JPH0941065A - High strength magnesium alloy and its production - Google Patents

High strength magnesium alloy and its production

Info

Publication number
JPH0941065A
JPH0941065A JP6052236A JP5223694A JPH0941065A JP H0941065 A JPH0941065 A JP H0941065A JP 6052236 A JP6052236 A JP 6052236A JP 5223694 A JP5223694 A JP 5223694A JP H0941065 A JPH0941065 A JP H0941065A
Authority
JP
Japan
Prior art keywords
magnesium alloy
atomic
strength
strength magnesium
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6052236A
Other languages
Japanese (ja)
Inventor
Takeshi Masumoto
健 増本
Akihisa Inoue
明久 井上
Hidehiko Horikiri
秀彦 堀切
Akira Kato
晃 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
TPR Co Ltd
Original Assignee
Teikoku Piston Ring Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Piston Ring Co Ltd, Toyota Motor Corp filed Critical Teikoku Piston Ring Co Ltd
Priority to JP6052236A priority Critical patent/JPH0941065A/en
Publication of JPH0941065A publication Critical patent/JPH0941065A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE: To produce an Mg alloy high in strength and specific strength by preparing an Mg alloy composed of specified ratios of Mg, Ca, Zn, Y or the like and having a structure in which intermetallic compounds of Mg-Ca series or the like are finely dispersed into fine crystalline Mg mother phases. CONSTITUTION: In a fine Mg mother phase having a compsn. shown by the general formula: Mg100-a-b-c Caa Znb Xc [where X denotes one or >= two kinds of elements selected from Y, Ce, La, Nd, Pr, Sm and Mm (misch metal), and 0.5<=a<=5 atomic %, 0<b<=5 atomic %, 0<c<3 atomic % and 1<=a+b+c<=5 atomic %], and in which, in a fine Mg mother phases having 100 to 500nm average grain size blonging to nano crystals, one or >= two kinds among finer Mg-Ca series, Mg-Zn series and Mg-X series intermetallic compounds are uniformly dispersed is prepd. Thus, the Mg alloy small in grain size after plastic deformation can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高強度マグネシウム合金
及びその製造方法に関するものであり、さらに詳しく述
べるならば微結晶マグネシウム合金の比強度を高める技
術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high strength magnesium alloy and a method for producing the same, and more specifically to a technique for increasing the specific strength of a microcrystalline magnesium alloy.

【0002】[0002]

【従来の技術】特開平6−25805号及び欧州公開特
許公報0503880号において、Mga Mb Alc X
d Ze (ただし、MはLa,Ce,及び/又はMm(ミ
ッシュメタル)、XはNi及び/Cu,ZはMn,Z
n,Zr及び/又はTi,a=70〜90at%,b=
2〜15at%、d=2〜15at%,e=0.1〜8
at%,a+b+c+d+e=100at%)からなる
組成の高強度耐熱性非晶質マグネシウム合金が提案され
ている。この合金の引張強度は約800〜1000MP
aであり、従来のマグネシウム合金よりもはるかに高い
強度をもっている。しかしながら、上記のマグネシウム
合金は組織が非晶質であるために、形態が箔などに限定
されており、各種部品として実用する面では問題があ
る。
2. Description of the Related Art In JP-A-6-25805 and European Patent Publication 0503880, Mga Mb Alc X is disclosed.
d Ze (where M is La, Ce, and / or Mm (Misch metal), X is Ni and / Cu, Z is Mn, Z
n, Zr and / or Ti, a = 70 to 90 at%, b =
2-15 at%, d = 2-15 at%, e = 0.1-8
A high-strength heat-resistant amorphous magnesium alloy having a composition of at%, a + b + c + d + e = 100 at%) has been proposed. The tensile strength of this alloy is about 800-1000MP
It is a and has much higher strength than the conventional magnesium alloy. However, since the above magnesium alloy has an amorphous structure, its form is limited to foil and the like, and there is a problem in terms of practical use as various parts.

【0003】また、特開平4−99244号公報による
と、非晶質と結晶質の混相組織をもつ高強度マグネシウ
ム合金が開示されている。その合金組成はX成分(C
u,Ni,Sn,Znから選ばれる2種以上の元素)を
基本成分とし、任意成分としてM成分(Al,Si,C
aから選ばれる1種又は2種以上の元素)、Ln成分
(Y,La,Ce,Nd,Smから選ばれる1種又は2
種以上の元素あるいはミッシュメタル)である。この組
成系の一つである、Mga Xc Md Lne 系では、各元
素の含有量は、a=40〜95at%、c=1〜35a
t%、d=1〜25at%、e=3〜25at%であ
る。この合金には一部非晶質組織が含まれているために
やはり各種部品に加工するには制約があり、さらに温度
による脆化の問題がある。
Further, Japanese Patent Application Laid-Open No. 4-99244 discloses a high strength magnesium alloy having a mixed phase structure of amorphous and crystalline. The alloy composition is X component (C
u, Ni, Sn, Zn, two or more kinds of elements selected as basic components, and M components (Al, Si, C) as optional components.
1 or 2 or more elements selected from a), Ln component (1 or 2 selected from Y, La, Ce, Nd, Sm)
More than one element or misch metal). In the Mga Xc Md Lne system, which is one of the composition systems, the content of each element is a = 40 to 95 at% and c = 1 to 35a.
t%, d = 1 to 25 at% and e = 3 to 25 at%. Since this alloy partially contains an amorphous structure, there are restrictions on processing into various parts, and there is a problem of embrittlement due to temperature.

