JP2018178225A - Manufacturing method of magnesium alloy - Google Patents
Manufacturing method of magnesium alloy Download PDFInfo
- Publication number
- JP2018178225A JP2018178225A JP2017082843A JP2017082843A JP2018178225A JP 2018178225 A JP2018178225 A JP 2018178225A JP 2017082843 A JP2017082843 A JP 2017082843A JP 2017082843 A JP2017082843 A JP 2017082843A JP 2018178225 A JP2018178225 A JP 2018178225A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- magnesium
- magnesium alloy
- powder
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000861 Mg alloy Inorganic materials 0.000 title claims abstract description 82
- 238000004519 manufacturing process Methods 0.000 title claims description 33
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 92
- 239000000956 alloy Substances 0.000 claims abstract description 92
- 239000000843 powder Substances 0.000 claims abstract description 75
- 239000002245 particle Substances 0.000 claims abstract description 63
- 238000005245 sintering Methods 0.000 claims abstract description 46
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 30
- 239000000463 material Substances 0.000 claims abstract description 29
- 229910052796 boron Inorganic materials 0.000 claims abstract description 24
- 238000004663 powder metallurgy Methods 0.000 claims abstract description 22
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 21
- 238000002844 melting Methods 0.000 claims abstract description 16
- 230000008018 melting Effects 0.000 claims abstract description 16
- 238000002156 mixing Methods 0.000 claims abstract description 7
- 229910052718 tin Inorganic materials 0.000 claims abstract description 7
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 6
- 239000011777 magnesium Substances 0.000 claims description 67
- 239000000654 additive Substances 0.000 claims description 58
- 230000000996 additive effect Effects 0.000 claims description 58
- 229910052751 metal Inorganic materials 0.000 claims description 49
- 239000002184 metal Substances 0.000 claims description 48
- 239000013078 crystal Substances 0.000 claims description 46
- 238000000034 method Methods 0.000 claims description 32
- 150000001875 compounds Chemical class 0.000 claims description 30
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 25
- 239000007791 liquid phase Substances 0.000 claims description 4
- 239000007788 liquid Substances 0.000 abstract description 3
- 238000004090 dissolution Methods 0.000 abstract 2
- 229910020994 Sn-Zn Inorganic materials 0.000 description 17
- 229910009069 Sn—Zn Inorganic materials 0.000 description 17
- 229910000765 intermetallic Inorganic materials 0.000 description 17
- 239000011812 mixed powder Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 238000005452 bending Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 239000006104 solid solution Substances 0.000 description 6
- 229910019021 Mg 2 Sn Inorganic materials 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 238000009689 gas atomisation Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 229910018137 Al-Zn Inorganic materials 0.000 description 2
- 229910018573 Al—Zn Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000013001 point bending Methods 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910018131 Al-Mn Inorganic materials 0.000 description 1
- 229910018461 Al—Mn Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910001093 Zr alloy Inorganic materials 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
本発明は、マグネシウム合金の製造方法に関する。 The present invention relates to a method of manufacturing a magnesium alloy.
Mg(マグネシウム)は、軽量の金属元素であり、それを固溶強化したMg合金は、工業製品の構成材として検討されている。しかしながら、Mgの地金価格は、単位体積当たりに換算すればAlと同程度であるが、ビレット、薄板、粉末等の一次加工材の価格は地金の数倍から数十倍の価格となる。このため、Mg合金を用いた製品においては、製造コストが高くなる傾向にある。 Mg (magnesium) is a lightweight metal element, and a Mg alloy obtained by solid solution strengthening thereof is considered as a component of an industrial product. However, although the price of the bare metal of Mg is equivalent to that of Al when converted to unit volume, the price of primary processing materials such as billets, thin plates, and powders becomes several to dozens times the price of bare metal. . For this reason, in the product using Mg alloy, it exists in the tendency for manufacturing cost to become high.
本発明者においては、特許文献1に示すように、粉末冶金を用いたMg合金の製造方法についての検討を行い、焼結性と強度特性が良好なMg合金を得ることに成功している。 As described in Patent Document 1, the inventor of the present invention has studied a method of manufacturing a Mg alloy using powder metallurgy, and succeeded in obtaining a Mg alloy having good sinterability and strength characteristics.
しかしながら、強度と延性を兼ね備えた、いわゆる高靭性を有するMg合金種は少なく、高延性化のためには、結晶粒の微細化や軸比減少による非底面すべりの促進、および、非配向結晶の変形双晶によるひずみの緩和が必要と考えられる。 However, there are few so-called high toughness Mg alloy types having both strength and ductility, and in order to achieve high ductility, the promotion of non-bottom sliding due to grain refinement and reduction of axial ratio, and non-oriented crystals It is considered that strain relaxation by deformation twins is necessary.
さらに、Mg合金製品に求められる性能は多岐に渡り、上記強度と延性の他、耐熱性を有するMg合金の開発が望まれる。 Furthermore, the performance required for Mg alloy products is diverse, and development of a Mg alloy having heat resistance in addition to the above strength and ductility is desired.
例えば、自動車や航空機などの精密部品においては、軽量でかつ、強度と延性を有するといった機械的特性が要求されることはもとより、耐熱性(高温使用時においても、機械的特性を維持すること)が要求される。 For example, in precision parts such as automobiles and aircrafts, heat resistance (maintaining mechanical characteristics even when used at high temperatures) as well as requiring mechanical characteristics such as light weight and strength and ductility are required. Is required.
具体的には、軽金属においてMgの軽量性の特長はヤング率と密度の関係から比強度(σy/ρ)よりはむしろ比剛性(E1/3/ρ)であり、Al合金からMg合金に同じ剛性設計で置換した場合、約1.2倍の厚肉化が必要にも関わらず約20%の軽量化が図れる。したがって、Mg合金よりなる部品を用いることで、自動車や航空機などの軽量化を図ることができる。 Specifically, the lightness of Mg in light metals is characterized by the specific rigidity (E 1/3 / ρ) rather than the specific strength (σ y / ρ) due to the relationship between Young's modulus and density, and Al alloy to Mg alloy If it is replaced with the same rigidity design, weight reduction of about 20% can be achieved despite the need for thickening of about 1.2 times. Therefore, weight reduction of a car, an aircraft, etc. can be achieved by using a part made of Mg alloy.
また、Mgの粒界すべりは低温超塑性に役立つ反面、耐熱性を低下させる原因となる。即ち、粒界すべりを優先した靭性では、耐熱性を確保できないという課題が生じ得る。 In addition, while grain boundary sliding of Mg is useful for low-temperature superplasticity, it also causes a decrease in heat resistance. That is, in the toughness which gives priority to grain boundary sliding, the subject that heat resistance can not be ensured may arise.
そこで、本発明の目的は、強度と延性を兼ね備えたMg合金を提供することを目的とする。 Therefore, an object of the present invention is to provide a Mg alloy having both strength and ductility.
