合物の製造方法を要旨とする。
According to the invention of claim 3, Ti-X alloy powder, Al
-X alloy powder, Ti-Y alloy powder, Al-Y alloy powder,
The Ti-Al-based intermetallic compound is produced by using at least one or more of a Ti-XY alloy powder and an Al-XY alloy powder.
A gist is a method of manufacturing an Al-based intermetallic compound.

【0010】ここで、各請求項の数値を規定する理由を
説明する。 1)Tiの粒径:50μm未満 50μmを越えると、反応合成後、50μm以上の不均質
粗大粒が存在することがあり、これが破壊の起点となっ
て常温延性を低下させることがある。また高温で局部的
に著しく酸化されることがある。
Now, the reason for defining the numerical values of each claim will be described. 1) Grain size of Ti: less than 50 μm If it exceeds 50 μm, heterogeneous coarse particles of 50 μm or more may be present after the reaction synthesis, and this may be a starting point of fracture to lower the room temperature ductility. It may also be locally oxidized significantly at high temperatures.

【0011】2)Al:40〜50at% 上下限の範囲外においては、いずれも延性が低下する。 3) X:0.5〜3at% この範囲内の添加量にて常温延性の向上に効果がある
が、下限未満ではその効果が見られず、一方、上限を越
えるとその効果が飽和するとともに、密度を大きくする
悪作用がある。尚、このうち、Mnは、この範囲内にて
ポアの発生を防ぐ効果がある。
2) Al: 40 to 50 at% Except for the upper and lower limits, the ductility decreases in all cases. 3) X: 0.5 to 3 at% Addition amounts within this range are effective in improving room-temperature ductility, but below the lower limit, the effect is not observed, while above the upper limit, the effect saturates. , There is a bad effect of increasing the density. Of these, Mn has the effect of preventing the generation of pores within this range.

【0012】4) Y:0.5〜3at% この範囲内の添加量にて高温耐酸化性の向上に効果があ
るが、下限未満ではその効果が見られず、一方、上限を
越えるとその効果が飽和するとともに、Siを除いて密
度を大きくする悪作用がある。
4) Y: 0.5 to 3 at% Addition amounts within this range are effective in improving high temperature oxidation resistance, but below the lower limit, no effect is observed, while above the upper limit, The effect is saturated, and there is an adverse effect of excluding Si and increasing the density.

【0013】つまり、常温延性は前記X成分の添加によ
って一層向上し、高温耐酸化性についてはY成分を添加
したときに改善が顕著に見られ、それらを組み合わせた
場合に、特に優れた常温延性及び高温耐酸化性が達成さ
れる。また、各X,Y成分を添加する場合には、X,Y
成分とTi,Alとの合金粉末のかたちで添加すると、
金属間化合物が均質になり易いので好適である。
That is, the room temperature ductility is further improved by the addition of the X component, and the high temperature oxidation resistance is remarkably improved when the Y component is added. When these are combined, particularly excellent room temperature ductility is obtained. And high temperature oxidation resistance is achieved. When adding each X, Y component, X, Y
When added in the form of alloy powder of the components and Ti, Al,
It is suitable because the intermetallic compound is likely to be homogeneous.

【0014】[0014]

【作用】本発明は、反応焼結法で得られるTi−Al系
金属間化合物の延性や耐酸化性の改善について多面的に
研究を実施した結果として得られたものであり、以下に
示す様に、原料に使用するTi系材料の粒径を調節する
ことにより、組成が均質で、常温延性及び高温耐酸化性
に優れたTi−Al系金属間化合物を製造することがで
きる。
The present invention was obtained as a result of multifaceted research on improvement of ductility and oxidation resistance of Ti-Al intermetallic compounds obtained by the reaction sintering method. In addition, by adjusting the particle size of the Ti-based material used as the raw material, it is possible to produce a Ti-Al-based intermetallic compound having a uniform composition and excellent in room temperature ductility and high temperature oxidation resistance.