【0004】非晶質相を含まない微細結晶質マグネシウ
ム合金が特開平3−47941号公報で提案されてい
る。この公報の合金は、マグネシウムマトリックス(α
相)に安定もしくは準安定な金属間化合物が均一微細に
分散した組織をもち、またその組成は、X成分(Cu,
Ni,Sn,Znから選ばれる2種以上の元素)を基本
添加元素とし、M(Al,Si,Caから選ばれる1種
又は2種以上の元素)、Ln(Y,La,Ce,Nd,
Smから選ばれる1種又は2種以上の元素)を任意添加
元素としている。ここでMga Xc Md Lne 系では、
a=40〜95%、c=1〜35at%,d=1〜25
at%,e=3〜25at%である。
A fine crystalline magnesium alloy containing no amorphous phase has been proposed in JP-A-3-47941. The alloy of this publication has a magnesium matrix (α
Phase) has a structure in which a stable or metastable intermetallic compound is uniformly and finely dispersed, and its composition is X component (Cu,
Ni (Sn, Zn, two or more elements selected from the basic elements), M (one or more elements selected from Al, Si, Ca), Ln (Y, La, Ce, Nd,
One or two or more kinds of elements selected from Sm) are arbitrarily added elements. Here, in the Mga Xc Md Lne system,
a = 40 to 95%, c = 1 to 35 at%, d = 1 to 25
at% and e = 3 to 25 at%.

【0005】前掲特開平3−47941号、特開平4−
99244号公報では急冷凝固リボンの強度が測定され
ている。一方バルク材については言及されているものの
強度の測定はされていない。これに対して特開平3−9
0530号公報にて提案されているマグネシウム合金は
押出材の強度が測定されている。この一例では、Mg76
Al7 Zn1.5 Ca4.5 Nd1 合金の耐力値(0.2
%)は535MPa,引張強さは574MPa,伸びは
4.7%である。この合金は、平均結晶粒度が3μm以
下のマトリックスにAl2 Ca,Mg22(Al,Zn)
49 などの金属間化合物が分散している。
The above-mentioned JP-A-3-47941 and JP-A-4-4791.
In JP 99244, the strength of a rapidly solidified ribbon is measured. On the other hand, although the bulk material is mentioned, the strength is not measured. On the other hand, Japanese Patent Laid-Open No. 3-9
The strength of the extruded material of the magnesium alloy proposed in Japanese Patent No. 0530 has been measured. In this example, Mg76
Proof strength of Al7 Zn1.5 Ca4.5 Nd1 alloy (0.2
%) Is 535 MPa, the tensile strength is 574 MPa, and the elongation is 4.7%. This alloy consists of Al2Ca, Mg22 (Al, Zn) in a matrix with an average grain size of 3μm or less.
Intermetallic compounds such as 49 are dispersed.

【0006】[0006]

【発明が解決しようとする課題】従来提案されている微
細結晶質高力マグネシウム合金は次のような点で特性が
不十分である。 (イ)Y,La,Ndなどの元素の含有量が最低3at
%であるために、マグネシウム合金の比重が大となって
軽金属であるというマグネシウムの特長を活かすことが
できない(特開平3−47941号公報)。 (ロ)バルク材料を製造する際の好適な組成が示されて
いない(特開平3−47941号公報)。すなわち、
Y,La,Ndなどを多量に添加すると強度の増大に伴
って加工性は劣化するために、所望の形状が得難くかつ
加工中に加えられる合計熱量が大になって結晶粒成長が
起こり易くなる。 (ハ)バルク材のマトリックスの平均粒径が最大3μm
であり、粗粒の材料である(特開平3−90530号公
報)。このため強度も低く、伸びも少ない。 (ニ)Al及びCaなどを金属間化合物形成元素として
利用するマグネシウム合金(特開平3−90530号公
報)では、Mg−Al系金属間化合物が形成されるが、
これによる強度向上の効果は小さい。 本発明は、これらの問題点(イ)〜(ニ)を個別にある
いは全体として解決することができる微細結晶質マグネ
シウム合金及びその製造方法を提供することを目的とす
る。
The properties of the conventionally proposed fine crystalline high strength magnesium alloy are insufficient in the following points. (A) The content of elements such as Y, La and Nd is at least 3 at
%, The specific gravity of the magnesium alloy becomes large, and the advantage of magnesium that it is a light metal cannot be utilized (JP-A-3-47941). (B) A suitable composition for producing a bulk material is not shown (Japanese Patent Laid-Open No. 3-47941). That is,
If a large amount of Y, La, Nd, etc. is added, the workability deteriorates as the strength increases, so it is difficult to obtain the desired shape, and the total amount of heat applied during processing increases and crystal grain growth easily occurs. Become. (C) The average particle size of the bulk material matrix is 3 μm at maximum.
And is a coarse-grained material (JP-A-3-90530). Therefore, the strength is low and the elongation is low. (D) In a magnesium alloy (Japanese Patent Laid-Open No. 3-90530) that uses Al and Ca as intermetallic compound-forming elements, Mg-Al-based intermetallic compounds are formed.
The effect of improving strength is small. An object of the present invention is to provide a fine crystalline magnesium alloy that can solve these problems (a) to (d) individually or as a whole and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明にかかる高強度マ
グネシウム合金は、一般式:Mg100-a-b-c Caa Zn
b Xc ,但しXはY,Ce,La,Nd,Pr,Sm,
Mm(ミッシュメタル)からなる群から選ばれる1種ま
たは2種以上の元素、0.5≦a≦5原子%、0<b≦
5原子%、0<c<3原子%、但し1≦a+b+c≦1
1原子%である組成を有し、かつ微細結晶質からなる母
相に、Mg−Ca系、Mg−Zn系及びMg−X系金属
間化合物の1種または2種以上が微細に分散した組織を
有することを特徴とする。
The high strength magnesium alloy according to the present invention has the general formula: Mg100-abc Caa Zn
b Xc, where X is Y, Ce, La, Nd, Pr, Sm,
One or more elements selected from the group consisting of Mm (Misch metal), 0.5 ≦ a ≦ 5 atomic%, 0 <b ≦
5 atom%, 0 <c <3 atom%, 1 ≦ a + b + c ≦ 1
A structure in which one or more kinds of Mg-Ca-based, Mg-Zn-based, and Mg-X-based intermetallic compounds are finely dispersed in a matrix phase having a composition of 1 atomic% and having a fine crystalline structure. It is characterized by having.