また、本発明の目的は、強度と延性に加え、熱的安定性を兼ね備えたMg合金を提供することを目的とする。 Another object of the present invention is to provide a Mg alloy which has thermal stability in addition to strength and ductility.
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 The above and other objects and novel features of the present invention will be apparent from the description of the present specification and the accompanying drawings.
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 The outline of typical ones of the inventions disclosed in the present application will be briefly described as follows.
本発明のMg合金の製造方法は、(a)マグネシウムと第1金属との溶解液を飛散させることで、前記溶解液を液滴にして分散させ、凝固させることにより、前記マグネシウムと前記第1金属との合金粒子を有する合金粉末を形成する工程を有する。そして、さらに、(b)前記合金粉末に添加元素の粉末を加え混合することにより粉末冶金材料を形成する工程、(c)前記粉末冶金材料を前記マグネシウムの融点未満の温度で焼結させることによりマグネシウム合金を形成する工程、を有する。 The method for producing a Mg alloy according to the present invention comprises: (a) dispersing the solution of magnesium and the first metal into droplets, thereby dispersing the solution into droplets, thereby solidifying the magnesium and the first metal; Forming an alloy powder having alloy particles with the metal. And (b) forming a powder metallurgy material by adding powder of an additive element to the alloy powder and mixing them, and (c) sintering the powder metallurgy material at a temperature lower than the melting point of the magnesium. Forming a magnesium alloy.
本発明のMg合金の製造方法は、(a)マグネシウムと第1金属と添加元素を有する溶解液を飛散させることで、前記溶解液を液滴にして分散させ、凝固させることにより、前記マグネシウムと前記第1金属と添加元素を有する合金粒子を有する合金粉末を形成する工程を有する。そして、さらに、(b)前記合金粉末を有する粉末冶金材料を前記マグネシウムの融点未満の温度で焼結させることによりマグネシウム合金を形成する工程、を有する。 The method for producing a Mg alloy according to the present invention comprises: (a) dispersing the solution containing magnesium, the first metal, and the additive element into droplets to disperse the solution and coagulating the solution; Forming an alloy powder having alloy particles having the first metal and an additive element. And (b) forming a magnesium alloy by sintering a powder metallurgy material having the alloy powder at a temperature lower than the melting point of the magnesium.
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。 The effects obtained by typical ones of the inventions disclosed in the present application will be briefly described as follows.
本願において開示される発明によれば、特性の良好なMg合金を製造することができる。 According to the invention disclosed in the present application, it is possible to produce a Mg alloy having good properties.
(実施の形態1)
本実施の形態のMg合金の製造工程は、粉末冶金によりMg合金を製造するものである。粉末冶金は、金属の粉末をプレスにより所望の形状に加圧成形した後、その金属の融点以下の温度で加熱焼結して、製品を形成する方法である。
Embodiment 1
The manufacturing process of Mg alloy of this embodiment manufactures Mg alloy by powder metallurgy. Powder metallurgy is a method of pressing a metal powder into a desired shape by a press and then heat sintering at a temperature below the melting point of the metal to form a product.
具体的に、本実施の形態のMg合金の製造工程においては、(a)アトマイズ法により、Mg合金粉末(Mg合金粒子の集合体)を形成する工程、(b)Mg合金粉末と添加元素粉末を混合する工程(粉末冶金用材料の形成工程)、(c)粉末冶金用材料を焼結させる工程、を有する。 Specifically, in the manufacturing process of the Mg alloy of the present embodiment, (a) forming Mg alloy powder (aggregation of Mg alloy particles) by atomizing method, (b) Mg alloy powder and additive element powder (Step of forming the material for powder metallurgy), (c) sintering the material for powder metallurgy.
(a)工程について、以下に説明する。 The process (a) will be described below.
アトマイズ法とは、気体や液体などの高圧噴霧媒体の運動エネルギーやディスクの高速回転による遠心力によって溶湯金属を飛散させ、液滴を凝固させて粉末化する方法であり、ガスアトマイズ法やディスク回転法などがある。ガスアトマイズ法では、タンディッシュ底部の注湯ノズルから溶湯金属を流下させつつ、周囲に配置した噴霧ノズルからガスを噴射して粉末化する。また、ディスク回転法では、高速回転するディスク上に溶湯金属を流
下し、遠心力で粉末化する。上記ガスとしては、窒素(N2)やアルゴン(Ar)などの不活性ガスを用いることができる。
The atomizing method is a method of scattering molten metal by the kinetic energy of a high pressure spray medium such as gas or liquid or centrifugal force due to high speed rotation of a disk to solidify droplets and make it powder, and the gas atomizing method or disk rotation method and so on. In the gas atomization method, powder metal is sprayed from a spray nozzle disposed around the molten metal while flowing down molten metal from a pouring nozzle at the bottom of a tundish. In the disk rotation method, molten metal is made to flow down on a disk rotating at high speed, and powdered by centrifugal force. As the gas, an inert gas such as nitrogen (N 2 ) or argon (Ar) can be used.
このようなアトマイズ法は、安定した品質のMg合金粉末を量産できることから、粉末冶金用材料の製造技術として用いて好適である。また、このようなアトマイズ法によれば、溶湯金属の単位時間当たりの流下量およびガスの圧力や流量の調整あるいはディスク回転速度の調整で粉末の粒度(粉末の大きさ)を調整し易く、ふるいによる分級を行うことができるため、Mg合金粉末の粒度分布の調整がし易い。また、上記ガスアトマイズ法または回転ディスク法により形成されたMg合金粉末のMg合金粒子は、等軸性を有するため、これを焼結したMg合金(焼結合金、焼結体)も等軸性を有し、高延性化を図ることができる。 Such an atomizing method is suitable for use as a manufacturing technique of a material for powder metallurgy because it can mass-produce stable quality Mg alloy powder. Also, according to such atomizing method, it is easy to adjust the particle size (size of the powder) of the molten metal by adjusting the flow amount per unit time of the molten metal and adjusting the pressure and flow rate of the gas or adjusting the disc rotation speed. It is easy to adjust the particle size distribution of the Mg alloy powder because classification can be performed by the Further, since Mg alloy particles of the Mg alloy powder formed by the gas atomizing method or the rotating disk method have the equiaxial property, the Mg alloy (sintered alloy, sintered body) obtained by sintering this is also equiaxial. It is possible to achieve high ductility.
(b)および(c)工程について、以下に説明する。 The steps (b) and (c) will be described below.
上記Mg合金粉末に添加元素粉末を混合し、粉末冶金用材料とし、これを焼結させることで、強度と延性に加え、熱的な安定性を兼ね備えたMg合金を形成することができる。 An additive element powder is mixed with the Mg alloy powder to form a material for powder metallurgy, and the material is sintered to form an Mg alloy having not only strength and ductility but also thermal stability.