【0015】反応焼結法により作製されたTi−Al材
において、常温延性が乏しいものや高温耐酸化性に劣る
ものを詳細に調査検討したところ、金属組織中にα
2(Ti3Al)相に取り囲まれたα−Ti相、或はTi
−リッチなα2相からなる50μm以上の粗大な不均質粒
(以下、粗大粒と略す)が存在し、これら粗大粒が破壊
の起点となり本材の延性を低下させていることや、粗大
粒の部分で酸化が進行し易いことが明かとなった。
Of the Ti--Al materials produced by the reaction sintering method, those having poor room temperature ductility and poor high temperature oxidation resistance were investigated and examined in detail.
Α-Ti phase surrounded by 2 (Ti 3 Al) phase, or Ti
-There are coarse inhomogeneous particles of 50 μm or more (hereinafter abbreviated as coarse particles) consisting of rich α 2 phase, and these coarse particles serve as the starting point of fracture and reduce the ductility of this material. It was revealed that the oxidation was easy to proceed in the area.

【0016】この粗大粒は、本プロセスにおいて、Ti
粉末とAl粉末とを、混合,脱気及び真空封入後、封入
した混合粉末を反応合成温度以下で塑性変形し、塑性変
形した混合体における50μm以上のTi粒に対応して
いる。つまり、本材の延性や耐酸化性を向上させるため
には、粗大粒を消失させればよいことが明瞭となった。
The coarse particles are not
The powder and the Al powder are mixed, degassed, and vacuum sealed, and then the sealed mixed powder is plastically deformed at a temperature lower than the reaction synthesis temperature, which corresponds to Ti particles of 50 μm or more in the plastically deformed mixture. That is, it became clear that in order to improve the ductility and oxidation resistance of this material, it is sufficient to eliminate the coarse particles.

【0017】そこで、本発明では、原料のTi系材料で
あるTi粉末やTi合金粉末の最大粒径を50μm未満
とすることにより、粗大粒を消失させて、常温延性及び
高温耐酸化性を改善するものである。
Therefore, in the present invention, by setting the maximum particle size of Ti powder or Ti alloy powder, which is a Ti-based material, to be less than 50 μm, coarse particles are eliminated and room temperature ductility and high temperature oxidation resistance are improved. To do.

【0018】[0018]

【実施例】以下、本発明を具体化した実施例を、比較例
とともに説明する。 (実施例1)チタン粉末を44μm以下又は20μm以下
にふるい分けた後、アルゴンガスアトマイズ法で作製し
たAl粉末を297,149,105又は44μm以下
にふるい分け、最終組成でTi−48at%Alとなる
様にチタンとアルミニウムを混合した。この混合物をア
ルミニウム容器に挿入して、本容器内を加熱しながら真
空排気し脱気処理を実施した。その後、容器ごと熱間押
出を行ったが、押出温度は440℃、押出比は400と
した。得られた押出材からアルミニウム容器を外削除去
し、反応合成用素材とした。
EXAMPLES Examples embodying the present invention will be described below together with comparative examples. (Example 1) After sieving titanium powder to 44 μm or less or 20 μm or less, Al powder produced by an argon gas atomizing method is sieved to 297, 149, 105 or 44 μm or less so that the final composition is Ti-48 at% Al. Titanium and aluminum were mixed. This mixture was inserted into an aluminum container, and the interior of the container was heated and evacuated to perform deaeration. After that, hot extrusion was performed together with the container, and the extrusion temperature was 440 ° C. and the extrusion ratio was 400. The aluminum container was removed from the obtained extruded material to obtain a raw material for reaction synthesis.

【0019】この押出材(下記表1の試料No.1〜5)
について、HIPにて反応合成(560℃)を行い、T
i−Al系金属間化合物とした後、引き続いてHIP中
にて、均質化処理を実施した(温度:1150℃,時
間:24時間,圧力150MPa)。
This extruded material (Sample Nos. 1 to 5 in Table 1 below)
About, the reaction synthesis (560 ℃) was performed by HIP, and
After forming the i-Al-based intermetallic compound, it was subsequently homogenized in HIP (temperature: 1150 ° C., time: 24 hours, pressure 150 MPa).

【0020】そして、この様な製造方法によって得られ
たTi−Al系金属間化合物について、引張試験片を作
製し(平行部径:φ5mm、標点間距離:15mm)、常温
にて引張試験(ひずみ速度:10-3/秒)を実施した。
また、高温酸化試験(950℃×50時間)を大気中に
て実施した。この試験の結果を前記製造条件とともに下
記表1に示す。
Tensile test pieces were prepared for the Ti--Al based intermetallic compound obtained by the above manufacturing method (diameter of parallel part: φ5 mm, gauge length: 15 mm), and tensile test was carried out at room temperature ( Strain rate: 10 −3 / sec) was carried out.
Further, a high temperature oxidation test (950 ° C. × 50 hours) was carried out in the atmosphere. The results of this test are shown in Table 1 below together with the above production conditions.