【0008】以下、本発明のマグネシウム合金の組成限
定理由を説明する。CaはMgとの金属間化合物を形成
しその化合物が微細なMg母相中に、均一に微細分散し
て結晶粒を微細化するとともに、靭性を損なうことなく
強度と比強度を高める。MgはCaより低比重であるた
めに比強度を高く保つ上で特に効果がすぐれている。C
aの含有量(a)が0.5%未満であると比強度向上の
効果が少なく、5原子%を超えるとMgとの合金化が困
難になり又脆化が起こる。したがってCaの含有量
(b)は0.5〜5原子%の範囲とする必要がある。好
ましいCaの含有量は1.0〜3.0原子%である。
The reasons for limiting the composition of the magnesium alloy of the present invention will be described below. Ca forms an intermetallic compound with Mg, and the compound uniformly finely disperses in a fine Mg mother phase to refine the crystal grains, and enhances strength and specific strength without impairing toughness. Since Mg has a lower specific gravity than Ca, it is particularly effective in maintaining high specific strength. C
If the content (a) of a is less than 0.5%, the effect of improving the specific strength is small, and if it exceeds 5 atomic%, alloying with Mg becomes difficult and embrittlement occurs. Therefore, the Ca content (b) must be in the range of 0.5 to 5 atomic%. The preferable Ca content is 1.0 to 3.0 atom%.

【0009】ZnはMg結晶中に固溶してマトリックス
固溶体を強化しまたMg−Znなどの時効硬化性析出物
を形成することによって強度に寄与する。Znの含有量
(b)が5原子%を超えると析出物の粗大化が起こり、
強度が低下するので、5原子%以下にする必要がある。
好ましいZnの含有量(b)は1〜4原子%である。
Zn contributes to the strength by forming a solid solution in the Mg crystal to strengthen the matrix solid solution and to form an age hardening precipitate such as Mg-Zn. When the Zn content (b) exceeds 5 atomic%, coarsening of precipitates occurs,
Since the strength decreases, it is necessary to make the content 5 atomic% or less.
The preferable Zn content (b) is 1 to 4 atomic%.

【0010】X成分はMgの母相を微細化するととも
に、Mgとの間で形成される金属間化合物が微細なMg
母相中に均一に微細分散して靭性を損なうことなく強度
を高め、さらに、高温での成形に際して結晶粒界を固定
することによって微細な結晶粒度を維持するのに役立
つ。X成分の中では特にCeとYが好ましい。X成分が
3原子%を超えると比重が増加すると共に脆化し易くな
る。さらにMgとの合金化が困難になり、急冷凝固剤の
均一な組織を保ちにくいので、X成分は3原子%未満と
する必要がある。好ましいX成分の含有量(c)は0.
5〜2.5原子%である。
The X component makes the matrix phase of Mg fine and the intermetallic compound formed with Mg is fine Mg.
It is finely dispersed uniformly in the mother phase to enhance the strength without impairing the toughness, and further serves to maintain the fine grain size by fixing the grain boundaries during molding at high temperature. Among the X components, Ce and Y are particularly preferable. If the X component exceeds 3 atomic%, the specific gravity increases and the material tends to become brittle. Further, it becomes difficult to alloy with Mg and it is difficult to maintain a uniform structure of the rapid solidifying agent, so the X component needs to be less than 3 atomic%. The preferable content (c) of the X component is 0.
It is 5 to 2.5 atom%.

【0011】上記成分以外は不純物であり、特にCu,
Ni,Feなどは、耐食性が著しく劣化するので、その
量は極力少なくするべきである。
Other than the above components are impurities, particularly Cu,
Since the corrosion resistance of Ni, Fe, etc. is remarkably deteriorated, their amounts should be reduced as much as possible.

【0012】Ca,Zn及びXの添加合計量(a+b+
c)が多いと析出する金属間化合物が粗大化し材料が脆
くなる。また少ないと析出する金属間化合物量が不十分
となって材料の強度不足となる。したがって1原子%≦
a+b+c≦11原子%の範囲内のCa、Zn、X成分
添加合計量とする必要がある。好ましくは2原子%≦a
+b+c≦10原子%である。
Total amount of Ca, Zn and X added (a + b +
When the amount of c) is large, the precipitated intermetallic compound becomes coarse and the material becomes brittle. On the other hand, if the amount is too small, the amount of precipitated intermetallic compound becomes insufficient and the strength of the material becomes insufficient. Therefore, 1 atomic% ≤
It is necessary to make the total amount of Ca, Zn and X components added within the range of a + b + c ≦ 11 atomic%. Preferably 2 atomic% ≤ a
+ B + c ≦ 10 atomic%.

【0013】続いて、本発明のマグネシウム合金の組織
について述べると、液体急冷法により得られるものと同
等程度、好ましくはいわゆるナノ結晶に属する平均粒径
で100〜500nmの微細なマグネシウム母相に、さ
らに微細なMg−Ca系、Mg−Zn系及びMg−X系
金属間化合物の1種又は2種以上が均一に分散したもの
である。
Next, the structure of the magnesium alloy of the present invention will be described. A fine magnesium matrix phase having an average particle size of 100 to 500 nm, which is equivalent to that obtained by the liquid quenching method, preferably belongs to so-called nanocrystals, One or more finely divided Mg-Ca-based, Mg-Zn-based, and Mg-X-based intermetallic compounds are uniformly dispersed.

【0014】又、本発明合金の形態は、バルク材を容易
に得る上では、粉末を所望の形状・寸法に成形したもの
であることが望ましい。粉末は圧縮と塑性加工により真
密度に対して99%以上に高密度化することにより高強
度材料とすることができる。
Further, in order to easily obtain a bulk material, it is desirable that the form of the alloy of the present invention is a powder formed into a desired shape and size. The powder can be made into a high strength material by densifying it to 99% or more of its true density by compression and plastic working.

【0015】急冷凝固合金を、非晶質状態とし、結晶化
温度以上で熱間塑性加工することにより微結晶組織とす
ることも可能であるが、加工条件の制御が容易でないの
で、急冷凝固条件は実質的にもしくは完全に微結晶質組
織が得られるようなできるだけ冷却速度が高い条件例え
ば、105 ℃/s以上の冷却速度とすることが望まし
い。
It is possible to make the rapidly solidified alloy into an amorphous state and to form a microcrystalline structure by hot plastic working above the crystallization temperature, but it is not easy to control the working conditions. Is preferably a condition where the cooling rate is as high as possible so that a microcrystalline structure is substantially or completely obtained, for example, a cooling rate of 10 @ 5 DEG C./s or more.