上記Mg合金の製造工程によれば、焼結体(Mg合金)の焼結界面に、添加元素または添加元素の化合物を形成させることができる。これにより、強度と適度な靭性が得られるものと考えられる。 According to the manufacturing process of the said Mg alloy, the compound of an additional element or an additional element can be formed in the sintering interface of a sintered compact (Mg alloy). It is believed that this can provide strength and adequate toughness.
また、添加元素または添加元素の化合物を熱的に安定なものとすることにより、耐熱性を向上させることができる。このような添加元素としては、Mgと金属間化合物を形成しかつ融点が高い元素が好ましく、例えば、B、Si、Ca、Ni、Cu、Y、Sn、Sb、Bi、La、Ce、Nd等を用いることができる。例えば、添加元素として、B(ホウ素)を用いた場合、MgとB(ホウ素)とで形成される化合物であるMgB2は、標準生成エンタルピー(合金1mol当たり)の絶対値が大きいことから耐熱性が期待される。このように、添加元素として、B(ホウ素)を用いることで、Mg合金の耐熱性を向上させることができる。 Further, the heat resistance can be improved by making the additive element or the compound of the additive element thermally stable. As such an additive element, an element forming an intermetallic compound with Mg and having a high melting point is preferable, and, for example, B, Si, Ca, Ni, Cu, Y, Sn, Sb, Bi, La, Ce, Nd, etc. Can be used. For example, when B (boron) is used as an additive element, MgB 2 which is a compound formed of Mg and B (boron) has a large absolute value of the standard enthalpy of formation (per mol of alloy) and is heat resistant. There is expected. Thus, the heat resistance of Mg alloy can be improved by using B (boron) as an additional element.
(実施例)
本実施例において説明するMg合金の製造方法は一例であり、本発明は以下の各種条件に限定されるものではない。
(Example)
The manufacturing method of the Mg alloy described in the present embodiment is an example, and the present invention is not limited to the following various conditions.
焼結体(Mg合金)を作製するために、ガスアトマイズ装置を用いて純Mg塊、純Sn塊、純Zn塊からMg−Sn−Zn系の合金粉末を作製した。Snは、4重量%、Znは、1重量%とした。 In order to produce a sintered body (Mg alloy), a Mg-Sn-Zn-based alloy powder was produced from a pure Mg mass, a pure Sn mass, and a pure Zn mass using a gas atomizing apparatus. Sn was 4 wt% and Zn was 1 wt%.
黒鉛るつぼに各金属塊を投入し1.1K/sの昇温速度で加熱し973Kで300sの溶解と保持を行った。黒鉛るつぼのノズルを通過した溶湯にアルゴンガスを吹き付けることで粉化した。溶湯ノズル内の最小径はΦ2.0mm、噴霧圧力は8〜9MPaとした。 Each metal block was placed in a graphite crucible, heated at a temperature rising rate of 1.1 K / s, and melted and held at 973 K for 300 s. The molten metal passing through the nozzle of the graphite crucible was pulverized by spraying argon gas. The minimum diameter in the molten metal nozzle was 2.0 2.0 mm, and the spray pressure was 8 to 9 MPa.
作製した合金粉末とB(ホウ素)粉末を乳鉢で10分間混合した。得られた混合粉末(粉末冶金材料)を焼結用の黒鉛型に充填した後、通電焼結装置を用いて焼結を行った。焼結条件は、823K×10分で4Pa程度の減圧雰囲気とした。なお、焼結時の温度は、Mgの融点より低く、Snの融点より高い。合金粉末の粒径は、53〜106μm程度であり、B(ホウ素)粉末の粒径は、1μm程度である。 The prepared alloy powder and B (boron) powder were mixed in a mortar for 10 minutes. The obtained mixed powder (powder metallurgy material) was filled in a graphite mold for sintering, and then sintering was performed using a current sintering apparatus. The sintering conditions were a reduced pressure atmosphere of about 4 Pa at 823 K × 10 minutes. The sintering temperature is lower than the melting point of Mg and higher than the melting point of Sn. The particle size of the alloy powder is about 53 to 106 μm, and the particle size of the B (boron) powder is about 1 μm.
(焼結体の評価)
焼結体の強度特性は万能試験機を用いて曲げ試験により評価した。試験片の寸法を10×35×6mm3、支点間距離を30mmとし、試験片が破壊するまで1mm/分の変位速度で荷重を加えた。合金粉末と焼結体のミクロ組織、および曲げ試験後の破面の観察と解析は光学式顕微鏡およびSEM−EDSを用いて行った。
(Evaluation of sintered body)
The strength characteristics of the sintered body were evaluated by a bending test using a universal testing machine. The dimensions of the test piece were 10 × 35 × 6 mm 3 , the distance between fulcrums was 30 mm, and a load was applied at a displacement speed of 1 mm / minute until the test piece broke. The observation and analysis of the microstructures of the alloy powder and the sintered body, and the fractured surface after the bending test were performed using an optical microscope and SEM-EDS.
(結果)
図1(A)に作製したMg−Sn−Znよりなる合金粉末の断面ミクロ組織を示す。粉末粒子(合金粒子)内には、5μm程度の結晶粒が認められる。SnとZnの一部はMgに固溶し、残りは結晶粒界に濃化し、例えば、結晶粒界にMg2Snの形成が認められる。結晶粒は、等軸晶である。粉末粒子は、球状または亜球状である。
(result)
The cross-section microstructure of the alloy powder which consists of Mg-Sn-Zn produced to FIG. 1 (A) is shown. In the powder particles (alloy particles), crystal grains of about 5 μm are observed. A part of Sn and Zn is dissolved in Mg and the rest is concentrated at grain boundaries. For example, formation of Mg 2 Sn is observed at grain boundaries. The crystal grains are equiaxed. The powder particles are spherical or subspherical.
図1(B)に作製した焼結体の断面ミクロ組織を示す。これは、上記Mg−Sn−Znよりなる合金粉末にB(ホウ素)の粉末を混合した粉末(混合粉末)を焼結した焼結体の断面ミクロ組織である。焼結により、合金粉末内の結晶が成長し、より大きな結晶粒が確認できる。焼結後の結晶粒径は、30μm以下である。焼結による合金粉末内の結晶の成長により、焼結体においては、結晶粒界がほとんど消滅し、焼結界面内の結晶粒界は少ない(図4参照)。上記粉末粒子が、球状または亜球状であり、その内部の結晶粒が等軸晶であるため、焼結後の結晶粒も等軸晶となる。 The cross-sectional microstructure of the produced sintered compact is shown in FIG. 1 (B). This is a cross-sectional microstructure of a sintered body obtained by sintering a powder (mixed powder) obtained by mixing a powder of B (boron) with the alloy powder of Mg-Sn-Zn. By sintering, crystals in the alloy powder grow and larger crystal grains can be confirmed. The crystal grain size after sintering is 30 μm or less. By the growth of crystals in the alloy powder by sintering, in the sintered body, the crystal grain boundaries almost disappear and the crystal grain boundaries in the sintered interface are small (see FIG. 4). Since the above-mentioned powder particles are spherical or sub-spherical and the crystal grains in the inside are equiaxed, the crystal grains after sintering are also equiaxed.