【0021】表1から明らかな様に、本実施例の試料N
o.1〜5のものは、常温引張強さが全て450MPa以上
で、しかも常温伸びが0.58%以上であり、強度と延
性に優れ好適である。更に、酸化増量も13g/m2以下
と少なく耐酸化性にも優れている。
As is clear from Table 1, sample N of this example
Those of o.1 to 5 all have room temperature tensile strength of 450 MPa or more and room temperature elongation of 0.58% or more, and are excellent in strength and ductility and are suitable. Further, the increase in oxidation is as small as 13 g / m 2 or less, and the oxidation resistance is excellent.

【0022】(実施例2)PREP(Plasma Arc Rotat
ing Electrode Process)法で作製されたTi粉末(2
50μm以下)を44μm以下に粉砕し、この粉砕したT
i粉末と、ヘリウムガスアトマイズ法で作製されたAl
粉末(149μm以下)とを、最終組成でTi−48a
t%Alとなる様に混合した。この混合物をアルミニウ
ム容器に挿入し、本容器内を加熱しながら真空排気し脱
気処理を実施した。その後、容器ごと熱間押出を行った
が、押出温度は400℃、押出比は450とした。得ら
れた押出材からアルミニウム容器を外削除去し、反応合
成用素材とした。
Example 2 PREP (Plasma Arc Rotat)
Ti powder (2)
50 μm or less) is pulverized to 44 μm or less, and the pulverized T
i powder and Al produced by the helium gas atomization method
Powder (149 μm or less) with the final composition of Ti-48a
It was mixed so as to be t% Al. This mixture was inserted into an aluminum container, which was evacuated while heating the inside of the container to perform deaeration. After that, hot extrusion was performed together with the container, and the extrusion temperature was 400 ° C. and the extrusion ratio was 450. The aluminum container was removed from the obtained extruded material to obtain a raw material for reaction synthesis.

【0023】この押出材(表1の試料No.6)につい
て、前記第1実施例と同様にして、HIPでの反応合成
及び均質化処理を実施した。得られたTi−Al系金属
間化合物について、前記実施例1と同様に、常温にて引
張試験を実施した。この試験の結果を前記製造条件とと
もに表1に示す。
This extruded material (Sample No. 6 in Table 1) was subjected to reaction synthesis by HIP and homogenization treatment in the same manner as in the first embodiment. A tensile test was performed on the obtained Ti-Al-based intermetallic compound at room temperature in the same manner as in Example 1. The results of this test are shown in Table 1 together with the above production conditions.

【0024】表1から明らかな様に、試料No.6のもの
は、常温引張強さが480MPaで、しかも常温伸びが0.
55%であり、強度と延性に優れ好適である。 (実施例3)ヘリウムガスアトマイズ法で製作されたA
l粉末或はAl−X−Y合金粉末(297μm以下)
と、Na法で作製されたスポンジチタン粉末(44μm
以下)とを、最終組成で表1の試料No.7〜18となる
様に混合した(ただし試料No.12ではPREP製Ti
−V合金粉末を44μm以下に粉砕したものを用い
た)。この混合物をアルミニウム容器に挿入し、本容器
内を加熱しながら真空排気し脱気処理を実施した。その
後、容器ごと熱間押出を行ったが、押出温度は450
℃、押出比は350とした。得られた押出材からアルミ
ニウム容器を外削除去し、反応合成用素材とした。
As is apparent from Table 1, the sample No. 6 has a room temperature tensile strength of 480 MPa and a room temperature elongation of 0.
55%, which is excellent in strength and ductility, which is preferable. (Example 3) A produced by the helium gas atomizing method
l powder or Al-XY alloy powder (297 μm or less)
And a titanium sponge powder (44 μm
The following was mixed so that the final composition would be sample Nos. 7 to 18 in Table 1 (however, in sample No. 12, Ti manufactured by PREP was used.
-V alloy powder was pulverized to 44 μm or less). This mixture was inserted into an aluminum container, which was evacuated while heating the inside of the container to perform deaeration. After that, hot extrusion was performed together with the container, but the extrusion temperature was 450.
C. and the extrusion ratio was 350. The aluminum container was removed from the obtained extruded material to obtain a raw material for reaction synthesis.