【0016】急冷凝固法により微細な結晶粒度及び均一
に分散した金属間化合物をもつ合金が得られる。この合
金は低い流動応力及び高い延性の組合わせが同時に実現
される変形条件を選択することによって、超塑性成形が
可能になる。この超塑性変形を利用して急冷凝固Mg合
金を複雑な形状に成形加工することが可能となる。
By the rapid solidification method, an alloy having a fine grain size and a uniformly dispersed intermetallic compound can be obtained. This alloy enables superplastic forming by selecting the deformation conditions that simultaneously realize the combination of low flow stress and high ductility. By utilizing this superplastic deformation, the rapidly solidified Mg alloy can be formed into a complicated shape.

【0017】後述の実施例1の条件で作製したMg94.5
Ca2.5 Zn2.5 Y0.5 押出合金においてひずみ速度が
引張特性に及ぼす影響を、試験温度300℃、ひずみ速
度2×10-4〜2×100 /秒の範囲で引張試験により
評価した結果を図1に示す。図1から、ひずみ速度2×
10-4〜2×100 /秒の範囲で100%以上の高い伸
びが生じ、超塑性挙動(伸び>100%)を示すことが
分かる。
Mg94.5 produced under the conditions of Example 1 described later
The effect of strain rate on the tensile properties of Ca2.5 Zn2.5 Y0.5 extruded alloy was evaluated by a tensile test at a test temperature of 300 ° C. and a strain rate of 2 × 10 −4 to 2 × 10 0 / sec. As shown in FIG. From Figure 1, strain rate 2 x
It can be seen that a high elongation of 100% or more occurs in the range of 10 @ -4 to 2.times.10@0 / sec and exhibits superplastic behavior (elongation> 100%).

【0018】[0018]

【作用】請求項1のようにMg,Zn,Ca,X成分を
限定するとともに特定の金属間化合物が微細な母相中に
微細に分散した組織とすることにより、高強度及び高比
強度マグネシウム合金を得ることができる。特にX成分
の上限を<3原子%とすることにより、マグネシウム合
金の比重を小さくし、比強度(TYS)3以上を有する
合金を提供することができる(課題の(イ)、
(ニ))。
As described in claim 1, by limiting the Mg, Zn, Ca, and X components and forming a structure in which a specific intermetallic compound is finely dispersed in a fine matrix, high strength and high specific strength magnesium can be obtained. An alloy can be obtained. In particular, by setting the upper limit of the X component to <3 atomic%, it is possible to reduce the specific gravity of the magnesium alloy and provide an alloy having a specific strength (TYS) of 3 or more (problem (a),
(D)).

【0019】請求項2のように母相の平均粒径を100
〜500nmと従来技術のものより小さくすることによ
り強度を高めることができる(課題の(ハ))。
The average particle size of the mother phase is 100
The strength can be increased by making the thickness to be about 500 nm smaller than that of the prior art (problem (C)).

【0020】本発明の合金組成ではバルク材製造中の結
晶粒成長が起こり難いため強度が高いバルク材料が得ら
れる(請求項3、課題の(ロ))。
With the alloy composition of the present invention, it is possible to obtain a bulk material having high strength because crystal grain growth hardly occurs during the production of the bulk material (claim 3, problem (b)).

【0021】熱間塑性加工により本発明の微結晶組織を
もつ合金を作ると、高い強度と比強度をもつ材料が容易
に製造できる(請求項4〜8、課題(ハ))。下、実施
例により本発明を説明する。
When the alloy having the microcrystalline structure of the present invention is formed by hot plastic working, a material having high strength and specific strength can be easily manufactured (claims 4 to 8, problem (c)). The present invention will be described below with reference to examples.

【0022】[0022]

【実施例】【Example】

実施例 表1に化学組成を示すMg合金をAr雰囲気中で高周波
溶解し、母合金を溶製した。この母合金をAr雰囲気中
の高周波炉にて850℃で溶解した後、Arガス圧9.
8MPaの高圧ガス噴射法により微細な結晶質金属から
なるアトマイズ粉末とした。得られた粉末を25μm以
下に分級して得られた、より急冷され析出粒子が小さく
また溶質固溶量も大きい粉末を温度250〜350℃、
押出比10:1で押出しを行い、直径6mm、長さ27
0mmの円柱材を得た。なお、粉末の作製から押出しま
での段階で粉末が暴露された雰囲気は酸素、水分濃度が
ともに1ppm以下の高清浄度雰囲気であった。円柱材
をX線回折したところ、表1に示す金属間化合物がMg
相と共に観察された。またMg母相の粒径は約100〜
500nm、金属間化合物の粒子径は約20〜100n
mであり、微細な母相中に微細な金属間化合物が分散し
ていることがTEMで観察された。次に円柱材をインス
トロン型引張試験機による引張試験に供した。この結果
を表2に示す。本発明のMg合金の引張強度は耐力で4
50MPa以上と市販Mg合金よりも高い強度を示し
た。更に比強度(σ0.2 /ρ)においては2.8×10
5 N・m・kg-1以上と、A7075やTi−6Al−
4Vよりも高い値を示した。
Example A Mg alloy having a chemical composition shown in Table 1 was melted by high frequency in an Ar atmosphere to melt a mother alloy. After melting this mother alloy at 850 ° C. in a high frequency furnace in an Ar atmosphere, Ar gas pressure was set to 9.
Atomized powder made of fine crystalline metal was obtained by a high pressure gas injection method of 8 MPa. A powder obtained by classifying the obtained powder to 25 μm or less, which is more rapidly cooled and has smaller precipitated particles and a larger solute solid solution amount, has a temperature of 250 to 350 ° C.,
Extrusion was carried out at an extrusion ratio of 10: 1, diameter 6 mm, length 27
A 0 mm columnar material was obtained. The atmosphere to which the powder was exposed during the steps from the preparation of the powder to the extrusion was a high cleanliness atmosphere in which both oxygen and water concentrations were 1 ppm or less. X-ray diffraction of the columnar material revealed that the intermetallic compounds shown in Table 1 were Mg.
Observed with phase. Further, the grain size of the Mg mother phase is about 100-
500 nm, particle size of intermetallic compound is about 20 to 100 n
m, and it was observed by TEM that fine intermetallic compounds were dispersed in the fine matrix. Next, the columnar material was subjected to a tensile test by an Instron type tensile tester. The results are shown in Table 2. The tensile strength of the Mg alloy of the present invention is 4 in terms of proof stress.
The strength was 50 MPa or more, which was higher than that of the commercial Mg alloy. Furthermore, in specific intensity (σ 0.2 / ρ), 2.8 × 10
5 N ・ m ・ kg-1 or more, A7075 or Ti-6Al-
The value was higher than 4V.