なお、焼結過程でMg2Snは再溶解し液相を形成しながら新しい界面にぬれ拡がり、再析出すると考えられる。また、焼結後の結晶粒径(平均結晶粒径)が、30μm以下の比較的小さな、等軸粒であることから、ホール・ペッチ則による強度とランダムな双晶変形および均一な粒界すべりによる延性を得ることで、高い靭性を示すことができる。 In addition, it is thought that Mg 2 Sn re-dissolves in the sintering process to form a liquid phase, wet and spread on a new interface, and re-precipitate. In addition, since the grain size (average grain size) after sintering is a relatively small equiaxed grain of 30 μm or less, the strength according to the Hall-Petch law and random twin deformation and uniform grain boundary sliding High toughness can be exhibited by obtaining ductility by the
上記焼結体の曲げ試験結果を図2に示す。曲げ強さおよび曲げひずみは経験則に基づいて引張強さと引張ひずみに換算した。比較のため既存合金のデータもプロットした。 The bending test result of the said sintered compact is shown in FIG. Bending strength and bending strain were converted to tensile strength and tensile strain based on empirical rules. The data of existing alloys are also plotted for comparison.
図2において、黒色の丸(PM Mg−B−Sn−Zn)は、Mg−Sn−Zn合金粉末にB(ホウ素)粉末を混合した粉末を焼結した焼結体の試験結果である。右側から、B(ホウ素)の添加量が、0原子%、2原子%、4原子%、8原子%、16原子%の場合を示す。また、灰色の丸(PM Mg−Sn−Zn、PM Mg−Sn)は、各金属元素の粉末を混合し焼結した焼結体の試験結果である。灰色の丸(PM Mg)は、Mgの粉末を焼結した焼結体の試験結果である。各金属の粉末は、ガスアトマイズ法により得られたものではなく、粉砕処理により得られたものである。白色の丸は、既存合金を用いた試験結果である。既存合金としては、AZ91(Mg−Al−Zn系合金)、ZK60(Mg−Zn−Zr系合金)、AM20(Mg−Al−Mn系合金)、LZ91(Mg−Al−Zn系合金)などがある。Extruded ZK60−T5は、押出材を人工時効処理(T5処理)したZK60であり、AZ91−T4は、鋳造材を自然時効(T4)処理したAZ91であり、AZ91−T6は、鋳造材を人工時効(T6)処理したAZ91であり、as−castは、鋳造材であり、as−rolledは、圧延材である。PMは、粉末冶金を意味する。 In FIG. 2, black circles (PM Mg—B—Sn—Zn) are test results of a sintered body obtained by sintering a powder obtained by mixing B (boron) powder with Mg—Sn—Zn alloy powder. From the right side, the case where the addition amount of B (boron) is 0 atomic percent, 2 atomic percent, 4 atomic percent, 8 atomic percent, 16 atomic percent is shown. In addition, gray circles (PMMg-Sn-Zn, PMMg-Sn) are test results of a sintered body obtained by mixing and sintering powders of the respective metal elements. Gray circles (PM Mg) are test results of a sintered body obtained by sintering Mg powder. The powder of each metal is not obtained by the gas atomization method, but is obtained by grinding treatment. White circles are the test results using the existing alloy. As existing alloys, AZ91 (Mg-Al-Zn alloy), ZK60 (Mg-Zn-Zr alloy), AM20 (Mg-Al-Mn alloy), LZ91 (Mg-Al-Zn alloy), etc. is there. Extruded ZK60-T5 is ZK60 in which the extruded material is subjected to artificial aging treatment (T5 treatment), AZ91-T4 is AZ91 in which the cast material is subjected to natural aging (T4) treatment, and AZ91-T6 is artificial aging of the cast material (T6) AZ91 treated, as-cast is a cast material, and as-rolled is a rolled material. PM means powder metallurgy.
図2の黒色の丸(PM Mg−B−Sn−Zn)で示すように、B(ホウ素)を添加したMg−B−Sn−Znにおいては、B(ホウ素)の添加量が増加するに従い、強度と延性は低下するが、既存合金であるAZ91−T4、AZ91−T6よりも良好な強度と延性を有していることが分かった。 As shown by the black circles (PM Mg-B-Sn-Zn) in FIG. 2, in Mg-B-Sn-Zn to which B (boron) is added, as the addition amount of B (boron) increases, Although strength and ductility are reduced, it was found to have better strength and ductility than existing alloys AZ91-T4 and AZ91-T6.
図3に、各材料の単位体積当たりの曲げエネルギーを示す。図3において、左から、上記PM Mg−B−Sn−Znであって、B(ホウ素)の添加量が、0原子%、2原子%、4原子%、8原子%、16原子%の場合を示す。AZ91chip(PM)は、三点曲げ強さが、401MPa、三点曲げひずみが、6.9%の合金である。PM Mg−B−Sn−Znにおいて、B(ホウ素)を0原子%から2原子%添加することで曲げエネルギーは半分程度に低下するものの、0原子%から2原子%のB(ホウ素)を添加した焼結体は、AZ91−T4、AZ91chip(PM)、AZ91−T6より、高い曲げエネルギー値を示すことが分かった。 The bending energy per unit volume of each material is shown in FIG. In FIG. 3, from the left, in the case of the above PM Mg-B-Sn-Zn, the addition amount of B (boron) is 0 atomic%, 2 atomic%, 4 atomic%, 8 atomic%, 16 atomic% Indicates AZ91 chip (PM) is an alloy having a three-point bending strength of 401 MPa and a three-point bending strain of 6.9%. In PM Mg-B-Sn-Zn, although 0 to 2 atomic% addition of B (boron) reduces bending energy by half, 0 to 2 atomic% B (boron) is added It was found that the sintered body exhibited a higher bending energy value than AZ91-T4, AZ91 chip (PM) and AZ91-T6.