【0025】この押出材(表1の試料No.7〜18)に
ついて、前記第1実施例と同様にして、HIPでの反応
合成及び均質化処理を実施した。得られたTi−Al系
金属間化合物について、前記実施例1と同様に、常温に
て引張試験を実施し、又一部の化合物について高温耐酸
化試験を実施した。この試験の結果を前記製造条件とと
もに表1に示す。
This extruded material (Sample Nos. 7 to 18 in Table 1) was subjected to reaction synthesis with HIP and homogenization treatment in the same manner as in the first embodiment. The Ti—Al-based intermetallic compound thus obtained was subjected to a tensile test at room temperature in the same manner as in Example 1, and a high temperature oxidation resistance test was performed for some of the compounds. The results of this test are shown in Table 1 together with the above production conditions.

【0026】表1から明らかな様に、試料No.7〜18
のものは、常温引張強さが全て448MPa以上で、しか
も常温伸びが0.51%以上であり、強度と延性に優れ
好適である。更に酸化増量も15g/m2以下と少なく耐
酸化性にも優れている。特に、表中にXで示すMn,C
r,Vを所定量(0.5〜3at%)添加したもの(試
料No.9〜12,No.18)では、常温引張強さが全て4
78MPa以上で、しかも常温伸びが1.15%以上であ
り、強度と延性に一層優れ好適である。
As is clear from Table 1, sample Nos. 7-18
All of them have room temperature tensile strength of 448 MPa or more and room temperature elongation of 0.51% or more, and are excellent in strength and ductility, and are suitable. Further, the increase in oxidation is as small as 15 g / m 2 or less, and the oxidation resistance is excellent. In particular, Mn and C indicated by X in the table
In the case where the specified amounts of r and V (0.5 to 3 at%) were added (Sample Nos. 9 to 12 and No. 18), the room temperature tensile strength was all 4
It has a tensile strength of not less than 78 MPa and an elongation at room temperature of not less than 1.15%, which is excellent in strength and ductility, which is preferable.

【0027】また、表中にYで示すNb,Mo,W,T
a,Siを添加したもの(試料No.13〜17)では、
常温引張強さが全て470MPa以上で、しかも常温伸び
が0.62%以上であり、強度と延性に優れ好適である
とともに、酸化増量が4g/m2以下と小さく耐酸化性も
極めて優れている。
Further, Nb, Mo, W, T indicated by Y in the table
With a and Si added (Sample Nos. 13 to 17),
Room temperature tensile strength is all 470 MPa or more, room temperature elongation is 0.62% or more, and it is excellent in strength and ductility and suitable, and the oxidation weight increase is 4 g / m 2 or less and the oxidation resistance is also very excellent. ..

【0028】[0028]

【表1】 [Table 1]

【0029】(実施例4)ヘリウムガスアトマイズ法で
製作したAl粉末又はAl−X−Y合金粉末(149μ
m以下)と、チタン粉末(44μm以下)とを、最終組成
で下記表2の試料No.19〜22となる様に混合後、前
記実施例3と同様な条件で、押出,HIPでの反応合成
及び均質化処理を施した。
(Embodiment 4) Al powder or Al-XY alloy powder (149 μm) manufactured by the helium gas atomizing method.
m) and titanium powder (44 μm or less) are mixed so that the final composition is Sample Nos. 19 to 22 in Table 2 below, and then extrusion and HIP reaction are performed under the same conditions as in Example 3 above. A synthesis and homogenization treatment was performed.

【0030】そして、得られたTi−Al系金属間化合
物について、前記実施例1と同様に、常温にて引張試験
を実施し、また高温酸化試験を実施した。この試験の結
果を前記製造条件とともに表2に示す。表2から明らか
な様に、試料No.19〜22のものは、いずれも常温引
張強さが455MPa以上で、しかも常温伸びが0.52%
以上で、更に酸化増量が10g/m2以下であり好ましい
が、X成分やY成分の添加量が少ない試料No.19,2
1の場合には、必ずしも顕著な延性や耐酸化性の性能の
向上は見られない。尚、添加量の多い試料No.20,2
2の場合には、効果が飽和していた。
Then, the Ti--Al based intermetallic compound thus obtained was subjected to a tensile test at room temperature and a high temperature oxidation test in the same manner as in Example 1. The results of this test are shown in Table 2 together with the above manufacturing conditions. As is clear from Table 2, the samples Nos. 19 to 22 all have room temperature tensile strength of 455 MPa or more and room temperature elongation of 0.52%.
With the above, it is preferable that the amount of increase in oxidation is 10 g / m 2 or less, but the addition amount of X component and Y component is small.
In the case of 1, no remarkable improvement in ductility and oxidation resistance performance was observed. Samples No. 20 and 2 with a large addition amount
In the case of 2, the effect was saturated.