【0023】[0023]

【表1】 組 成 押出温度 N0. (at%) (℃) 金属間化合物相 1 Mg97.8Ca1 Zn1 Ce0.2 250 Mg2Ca,MgZn,Mg12Ce 2 Mg96.3Ca1 Zn2.5 Ce0.2 250 Mg2Ca,MgZn,Mg12Ce 3 Mg94.5Ca2.5 Zn2.5 Y0.5 250 Mg2Ca,MgZn,Mg24 Y5 4 Mg94.5Ca1 Zn2 Mm2.5 350 Mg2Ca,MgZn,Mg12Ce,Mg17La2, Mg12Nd 5 Mg94Ca2.5 Zn1 Y2.5 300 Mg2Ca,MgZn,Mg24Y5 6 Mg90Ca2.5 Zn5 Y2.5 300 Mg2Ca,MgZn,Mg24Y5 7 Mg97.5Ca1 Zn1 La0.5 300 Mg2Ca,MgZn,Mg17La2 8 Mg91.5Ca2.5 Z 5 Nd1 300 Mg2Ca,MgZn,Mg12Nd 9 Mg91.5Ca2.5 Z 5 Pr1 300 Mg2Ca,MgZn,Mg12Pr 10 Mg91.5Ca2.5 Zn5 Sm1 300 Mg2Ca,MgZn,Mg6.2Sm [Table 1] Composition Extrusion temperature N0. (At%) (° C) Intermetallic compound phase 1 Mg97.8Ca1 Zn1 Ce0.2 250 Mg2Ca, MgZn, Mg12Ce 2 Mg96.3Ca1 Zn2.5 Ce0.2 250 Mg2Ca, MgZn, Mg12Ce 3 Mg94.5Ca2.5 Zn2.5 Y0.5 250 Mg2Ca, MgZn, Mg24 Y5 4 Mg94.5Ca1 Zn2 Mm2.5 350 Mg2Ca, MgZn, Mg12Ce, Mg17La2, Mg12Nd 5 Mg94Ca2.5 Zn1 Y2.5 300 MgnCa, Mg2Ca, Mg2Ca, Mg2Ca, Mg2Ca , Mg24Y5 6 Mg90Ca2.5 Zn5 Y2.5 300 Mg2Ca, MgZn, Mg24Y5 7 Mg97.5Ca1 Zn1 La0.5 300 Mg2Ca, MgZn, Mg17La2 8 Mg91.5Ca2.5 Z 5 Nd1 300 Mg2Ca, MgZn, Mg9Nd9Mg12Nd 5 Z 5 Pr1 300 Mg2Ca, MgZn, Mg12Pr 10 Mg91.5Ca2.5 Zn5 Sm1 300 Mg2Ca, MgZn, Mg6.2Sm

【0024】[0024]

【表2】 密 度 耐 力 伸 び 比 強 度 σ0.2 σ0.2 /ρ No . 組成 (at%) (ρ) (MPa ) (%) (105N・m・kg-1) 1 Mg97.8Ca1Zn1Ce0.2 1.79 510 4.0 2.85 2 Mg96.3Ca1Zn2.5Ce0.2 1.84 540 2.0 2.93 3 Mg94.5Ca2.5Zn2.5Y0.5 1.84 610 1.0 3.32 4 Mg94.5Ca1Zn2Mm2.5 1.99 635 1.0 3.19 5 Mg94Ca2.5Zn1Y2.5 1.86 605 2.0 3.25 6 Mg90Ca2.5Zn5Y2.5 2.00 625 3.0 3.13 [Table 2] Density Strength yield ratio Specific strength σ0.2 σ0.2 / ρ No. Composition (at%) (ρ) (MPa) (%) ( 105N ・ m ・ kg-1) 1 Mg97.8Ca1Zn1Ce0.2 1.79 510 4.0 2.85 2 Mg96.3Ca1Zn2.5Ce0.2 1.84 540 2.0 2.93 3 Mg94.5Ca2.5Zn2.5Y0.5 1.84 610 1.0 3.32 4 Mg94.5Ca1Zn2Mm2.5 1.99 635 1.0 3.19 5 Mg94Ca2.5Zn1Y2.5 1.86 605 2.0 3.25 6 Mg90Ca2 .5Zn5Y2.5 2.00 625 3.0 3.13

【0025】比較例1 実施例1と同様の方法によりNo.11〜17の押出材
試料を調製し、特性を測定した結果を表3に示す。
Comparative Example 1 By the same method as in Example 1, No. Table 3 shows the results of measuring the characteristics of the extruded material samples 11 to 17 prepared.

【0026】[0026]

【表3】 押出 密度 硬さ UTS 伸び 比強度 温度 (UTS /No . 組成 (at%) (℃) (ρ(Hv(MPa )%) ρ) 11 Mg91.5Ca7.5Zn1 350 1.75 130 380 0 2.17 12 Mg91.5Ca7.5Y1 350 1.75 160 310 0 1.77 13 Mg85Ca1Zn10Mm4 350 2.39 279 120 0 0.50 14 Mg87Ca7.5Zn2.5Y3 350 1.91 165 280 0 1.47 15 Mg85Ca5Zn5Ce5 350 2.25 220 100 0 0.44 16 Mg84Ca1Zn10Ce5 350 2.46 210 130 0 0.53 17 Mg82Ca1Zn15La2 350 2.43 180 230 0 0.95 注)材料に伸びがないので、比強度の算出はUTSを使用した。[Table 3] Extrusion Density Hardness UTS Elongation Specific Strength Temperature (UTS / No. Composition (at%) (℃) ) (Hv ) (MPa) ( %) ρ) 11 Mg91.5Ca7.5Zn1 350 1.75 130 380 0 2.17 12 Mg91 .5Ca7.5Y1 350 1.75 160 310 0 1.77 13 Mg85Ca1Zn10Mm4 350 2.39 279 120 0 0.50 14 Mg87Ca7.5Zn2.5Y3 350 1.91 165 280 0 1.47 15 Mg85Ca5Zn5Ce5 350 2.25 220 100 0 0.44 16 Mg84Ca1Zn10Ce5 350 2.46 210 130 0 0.53 17La82Ca1 180 230 0 0.95 Note) Since the material has no elongation, UTS was used to calculate the specific strength.