(熱的安定性)
添加元素として用いたB(ホウ素)は、マグネシウムと金属間化合物(MgB2)を構成する元素であり、このMgB2は熱的に安定である。別の言い方をすれば、耐熱性がある。即ち、MgB2の分解温度は、純マグネシウムの融点よりも高い。このため、母相(焼結体)の温度が上昇しても分解され難く、また、焼結体の結晶粒の粒内および粒界にMgB2が形成されていることにより、ひずみによる転位の移動が緩慢になる。このため、母相(焼結体)の温度が上昇しても、変形し難くなる。
(Thermal stability)
B (boron) used as an additive element is an element constituting magnesium and an intermetallic compound (MgB 2 ), and this MgB 2 is thermally stable. Put another way, it is heat resistant. That is, the decomposition temperature of MgB 2 is higher than the melting point of pure magnesium. For this reason, even if the temperature of the matrix (sintered body) rises, it is difficult to be decomposed, and since MgB 2 is formed in the grains and grain boundaries of the crystal grains of the sintered body, dislocation due to strain is Movement slows down. For this reason, even if the temperature of the matrix phase (sintered body) rises, deformation becomes difficult.
例えば、図2において、黒色の丸(PM Mg−B−Sn−Zn)は、室温での評価であるが、本実施例において説明した“PM Mg−B−Sn−Zn”は、熱間においても変形抵抗の維持が期待される。 For example, in FIG. 2, black circles (PM Mg-B-Sn-Zn) are evaluations at room temperature, but “PM Mg-B-Sn-Zn” described in this example is hot Also maintenance of deformation resistance is expected.
このように、Mg合金への添加元素またはこのMgと添加元素の化合物(金属間化合物)を熱的に安定なものとし、焼結過程において、焼結界面に析出させることにより、Mg合金の耐熱性を向上させることができる。 Thus, the heat resistance of the Mg alloy is achieved by thermally stabilizing the additive element to the Mg alloy or the compound of the Mg and the additive element (intermetallic compound) and depositing it on the sintering interface in the sintering process. It is possible to improve the quality.
これにより、例えば、室温(25℃)〜Mgの融点の半分程度までの温度(200℃程度)の温度範囲において、Mg合金の変形抵抗が改善され変形量が少なくなり、Mg合金の強度などの機械的特性を向上させることができる。 Thereby, for example, in a temperature range from room temperature (25 ° C.) to about half of the melting point of Mg (about 200 ° C.), the deformation resistance of the Mg alloy is improved and the deformation amount is reduced, and the strength of the Mg alloy Mechanical properties can be improved.
(焼結モデル)
図4は、合金粉末と添加元素の粉末との混合粉末の焼結工程を示す第1模式図である。図4に示すように、粉末冶金材料MTは、合金粒子APと添加元素E1の粒子EPとの混合物である。合金粒子APは、Mgと金属M1と金属M2の合金粒子である。前述の実施例においては、添加元素E1は、B(ホウ素)であり、金属M1は、Sn、金属M2は、Znである。添加元素E1は、例えば、共晶反応元素であり、金属M1、M2は、固溶強化元素である。
(Sintering model)
FIG. 4: is a 1st schematic diagram which shows the sintering process of the mixed powder of alloy powder and the powder of an additional element. As shown in FIG. 4, the powder metallurgy material MT is a mixture of alloy particles AP and particles EP of the additive element E1. The alloy particle AP is an alloy particle of Mg, the metal M1 and the metal M2. In the foregoing embodiment, the additive element E1 is B (boron), the metal M1 is Sn, and the metal M2 is Zn. The additive element E1 is, for example, a eutectic reaction element, and the metals M1 and M2 are solid solution strengthening elements.
合金粉末(合金粒子APの集合体)は、粗粉であり、その直径(粒径、平均粒径)は、例えば、53〜106μm程度である。合金粉末(合金粒子APの集合体)は、前述したように、Mgと、M1と、M2との溶解液を飛散させることで、溶解液を液滴にして分散させ、凝固させると言ったアトマイズ法により形成されている。Mg−M1−M2の合金粒子APは、球状または亜球状である。また、Mg−M1−M2の合金粒子APは、複数の結晶粒G1を有し、“GB”は、結晶粒界を示す。この結晶粒G1は、等軸晶である。等軸粒とは比較的に等方的に成長した粒を指す。凝固工学においては、定性的に組成的過冷(結晶の成長速度が大きく温度勾配が小さい)と攪拌(分断、流動、回転)により等方的に成長し易くなると考えられている。 The alloy powder (aggregate of alloy particles AP) is a coarse powder, and the diameter (particle size, average particle size) thereof is, for example, about 53 to 106 μm. As described above, the alloy powder (aggregate of alloy particles AP) is atomized by dispersing the solution of Mg, M1 and M2 into droplets, dispersing and solidifying the solution. It is formed by the law. The alloy particle AP of Mg-M1-M2 is spherical or subspherical. Further, the alloy particle AP of Mg-M1-M2 has a plurality of crystal grains G1, and "GB" indicates a grain boundary. The crystal grains G1 are equiaxed crystals. An equiaxed grain refers to a relatively isotropic grain grown. In solidification engineering, it is considered that isotropic growth easily occurs qualitatively by compositional supercooling (crystal growth rate is large and temperature gradient is small) and stirring (division, flow, rotation).
上記合金粉末と添加元素の粉末とを混合すると、Mg−M1−M2の合金粒子APの周囲に、複数の添加元素E1の粒子EPが付着する。そして、上記合金粉末と添加元素の粉末との混合粉末を焼結すると、その焼結体STにおいては、Mg−M1−M2の合金粒子の結晶粒G1が大きくなり、結晶粒G2となる。また、合金粒子AP間の結合部には、焼結界面SIが形成される。そして、結晶粒G2は、結晶粒G1と同様に等軸粒となる。この結晶粒G1の粒径は、例えば、30μm以下である。焼結界面SIは、Mg−M1−M2の合金粒子APの形状に対応する。また、図4に示すように、合金粒子APの直径が比較的大きい場合には、焼結界面SIの内部に、結晶粒界GBが残存する場合がある。なお、焼結工程において、上記混合粉末を圧縮しながら焼結してもよい。 When the alloy powder and the powder of the additive element are mixed, particles EP of the plurality of additive elements E1 adhere around the alloy particles AP of Mg-M1-M2. And when the mixed powder of the said alloy powder and the powder of an additional element is sintered, in the sintered compact ST, the crystal grain G1 of the alloy particle of Mg-M1-M2 becomes large, and it becomes the crystal grain G2. In addition, a sintered interface SI is formed at the joint between the alloy particles AP. And crystal grain G2 turns into an equiaxed grain like crystal grain G1. The grain size of the crystal grain G1 is, for example, 30 μm or less. The sintered interface SI corresponds to the shape of the alloy particle AP of Mg-M1-M2. Further, as shown in FIG. 4, when the diameter of the alloy particles AP is relatively large, the grain boundaries GB may remain inside the sintered interface SI. In the sintering step, the mixed powder may be sintered while being compressed.