【0031】[0031]

【表2】 [Table 2]

【0032】(比較例1)チタン粉末(105μm以
下)とアルミニウム粉末(149μm以下)とを混合し
(試料No.23)、或はチタン粉末(297μm以下)と
アルミニウム粉末(44μm)とを混合し(試料No.2
4)、最終組成でTi−48at%Alとなる様に調製
した。次いで、前記実施例1と同様の条件で、押出,H
IPでの反応合成及び均質化処理を実施した。
Comparative Example 1 Titanium powder (105 μm or less) and aluminum powder (149 μm or less) were mixed (Sample No. 23), or titanium powder (297 μm or less) and aluminum powder (44 μm) were mixed. (Sample No. 2
4), so that the final composition was Ti-48 at% Al. Then, under the same conditions as in Example 1, extrusion, H
Reaction synthesis and homogenization treatment with IP was performed.

【0033】そして、得られたTi−Al系金属間化合
物について、前記実施例1と同様に、常温にて引張試験
を実施し、また高温酸化試験を実施した。この試験の結
果を前記製造条件とともに表3に示す。この表3から明
らかな様に、試料No.23,24のものは、それぞれ常
温引張強さが442,435MPaと比較的小さく、常温
伸びが0.24,0.14%と小さく、延性に劣るので好
ましくない。また、酸化増量はそれぞれ18,20g/m
2と大きく、耐酸化性に劣るので好ましくない。
Then, the obtained Ti--Al-based intermetallic compound
In the same manner as in Example 1, the tensile test at room temperature
And a high temperature oxidation test. The conclusion of this test
The fruits are shown in Table 3 together with the above production conditions. Clear from this table 3
As you can see, sample Nos. 23 and 24 are
Warm tensile strength is relatively small at 442,435MPa, at room temperature
Elongation is as small as 0.24 and 0.14%, and ductility is poor
Not good. In addition, the amount of oxidation increase is 18 and 20 g / m, respectively.
2It is not preferable because it is large and inferior in oxidation resistance.

【0034】(比較例2)ヘリウムガスアトマイズ法で
製作したAl粉末(149μm以下)と、チタン粉末
(44μm以下)とを、最終組成で下記表2の試料No.2
5,26となる様に混合後、前記実施例3と同様な条件
で、押出,HIPでの反応合成及び均質化処理を施し
た。
(Comparative Example 2) Al powder (149 μm or less) and titanium powder (44 μm or less) produced by the helium gas atomization method were used as sample No. 2 in Table 2 below in the final composition.
After mixing so as to be 5, 26, extrusion, reaction synthesis by HIP and homogenization treatment were performed under the same conditions as in Example 3.

【0035】そして、得られたTi−Al系金属間化合
物について、前記実施例1と同様に、常温にて引張試験
を実施し、また高温酸化試験を実施した。この試験の結
果を前記製造条件とともに表3に示す。この表3から明
らかな様に、試料No.25,26のAlの含有量が所定
範囲(40〜50at%)外のものは、それぞれ常温引
張強さが438,427MPaと比較的小さく、しかも常
温伸びが0.27,0.18%と小さく、延性に劣るので
好ましくない。また、試料No.25のものは酸化増量が
17g/m2と大きく、耐酸化性に劣るので好ましくな
い。
Then, the Ti--Al based intermetallic compound thus obtained was subjected to a tensile test at room temperature and a high temperature oxidation test in the same manner as in Example 1. The results of this test are shown in Table 3 together with the above production conditions. As is clear from Table 3, the sample Nos. 25 and 26 having Al contents outside the predetermined range (40 to 50 at%) have room temperature tensile strengths of 438 and 427 MPa, respectively, and are relatively small. Elongation is as small as 0.27, 0.18% and ductility is inferior, which is not preferable. Further, the sample No. 25 has a large increase in oxidation of 17 g / m 2 and is inferior in oxidation resistance, which is not preferable.