【0027】試料No.11〜12はCa添加量が多く
脆化している。試料No.13〜15は溶質量が12a
t%以上と多いため、分散する金属間化合物が粗大化し
て、脆化している。また、試料No.16,17は、一
部に非晶質相が混合している材料である。この材料で
は、溶質量が多いことにより結晶化後に金属間化合物の
粗大化が起こり脆くなる。比較例の材料は、すべて硬度
は高いが塑性伸びを示さず、非常に脆い材料であった。
Sample No. Nos. 11 to 12 have a large amount of added Ca and are brittle. Sample No. 13-15 have a melt mass of 12a
Since it is as large as t% or more, the dispersed intermetallic compound is coarsened and becomes brittle. In addition, the sample No. 16 and 17 are materials in which an amorphous phase is partially mixed. In this material, the intermetallic compound becomes coarse after crystallization due to the large amount of melt, and becomes brittle. The materials of Comparative Examples were all very brittle, showing high hardness but not showing plastic elongation.

【0028】従来の代表的Mg合金、Al合金、Ti合
金の特性を表4に示す。
Table 4 shows the characteristics of typical conventional Mg alloys, Al alloys and Ti alloys.

【0029】[0029]

【表4】 密 度 耐 力 伸 び 比 強 度 σ0.2 σ0.2 /ρ No . 組成 (at%) (ρ) (MPa ) (%) (105N・m・kg-1) 18 A791−T6(Mg合金) 1.83 130 5.0 0.7 19 A7075−T6(Al合金) 2.80 500 9.0 1.8 20 Ti−6Al −4V(Ti合金) 4.46 1100 10 2.5 [Table 4] Density Proof strength Elongation ratio Strength σ0.2 σ0.2 / ρ No. Composition (at%) (ρ) (MPa) (%) (105N ・ m ・ kg-1) 18 A791-T6 (Mg alloy) 1.83 130 5.0 0.7 19 A7075-T6 (Al alloy) 2.80 500 9.0 1.8 20 Ti-6Al-4V (Ti alloy) 4.46 1100 10 2.5

【0030】マテリアルデータベース金属材料:日刊
工業新聞社(初版)(1989)1571 軽金属協会編 アルミニウムハンドブック(第4版)
軽金属協会(1990)35 日本金属学会編 金属便覧(改訂5版)丸善(199
1)639
Material Database Metallic Materials: Nikkan Kogyo Shimbun (First Edition) (1989) 1571 Light Metal Association, Aluminum Handbook (4th Edition)
Japan Light Metal Society (1990) 35 Japan Institute of Metals, Metal Handbook (Revised 5th Edition) Maruzen (199)
1) 639

【0031】[0031]

【発明の効果】以上説明したように、本発明では、Mg
より比重が低いCa、上限量を3原子%と少なくしたY
などのX成分及びZnによりマグネシウムを強化すると
ともに、微細Mg母相に金属間化合物を微細に分布した
微結晶質マグネシウム合金が得られるので、強度及び比
強度が高い材料が提供され、さらにバルク材料とするこ
とも容易である。
As described above, according to the present invention, Mg
Ca with lower specific gravity, Y with a lower limit of 3 atomic%
Since it is possible to obtain a microcrystalline magnesium alloy in which an intermetallic compound is finely distributed in a fine Mg matrix phase while strengthening magnesium with an X component such as Zn and Zn, a material having high strength and specific strength is provided, and a bulk material is further provided. It is also easy to

【図面の簡単な説明】[Brief description of drawings]

【図1】 ひずみ速度と流動応力、伸びの関係をMg9
4.5Ca2.5 Zn2.5Y0.5 合金について示すグラフであ
る。
[Fig. 1] The relationship between strain rate, flow stress and elongation is Mg9
4 is a graph showing a 4.5Ca2.5 Zn2.5Y0.5 alloy.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000003207 トヨタ自動車株式会社 愛知県豊田市トヨタ町1番地 (72)発明者 増本 健 宮城県仙台市青葉区上杉3丁目8番22号 (72)発明者 井上 明久 宮城県仙台市青葉区川内無番地 川内住宅 11−806 (72)発明者 堀切 秀彦 東京都中央区八重洲1丁目9番9号 帝国 ピストンリング株式会社内 (72)発明者 加藤 晃 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (71) Applicant 000003207 Toyota Motor Corporation 1 Toyota Town, Toyota City, Aichi Prefecture (72) Inventor Ken Masumoto 3-8-22 Uesugi, Aoba-ku, Sendai City, Miyagi Prefecture (72) Inventor Akihisa Inoue Banuchi, Kawauchi, Aoba-ku, Sendai-shi, Miyagi 11-806 (72) Inventor Hidehiko Horikiri 1-9-9 Yaesu, Chuo-ku, Tokyo Imperial Piston Ring Co., Ltd. (72) Akira Kato Toyota, Aichi Prefecture City Toyota-City, Toyota City