ここで、焼結体STの焼結界面SIには、添加元素E1や添加元素E1とMgの化合物(金属間化合物、MgE1)が形成される。添加元素E1とMgの化合物(金属間化合物、MgE1)は、前述の実施例においては、MgB2である。 Here, a compound of the additional element E1 or the additional element E1 and Mg (intermetallic compound, MgE1) is formed on the sintered interface SI of the sintered body ST. The compound of the additional element E1 and Mg (intermetallic compound, MgE1) is MgB 2 in the above-mentioned example.
このように、焼結界面SIに、添加元素E1や添加元素E1とMgの化合物(金属間化合物、MgE1)が設けられることにより、図2、図3を参照しながら説明したように、焼結体STにおいて、強度および適度な靭性を確保することができる。さらに、添加元素E1や添加元素E1とMgの化合物(金属間化合物、MgE1)を熱的に安定なものにすることで、焼結体STの耐熱性を向上させることができる。 Thus, as described with reference to FIG. 2 and FIG. 3, the additional element E1 or the compound of the additional element E1 and Mg (intermetallic compound, MgE1) is provided on the sintering interface SI, as described with reference to FIGS. In the body ST, strength and appropriate toughness can be ensured. Furthermore, the heat resistance of the sintered body ST can be improved by making the additive element E1 and the compound of the additive element E1 and Mg (intermetallic compound, MgE1) thermally stable.
なお、焼結時の温度は、Mgの融点より低く、金属M1や金属M2の融点より高くすることが好ましい。また、焼結時の温度は、添加元素E1より低くてもよい。 The sintering temperature is preferably lower than the melting point of Mg and higher than the melting points of the metal M1 and the metal M2. Moreover, the temperature at the time of sintering may be lower than the additive element E1.
図5は、合金粉末と添加元素の粉末との混合粉末の焼結工程を示す第2模式図である。図4(第1モデル)においては、粉末冶金材料MTの合金粒子APの直径を、比較的大きく、53〜106μm程度としたが、図5においては、合金粒子APの直径を、比較的小さく、53μm以下とした。このような合金粒子APの直径や合金粉末(合金粒子APの集合体)粒度分布の調整は、ふるいなどを用いて行うことができる。 FIG. 5 is a second schematic view showing a step of sintering a mixed powder of an alloy powder and a powder of an additive element. In FIG. 4 (first model), the diameter of the alloy particles AP of the powder metallurgy material MT is relatively large, about 53 to 106 μm, but in FIG. 5, the diameter of the alloy particles AP is relatively small, It was 53 μm or less. The adjustment of the diameter of the alloy particles AP and the particle size distribution of the alloy powder (aggregate of the alloy particles AP) can be performed using a sieve or the like.
この場合、焼結後において、Mg−M1−M2の合金粒子の結晶粒G1が大きくなり、結晶粒界(GB)は、焼結界面SIとほぼ一致する。そして、焼結界面SI(結晶粒界GB)に入る、添加元素E1や添加元素E1とMgの化合物(金属間化合物、MgE1)の量を多くでき、焼結界面SI(結晶粒界GB)をさらに強化することができる。 In this case, after sintering, the crystal grain G1 of the Mg-M1-M2 alloy particle becomes large, and the grain boundary (GB) substantially coincides with the sintering interface SI. Then, the amount of the additive element E1 or the compound of the additive element E1 and Mg (intermetallic compound, MgE1) entering the sintered interface SI (crystal grain boundary GB) can be increased, and the sintered interface SI (crystal grain boundary GB) It can be further strengthened.
なお、図4および図5の焼結界面SIにおいて、焼結界面SIや結晶粒界GBに、Mgと金属M1との金属化合物(上記実施例では、Mg2Sn)が形成されていても良い。前述したように、本発明者の検討により、純粉末や合金粉末の一時的液相焼結を経て、Mg−Sn−Zn系の焼結体が得られることが判明している。特に、スズ(Sn)および亜鉛(Zn)はMgの固溶強化元素であり、十分な固溶はMgの水素過電圧を高めて耐食性に貢献する。そして、Mg−Sn−Znの合金粉末の焼結体の粒径は、30μm以下、例えば20μm程度の等軸粒で構成され、結晶粒界および焼結界面に形成されたMg2Snの平均寸法は、約1μmである。このような、Mgと金属M1との金属化合物(上記実施例では、Mg2Sn)の存在によっても、延性を維持でき、靭性を得ることができる。 In the sintered interface SI shown in FIGS. 4 and 5, a metal compound of Mg and metal M1 (Mg 2 Sn in the above embodiment) may be formed on the sintered interface SI or the grain boundary GB. . As described above, according to the study of the present inventor, it has been found that a Mg—Sn—Zn-based sintered body can be obtained through temporary liquid phase sintering of pure powder or alloy powder. In particular, tin (Sn) and zinc (Zn) are solid solution strengthening elements of Mg, and sufficient solid solution increases the hydrogen overpotential of Mg and contributes to corrosion resistance. The grain size of the sintered body of the alloy powder of Mg-Sn-Zn is 30 μm or less, for example, an equiaxed grain of about 20 μm, and the average size of Mg 2 Sn formed at the grain boundaries and the sintered interface Is about 1 μm. The ductility can be maintained and toughness can be obtained also by the presence of such a metal compound of Mg and the metal M1 (Mg 2 Sn in the above example).
かかる場合においては、焼結界面SI(結晶粒界GB)において、添加元素E1や添加元素E1とMgの化合物(金属間化合物、MgE1)と、金属M1や金属1とMgの化合物(金属間化合物、MgM1)と、が共存することとなる。 In such a case, in the sintered interface SI (crystal grain boundary GB), the compound of the additional element E1 or the additional element E1 and Mg (intermetallic compound, MgE1), and the compound of the metal M1 or metal 1 and Mg (intermetallic compound) , MgM1) co-exist.
(耐熱性を向上させる添加元素について)
マグネシウムと金属間化合物の熱的安定度の指標としては、分解温度と生成エンタルピーが挙げられる。
(About added elements that improve heat resistance)
The indices of thermal stability of magnesium and intermetallic compounds include the decomposition temperature and the enthalpy of formation.
分解温度は、B>Si>Co>Sb>Ir>Ag>Au>Cu>Ce>Nd>La>Y>Ni>Sn>Ca>Bi>Pdの順である。Mgの融点との差は、最小で約50℃、最大で約900℃である。表1に、上記元素とMgの化合物(IMC)の分解温度を示す。 The decomposition temperatures are in the order of B> Si> Co> Sb> Ir> Ag> Au> Cu> Ce> Nd> La> Y> Ni> Sn> Ca> Bi> Pd. The difference with the melting point of Mg is at least about 50 ° C. and at most about 900 ° C. Table 1 shows the decomposition temperatures of the compounds of the above elements and Mg (IMC).