【0036】[0036]

【表3】 [Table 3]

【0037】つまり、本実施例のTi−Al系金属間化
合物の製造方法によれば、上述した粒径のTi粉末やT
i合金粉末を使用するので、常温引張強度や伸びの性質
が優れるとともに、高温耐酸化性に優れたTi−Al系
金属間化合物を製造することができる。それに対して、
比較例のものは、その様な粒径の材料を使用しないの
で、常温引張強度や伸びの性質に劣り、常温延性が高く
なく、しかも高温耐酸化性がそれほど高くないので各種
の構造材料として必ずしも好ましくない。
That is, according to the method for producing the Ti-Al intermetallic compound of this embodiment, Ti powder or T having the above-mentioned particle diameter is used.
Since the i alloy powder is used, it is possible to produce a Ti—Al-based intermetallic compound which has excellent properties of normal-temperature tensile strength and elongation and excellent high-temperature oxidation resistance. On the other hand,
The comparative examples do not use materials having such a particle size, so they are inferior in the properties of normal-temperature tensile strength and elongation, do not have high room-temperature ductility, and have high high-temperature oxidation resistance. Not preferable.

【0038】尚、本発明は、上記実施例に何等限定され
ず、本発明の要旨の範囲内において各種の態様で実施で
きることは勿論である。
The present invention is not limited to the above-described embodiments, and it goes without saying that the present invention can be implemented in various modes within the scope of the present invention.

【0039】[0039]

【発明の効果】以上詳述したことから明らかな様に、請
求項1のTi−Al系金属間化合物の製造方法では、T
i系材料として、粒径50μm未満のTi粉末又はTi
合金粉末を使用するので、常温延性や高温耐酸化性が大
きく優れた軽量耐熱材料が得られる。
As is clear from the above description, in the method for producing a Ti--Al based intermetallic compound according to claim 1, T
As an i-based material, Ti powder or Ti with a particle size of less than 50 μm
Since the alloy powder is used, a lightweight and heat resistant material having excellent room temperature ductility and high temperature oxidation resistance can be obtained.

【0040】また、請求項2の発明では、前記X成分を
加えるので、一層常温延性が向上するという利点がある
とともに、前記Y成分を加えるので、一層高温耐酸化性
が向上するという利点がある。その上、請求項3の発明
では、材料として前記X,Y成分を含む種々の合金粉末
を使用するので、得られる金属間化合物が均質化して容
易に常温延性や高温耐酸化性の優れた化合物が得られ
る。
Further, in the invention of claim 2, since the X component is added, there is an advantage that the room temperature ductility is further improved, and since the Y component is added, there is an advantage that the high temperature oxidation resistance is further improved. .. Moreover, in the invention of claim 3, since various alloy powders containing the X and Y components are used as materials, the obtained intermetallic compound is homogenized and easily compounded with excellent room temperature ductility and high temperature oxidation resistance. Is obtained.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Ti系材料とAl系材料との混合,脱気
及び真空封入を行った後に、この封入された混合粉末を
反応合成温度以下で塑性変形し、更に塑性変形された混
合体を反応合成温度以上に加熱して反応焼結を行なっ
て、Al:40〜50at%残部実質TiからなるTi
−Al系金属間化合物を製造するTi−Al系金属間化
合物の製造方法であって、 前記Ti系材料として、粒径50μm未満のTi粉末又
はTi合金粉末を用いることを特徴とするTi−Al系
金属間化合物の製造方法。
1. A Ti-based material and an Al-based material are mixed, deaerated, and vacuum sealed, and then the sealed mixed powder is plastically deformed at a temperature lower than the reaction synthesis temperature. Al: 40 to 50 at% balance Ti substantially consisting of Ti by reaction sintering by heating above the reaction synthesis temperature.
A method for producing a Ti-Al intermetallic compound for producing a -Al intermetallic compound, wherein Ti powder or Ti alloy powder having a particle size of less than 50 μm is used as the Ti-based material. A method for producing an intermetallic compound.
【請求項2】 添加元素XとしてMn,Cr,Vのうち
少なくとも一種以上を反応合成後の最終組成で0.5〜
3at%、及び/又は添加元素YとしてNb,Mo,
W,Ta,Siのうち少なくとも一種以上を反応合成後
の最終組成で0.5〜3at%含むTi−Al系金属間
化合物を製造することを特徴とする前記請求項1記載の
Ti−Al系金属間化合物の製造方法。
2. The final composition after reaction synthesis of at least one of Mn, Cr, and V as the additional element X is 0.5 to 0.5.
3 at% and / or Nb, Mo, or Y as an additional element Y
The Ti-Al-based intermetallic compound according to claim 1, wherein a Ti-Al-based intermetallic compound containing 0.5 to 3 at% of the final composition after reaction synthesis of at least one of W, Ta and Si is produced. Method for producing intermetallic compound.
【請求項3】 Ti−X合金粉末,Al−X合金粉末,
Ti−Y合金粉末,Al−Y合金粉末,Ti−X−Y合
金粉末,Al−X−Y合金粉末のうちの少なくとも一種
以上を用いて、Ti−Al系金属間化合物を製造するこ
とを特徴とする前記請求項2記載のTi−Al系金属間
化合物の製造方法。
3. A Ti—X alloy powder, an Al—X alloy powder,
A Ti-Al-based intermetallic compound is manufactured by using at least one or more of Ti-Y alloy powder, Al-Y alloy powder, Ti-XY alloy powder, and Al-XY alloy powder. The method for producing a Ti-Al-based intermetallic compound according to claim 2.
JP4044938A 1992-03-02 1992-03-02 Manufacture of ti-al intermetallic compound Pending JPH05247561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4044938A JPH05247561A (en) 1992-03-02 1992-03-02 Manufacture of ti-al intermetallic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4044938A JPH05247561A (en) 1992-03-02 1992-03-02 Manufacture of ti-al intermetallic compound