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 一般式:Mg100-a-b-c Caa Znb X
c ,但しXはY,Ce,La,Nd,Pr,Sm,Mm
(ミッシュメタル)からなる群から選ばれる1種または
2種以上の元素、0.5≦a≦5原子%、0<b≦5原
子%、0<c<3原子%、但し1≦a+b+c≦11原
子%である組成を有し、かつ、微細結晶質からなる母相
に、Mg−Ca系、Mg−Zn系及びMg−X系金属間
化合物の1種又はは2種以上が微細に分散した組織を有
することを特徴とする高強度マグネシウム合金。
1. A general formula: Mg100-abc Caa Znb X
c, where X is Y, Ce, La, Nd, Pr, Sm, Mm
One or more elements selected from the group consisting of (Misch metal), 0.5 ≦ a ≦ 5 atomic%, 0 <b ≦ 5 atomic%, 0 <c <3 atomic%, where 1 ≦ a + b + c ≦ One or two or more of Mg-Ca-based, Mg-Zn-based and Mg-X-based intermetallic compounds having a composition of 11 atomic% and finely crystalline matrix are finely dispersed. A high-strength magnesium alloy having the specified structure.
【請求項2】 母相の平均粒径が100〜500nmで
あることを特徴とする請求項1記載の高強度マグネシウ
ム合金。
2. The high strength magnesium alloy according to claim 1, wherein the average grain size of the matrix phase is 100 to 500 nm.
【請求項3】 粉末を圧縮しかつ塑性加工して真密度に
対して99%以上の密度をもつバルク材料としたことを
特徴とする請求項1又は2記載の高強度マグネシウム合
金。
3. The high-strength magnesium alloy according to claim 1, wherein the powder is compressed and plastically worked into a bulk material having a density of 99% or more of the true density.
【請求項4】 請求項1記載の組成をもつ溶融合金を急
冷凝固し、その後熱間塑性加工を施すことを特徴とする
高強度マグネシウム合金の製造方法。
4. A method for producing a high-strength magnesium alloy, which comprises rapidly solidifying a molten alloy having the composition of claim 1 and then subjecting it to hot plastic working.
【請求項5】 凝固合金が実質的に微結晶からなる条件
で急冷凝固を行うことを特徴とする請求項4記載の高強
度マグネシウム合金の製造方法。
5. The method for producing a high-strength magnesium alloy according to claim 4, wherein the rapid solidification is carried out under the condition that the solidified alloy is substantially composed of fine crystals.
【請求項6】 熱間加工を超塑性変形がもたらされる温
度及びひずみ速度域で行うことを特徴とする請求項5記
載の高強度マグネシウム合金の製造方法。
6. The method for producing a high-strength magnesium alloy according to claim 5, wherein the hot working is performed in a temperature and strain rate range where superplastic deformation is brought about.
【請求項7】 急冷凝固を溶融合金のアトマイズで行う
ことを特徴とする請求項4から6までの何れか1項記載
の高強度マグネシウム合金の製造方法。
7. The method for producing a high-strength magnesium alloy according to claim 4, wherein the rapid solidification is performed by atomizing the molten alloy.
【請求項8】 ひずみ速度が1×10-3〜5×102 /
sである条件で熱間加工を行うことを特徴とする請求項
6記載の高強度マグネシウム合金の製造方法。
8. A strain rate of 1 × 10 −3 to 5 × 10 2 /
The method for producing a high-strength magnesium alloy according to claim 6, wherein hot working is performed under the condition of s.
JP6052236A 1994-03-23 1994-03-23 High strength magnesium alloy and its production Pending JPH0941065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6052236A JPH0941065A (en) 1994-03-23 1994-03-23 High strength magnesium alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6052236A JPH0941065A (en) 1994-03-23 1994-03-23 High strength magnesium alloy and its production

Publications (1)

Publication Number Publication Date
JPH0941065A true JPH0941065A (en) 1997-02-10

Family

ID=12909096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6052236A Pending JPH0941065A (en) 1994-03-23 1994-03-23 High strength magnesium alloy and its production

Country Status (1)

Country Link
JP (1) JPH0941065A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100331154B1 (en) * 1999-10-22 2002-04-01 황해웅 Non-combustible Mg-Alloy
WO2004085689A1 (en) * 2003-03-25 2004-10-07 Yoshihito Kawamura Magnesium alloy of high strength and high toughness and method for production thereof
KR100605741B1 (en) * 2004-04-06 2006-08-01 김강형 magnesium alloy wrought product with anti-corrosion and good plating characteristics
JP2008536005A (en) * 2005-03-08 2008-09-04 ペ,ドン−ヒョン Magnesium alloy added with misch metal, magnesium alloy processed material added with misch metal, and magnesium alloy processed material manufactured thereby
DE112007002016T5 (en) 2006-09-01 2009-07-23 National Institute Of Advanced Industrial Science And Technology High strength non-flammable magnesium alloy
JP2009173991A (en) * 2008-01-23 2009-08-06 Uchu Miyao Magnesium particle production device
US20100310409A1 (en) * 2008-01-09 2010-12-09 Cast Crc Limited Magnesium based alloy
US7871476B2 (en) * 2004-06-30 2011-01-18 National Institute For Materials Science Magnesium alloy exhibiting high strength and high ductility and method for production thereof
US8293031B2 (en) * 2006-03-31 2012-10-23 Biotronik Vi Patent Ag Magnesium alloy and the respective manufacturing method
WO2013069638A1 (en) * 2011-11-07 2013-05-16 トヨタ自動車株式会社 HIGH STRENGTH Mg ALLOY AND METHOD FOR PRODUCING SAME
CN103305709A (en) * 2013-05-27 2013-09-18 河北工业大学 Preparation method of medical magnesium-base non-crystalline material
CN104131204A (en) * 2014-08-19 2014-11-05 中国科学院长春应用化学研究所 Magnesium alloy, magnesium alloy composite material and preparation method of composite material
CN105385919A (en) * 2015-12-03 2016-03-09 东莞宜安科技股份有限公司 Biodegradable implantable type material used for medical equipment
US9702028B2 (en) 2013-02-28 2017-07-11 Seiko Epson Corporation Magnesium-based alloy powder and magnesium-based alloy molded article
CN106987747A (en) * 2017-03-23 2017-07-28 济南大学 A kind of even corrosion resistant Biological magnesium alloy and preparation method thereof
JP2018178225A (en) * 2017-04-19 2018-11-15 地方独立行政法人東京都立産業技術研究センター Manufacturing method of magnesium alloy
JP2019056140A (en) * 2017-09-21 2019-04-11 株式会社戸畑製作所 Magnesium alloy powder
CN109735753A (en) * 2019-03-07 2019-05-10 山东融金粉末科技股份有限公司 A kind of high intensity corrosion resistant heatproof magnesium alloy material and preparation method thereof
WO2019123538A1 (en) * 2017-12-19 2019-06-27 日立化成株式会社 Magnesium alloy powder and sintered component thereof
WO2019123536A1 (en) * 2017-12-19 2019-06-27 日立化成株式会社 Method for producing magnesium alloy powder
CN115874097A (en) * 2022-09-09 2023-03-31 北京航空航天大学 High-plasticity high-thermal-conductivity cast magnesium alloy suitable for die casting and preparation method thereof