また、生成エンタルピー(絶対値)は、B>Sb>Sn>Si>Ni>Ca>Cu>La>Yの順である。生成エンタルピー(絶対値)は、最小で約10kJ/mol・atom、最大で約40kJ/mol・atomである。表2に、上記元素とMgの化合物(IMC)の生成エンタルピーを示す。 Further, the enthalpy of formation (absolute value) is in the order of B> Sb> Sn> Si> Ni> Ca> Cu> La> Y> Y. The enthalpy of formation (absolute value) is at least about 10 kJ / mol · atom and at most about 40 kJ / mol · atom. Table 2 shows the enthalpy of formation of the compound of the element and Mg (IMC).
このように、耐熱性を向上させる添加元素としては、分解温度が高い、または、生成エンタルピー(絶対値)が大きい元素を用いることが好ましい。 Thus, it is preferable to use an element having a high decomposition temperature or a large enthalpy of formation (absolute value) as the additive element for improving the heat resistance.
(難燃性を向上させる添加元素について)
また、金属表面に酸化物を形成することで、難燃性が向上する。金属表面に酸化物が存在する場合、金属内部への酸化の進行が抑制される(耐酸化性)。
(About added elements to improve flame retardancy)
In addition, by forming an oxide on the metal surface, the flame retardancy is improved. When an oxide is present on the metal surface, the progress of oxidation to the inside of the metal is suppressed (oxidation resistance).
添加元素として、酸化物の生成エンタルピー(絶対値)の大きな元素を用いることで、難燃性を向上させることができる。酸化物の生成エンタルピー(絶対値)は、Y>Nd>Ce>La>Al>Ca>Si>(Mg)>B>Sb>Sn>Co>Ni>Bi>Cuとなり、最小で約60kJ/mol・atom、最大で約360kJ/mol・atomである。表3に、上記元素と酸素(O)の化合物の生成エンタルピーを示す。なお、表3の上位の元素においては、化合物の粗大化により延性の低下を招く場合があり、延性と難燃性のバランスが取りやすい添加元素を選択することが好ましい。 The flame retardancy can be improved by using an element having a large enthalpy of formation (absolute value) of the oxide as the additive element. The formation enthalpy (absolute value) of the oxide is Y> Nd> Ce> La> Al> Ca> Si> (Mg)> B> Sb> Sn> Co> Ni> Bi> Cu, and the minimum is about 60 kJ / mol • atom, up to about 360 kJ / mol · atom. Table 3 shows the enthalpy of formation of the compound of the above element and oxygen (O). In addition, in the element of the upper rank of Table 3, the fall of ductility may be caused by the coarsening of a compound, and it is preferable to select the additive element which is easy to take the balance of ductility and a flame retardance.
このように、添加元素を選択し、焼結体(Mg合金)の焼結界面に、添加元素または添加元素の化合物を形成させることにより、強度と適度な靭性を確保しつつ、新たな機能(耐熱性や難燃性)を付与することができる。 Thus, by selecting the additive element and forming the additive element or the compound of the additive element at the sintered interface of the sintered body (Mg alloy), a new function (enough strength and appropriate toughness can be obtained) Heat resistance and flame retardancy can be imparted.
(実施の形態2)
実施の形態1においては、合金粒子APに、添加元素E1の粒子EPを混合することで、粉末冶金材料MTを形成したが、合金粒子AP中に添加元素を内在させてもよい。
Second Embodiment
In Embodiment 1, the powder metallurgy material MT is formed by mixing the particles EP of the additive element E1 with the alloy particles AP, but the additive elements may be contained in the alloy particles AP.
即ち、アトマイズ法により、添加元素E1を含有する合金粉末(合金粒子APの集合体)を形成する。この場合、合金粒子AP内に添加元素E1が内在した状態となる。添加元素E1が、Mgと固溶し易い材料であれば、添加元素E1は、合金粒子APの結晶粒内に取り込まれるが、添加元素E1が、Mgと固溶し難い材料であれば、合金粒子APの結晶粒界GBに濃化された状態で内在する。 That is, an alloy powder (aggregate of alloy particles AP) containing the additional element E1 is formed by atomization. In this case, the additive element E1 is embedded in the alloy particle AP. If the additive element E1 is a material that easily forms a solid solution with Mg, the additive element E1 is taken into the crystal grains of the alloy particle AP, but if the material that the additional element E1 does not easily form a solid solution with Mg, an alloy It is inherent in the grain boundary GB of the particle AP in a concentrated state.
図6は、本実施の形態の合金粉末と添加元素の粉末との混合粉末の焼結工程を示す第1模式図であり、図7は、第2模式図である。 FIG. 6 is a first schematic view showing a step of sintering a mixed powder of an alloy powder of the present embodiment and a powder of an additive element, and FIG. 7 is a second schematic view.
図6に示すように、粉末冶金材料MTとなる、Mg−M1−M2の合金粒子APは、その内部に添加元素E1を有する。この合金粒子APは、Mg−E1−M1−M2の合金粒子とも言える。この合金粒子APは、Mgと、M1と、M2と添加元素E1の溶解液を飛散させることで、溶解液を液滴にして分散させ、凝固させると言ったアトマイズ法により形成されている。なお、添加元素E1は必ずしも溶融している必要はなく、Mgと、M1と、M2との溶融液内に、微粒子として含まれた状態でもよい。合金粒子APは、球状または亜球状である。また、Mg−E1−Sn−Znの合金粒子は、複数の結晶粒G1を有し、この結晶粒G1は、等軸晶である。そして、この場合、この段階で結晶粒G1の粒界や結晶粒G1の内部に、添加元素E1や添加元素E1とMgの化合物(金属間化合物、MgE1)が形成されている。 As shown in FIG. 6, the alloy particle AP of Mg-M1-M2 which becomes the powder metallurgy material MT has the additive element E1 in its inside. This alloy particle AP can be said to be an alloy particle of Mg-E1-M1-M2. The alloy particles AP are formed by an atomizing method in which a solution of Mg, M1, M2 and an additive element E1 is dispersed by scattering the solution, and the solution is dispersed and solidified. The additional element E1 does not necessarily have to be melted, and may be contained as fine particles in the melt of Mg, M1 and M2. The alloy particles AP are spherical or subspherical. The alloy particle of Mg-E1-Sn-Zn has a plurality of crystal grains G1, and this crystal grain G1 is equiaxed. In this case, at this stage, the compound of the additional element E1 or the additional element E1 and Mg (intermetallic compound, MgE1) is formed in the grain boundary of the crystal grain G1 or in the crystal grain G1.