Publications (1)

Publication Number Publication Date
JPH05247561A true JPH05247561A (en) 1993-09-24

Family

ID=12705427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4044938A Pending JPH05247561A (en) 1992-03-02 1992-03-02 Manufacture of ti-al intermetallic compound

Country Status (1)

Country Link
JP (1) JPH05247561A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103805810A (en) * 2012-11-09 2014-05-21 北京航空航天大学 Titanium-aluminum alloy material and making method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103805810A (en) * 2012-11-09 2014-05-21 北京航空航天大学 Titanium-aluminum alloy material and making method thereof
CN103805810B (en) * 2012-11-09 2016-08-10 北京航空航天大学 Titanium-aluminum alloy material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2017538861A (en) Aluminum alloy with iron, silicon, vanadium and copper
JPH04154933A (en) Production of aluminum alloy having high strength and high toughness and alloy stock
CN1140203A (en) Iron aluminide useful as electrical resistance heating element
KR101578458B1 (en) TiAl base intermetallic compound and manufacturing method of the same
JP2002003977A (en) TiB PARTICLE REINFORCED Ti2AlNb INTERMETALLIC COMPOUND MATRIX COMPOSITE MATERIAL AND ITS PRODUCTION METHOD
JPH05247561A (en) Manufacture of ti-al intermetallic compound
JPH0578762A (en) Tial-based composite material having excellent strength and its production
JPS63312901A (en) Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder
CN113798488B (en) Aluminum-based powder metallurgy material and preparation method thereof
JPH05239571A (en) Production of ti-al intermetallic compound
JPH02200743A (en) Method for compacting ti-al series intermetallic compound member
JP2730284B2 (en) Manufacturing method of Al-Si alloy sintered forged parts
JPH05247562A (en) Manufacture of ti-al intermetallic compound
JPH0790432A (en) Ultralow-chlorine alpha+beta type sintered titanium alloy made of isometric structure
JPH1143729A (en) Manufacture of aluminum composite excellent in high temperature strength
JP3252481B2 (en) Tungsten alloy having fine crystal grains and method for producing the same
JP2636114B2 (en) Production of TiAl-based intermetallic compounds by diffusion synthesis
JPH0633172A (en) Ti-al intermetallic compound
RU2686831C1 (en) Intermetallide matrix based metal-ceramic composite material and its production method
JPH0649569A (en) High strength tial intermetallic compound
JPS62188735A (en) Manufacture of tini alloy wire or plate
JPH0633165A (en) Manufacture of sintered titanium alloy
JPH04183835A (en) Manufacture of ni-ti alloy member
JPS63140049A (en) Forming method for ti-al intermetallic compound member
JPH08143999A (en) Aluminum alloy powder hot forged member excellent in high temperature strength and high temperature ductility