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100331154B1 (en) * 1999-10-22 2002-04-01 황해웅 Non-combustible Mg-Alloy
WO2004085689A1 (en) * 2003-03-25 2004-10-07 Yoshihito Kawamura Magnesium alloy of high strength and high toughness and method for production thereof
KR100605741B1 (en) * 2004-04-06 2006-08-01 김강형 magnesium alloy wrought product with anti-corrosion and good plating characteristics
US7871476B2 (en) * 2004-06-30 2011-01-18 National Institute For Materials Science Magnesium alloy exhibiting high strength and high ductility and method for production thereof
JP2008536005A (en) * 2005-03-08 2008-09-04 ペ,ドン−ヒョン Magnesium alloy added with misch metal, magnesium alloy processed material added with misch metal, and magnesium alloy processed material manufactured thereby
US8293031B2 (en) * 2006-03-31 2012-10-23 Biotronik Vi Patent Ag Magnesium alloy and the respective manufacturing method
US9074269B2 (en) * 2006-03-31 2015-07-07 Biotronik Vi Patent Ag Magnesium alloy
DE112007002016T5 (en) 2006-09-01 2009-07-23 National Institute Of Advanced Industrial Science And Technology High strength non-flammable magnesium alloy
US20100310409A1 (en) * 2008-01-09 2010-12-09 Cast Crc Limited Magnesium based alloy
JP2009173991A (en) * 2008-01-23 2009-08-06 Uchu Miyao Magnesium particle production device
WO2013069638A1 (en) * 2011-11-07 2013-05-16 トヨタ自動車株式会社 HIGH STRENGTH Mg ALLOY AND METHOD FOR PRODUCING SAME
US9523141B2 (en) 2011-11-07 2016-12-20 Toyota Jidosha Kabushiki Kaisha High strength Mg alloy and method for producing same
US9702028B2 (en) 2013-02-28 2017-07-11 Seiko Epson Corporation Magnesium-based alloy powder and magnesium-based alloy molded article
CN103305709A (en) * 2013-05-27 2013-09-18 河北工业大学 Preparation method of medical magnesium-base non-crystalline material
CN104131204A (en) * 2014-08-19 2014-11-05 中国科学院长春应用化学研究所 Magnesium alloy, magnesium alloy composite material and preparation method of composite material
CN105385919A (en) * 2015-12-03 2016-03-09 东莞宜安科技股份有限公司 Biodegradable implantable type material used for medical equipment
CN106987747A (en) * 2017-03-23 2017-07-28 济南大学 A kind of even corrosion resistant Biological magnesium alloy and preparation method thereof
JP2018178225A (en) * 2017-04-19 2018-11-15 地方独立行政法人東京都立産業技術研究センター Manufacturing method of magnesium alloy
JP2019056140A (en) * 2017-09-21 2019-04-11 株式会社戸畑製作所 Magnesium alloy powder
WO2019123538A1 (en) * 2017-12-19 2019-06-27 日立化成株式会社 Magnesium alloy powder and sintered component thereof
WO2019123536A1 (en) * 2017-12-19 2019-06-27 日立化成株式会社 Method for producing magnesium alloy powder
JPWO2019123536A1 (en) * 2017-12-19 2020-12-17 昭和電工マテリアルズ株式会社 Manufacturing method of magnesium alloy powder
JPWO2019123538A1 (en) * 2017-12-19 2020-12-17 昭和電工マテリアルズ株式会社 Magnesium alloy powder and its sintered parts
CN109735753A (en) * 2019-03-07 2019-05-10 山东融金粉末科技股份有限公司 A kind of high intensity corrosion resistant heatproof magnesium alloy material and preparation method thereof
CN115874097A (en) * 2022-09-09 2023-03-31 北京航空航天大学 High-plasticity high-thermal-conductivity cast magnesium alloy suitable for die casting and preparation method thereof
CN115874097B (en) * 2022-09-09 2023-12-22 北京航空航天大学 High-plasticity high-heat-conductivity cast magnesium alloy suitable for die casting and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH0941065A (en) High strength magnesium alloy and its production
US5316598A (en) Superplastically formed product from rolled magnesium base metal alloy sheet
JP3940154B2 (en) High strength and high toughness magnesium alloy and method for producing the same
EP1640466B1 (en) Magnesium alloy and production process thereof
US5593515A (en) High strength aluminum-based alloy
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
JPH03502346A (en) Superplastic compacts of rapidly solidifying magnesium-based alloys
WO2010122960A1 (en) High-strength copper alloy
JPWO2006036033A1 (en) High strength high toughness metal and method for producing the same
JP7467633B2 (en) Powdered Aluminum Materials
EP0584596A2 (en) High strength and anti-corrosive aluminum-based alloy
JPH0693363A (en) High tensile strength and heat resistant aluminum base alloy
JP2021507088A (en) Aluminum alloy for additive technology
EP0558977B1 (en) High-strength, rapidly solidified alloy
JPH07238336A (en) High strength aluminum-base alloy
WO1991013181A1 (en) Method for superplastic forming of rapidly solidified magnesium base metal alloys
JP2865499B2 (en) Superplastic aluminum-based alloy material and method for producing superplastic alloy material
US5129960A (en) Method for superplastic forming of rapidly solidified magnesium base alloy sheet
JPH05125474A (en) Aluminum-base alloy combining high strength with high toughness
JP2807374B2 (en) High-strength magnesium-based alloy and its solidified material
JPH0748646A (en) High strength magnesium base alloy and production thereof
JPH073375A (en) High strength magnesium alloy and production thereof
JPH06316740A (en) High strength magnesium-base alloy and its production
JP3485961B2 (en) High strength aluminum base alloy
JP3203564B2 (en) Aluminum-based alloy integrated solidified material and method for producing the same