上記合金粉末(合金粒子APの集合体)を焼結すると、その焼結体STにおいては、Mg−E1−Sn−Znの合金粒子の結晶粒G1が大きくなり結晶粒G2となる。また、合金粒子AP間の結合部には、焼結界面SIが形成される。焼結体STの焼結界面SIには、添加元素E1や添加元素E1とMgの化合物(金属間化合物、MgE1)が形成される。 When the alloy powder (aggregate of alloy particles AP) is sintered, in the sintered body ST, the crystal grains G1 of the alloy particles of Mg-E1-Sn-Zn become large and become crystal grains G2. In addition, a sintered interface SI is formed at the joint between the alloy particles AP. A compound of the additional element E1 or the additional element E1 and Mg (intermetallic compound, MgE1) is formed on the sintered interface SI of the sintered body ST.
このように、焼結界面SIに、添加元素E1や添加元素E1とMgの化合物(金属間化合物、MgE1)が設けられることにより、強度および適度な靭性を確保することができる。さらに、添加元素E1や添加元素E1とMgの化合物(金属間化合物、MgE1)を熱的に安定なものにすることで、焼結体STの耐熱性を向上させることができる。 As described above, by providing the additive element E1 or the compound of the additive element E1 and Mg (intermetallic compound, MgE1) on the sintered interface SI, the strength and appropriate toughness can be secured. Furthermore, the heat resistance of the sintered body ST can be improved by making the additive element E1 and the compound of the additive element E1 and Mg (intermetallic compound, MgE1) thermally stable.
また、この場合、添加元素E1や添加元素E1とMgの化合物(金属間化合物、MgE1)が、結晶粒G2の内部や粒界にも設けられるため、焼結体の特性をさらに向上させることができる。 Further, in this case, the additional element E1 or the compound of the additional element E1 and Mg (intermetallic compound, MgE1) is also provided inside the crystal grain G2 and at the grain boundaries, so that the characteristics of the sintered body are further improved. it can.
また、図7に示すように、合金粒子APの直径を、比較的小さくした場合、焼結後において、Mg−E1−M1−M2の合金粒子の結晶粒G2が大きくなり、結晶粒界(GB)は、焼結界面SIとほぼ一致する。そして、焼結界面SI(結晶粒界GB)に入る、添加元素E1や添加元素E1とMgの化合物(金属間化合物、MgE1)の量を多くでき、焼結界面SI(結晶粒界GB)をさらに強化することができる。 Further, as shown in FIG. 7, when the diameter of the alloy particle AP is relatively small, the crystal grain G2 of the alloy particle of Mg-E1-M1-M2 becomes large after sintering, and the grain boundary (GB ) Substantially coincides with the sintered interface SI. Then, the amount of the additive element E1 or the compound of the additive element E1 and Mg (intermetallic compound, MgE1) entering the sintered interface SI (crystal grain boundary GB) can be increased, and the sintered interface SI (crystal grain boundary GB) It can be further strengthened.
以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。例えば、添加元素を2種以上としてもよい。 As mentioned above, although the invention made by the present inventor was concretely explained based on the embodiment, the present invention is not limited to the embodiment, and can be variously changed in the range which does not deviate from the summary. Needless to say. For example, the additive element may be two or more.
本発明は、マグネシウム合金の製造方法に適用して有効である。 The present invention is effective when applied to a method of producing a magnesium alloy.
AP 合金粒子
E1 添加元素
EP 添加元素の粒子
G1 結晶粒(合金粒子の結晶粒)
G2 結晶粒(焼結体の結晶粒)
GB 結晶粒界
MT 粉末冶金材料
SI 焼結界面
ST 焼結体
AP alloy particle E1 additive element EP particle of additive element G1 crystal grain (crystal grain of alloy particle)
G2 crystal grains (crystal grains of sintered body)
GB Grain boundary MT Powder metallurgy material SI Sintered interface ST Sintered body
Claims (16)
(b)前記合金粉末に添加元素の粉末を加え混合することにより粉末冶金材料を形成する工程、
(c)前記粉末冶金材料を前記マグネシウムの融点未満の温度で焼結させることによりマグネシウム合金を形成する工程、
を有する、マグネシウム合金の製造方法。 (A) Dispersing a solution of magnesium and a first metal into droplets, dispersing the solution into droplets, and solidifying the solution, thereby obtaining an alloy powder having alloy particles of the magnesium and the first metal. Forming process,
(B) forming a powder metallurgy material by adding powder of an additive element to the alloy powder and mixing them;
(C) forming a magnesium alloy by sintering the powder metallurgy material at a temperature less than the melting point of the magnesium;
A method of producing a magnesium alloy, comprising:
前記合金粒子は、複数の結晶粒を有し、前記結晶粒は、等軸粒である、マグネシウム合金の製造方法。 A method of producing a magnesium alloy according to claim 1, wherein
The method for producing a magnesium alloy, wherein the alloy particles have a plurality of crystal grains, and the crystal grains are equiaxed grains.
前記マグネシウム合金の焼結後の結晶粒径は、30μm以下である、マグネシウム合金の製造方法。 A method of manufacturing a magnesium alloy according to claim 2, wherein
The manufacturing method of the magnesium alloy whose crystal grain size after sintering of the said magnesium alloy is 30 micrometers or less.
前記マグネシウム合金は、前記合金粒子に対応する焼結界面を有し、前記焼結界面に前記添加元素または前記添加元素と前記マグネシウムとの化合物を有する、マグネシウム合金の製造方法。 A method of manufacturing a magnesium alloy according to claim 3, wherein
The method for producing a magnesium alloy, wherein the magnesium alloy has a sintered interface corresponding to the alloy particles, and the additive element or a compound of the additive element and the magnesium is included in the sintered interface.
前記焼結界面に前記第1金属と前記マグネシウムとの化合物を有する、マグネシウム合金の製造方法。 The method for producing a magnesium alloy according to claim 4,
The manufacturing method of the magnesium alloy which has a compound of the said 1st metal and the said magnesium in the said sintering interface.
前記第1金属は、融点が前記マグネシウムよりも低く、
前記(c)工程において、前記焼結界面に、前記第1金属と前記マグネシウムとの化合物が液相となってぬれ拡がり、前記焼結界面に前記添加元素または前記添加元素と前記マグネシウムとの化合物が形成される、マグネシウム合金の製造方法。 A method for producing a magnesium alloy according to claim 5, wherein
The first metal has a melting point lower than that of magnesium,
In the step (c), the compound of the first metal and the magnesium is wet spread as a liquid phase at the sintered interface, and the additive element or the compound of the additive element and the magnesium is applied to the sintered interface A method of producing a magnesium alloy, wherein
前記第1金属は、Snであり、前記添加元素は、ホウ素である、マグネシウム合金の製造方法。 A method of manufacturing a magnesium alloy according to claim 6, wherein
The manufacturing method of the magnesium alloy whose said 1st metal is Sn and whose said additional element is boron.
前記(a)工程の溶解液は、MgとSnとZnの溶解液である、マグネシウム合金の製造方法。 A method of manufacturing a magnesium alloy according to claim 7, wherein
The method for producing a magnesium alloy, wherein the solution in the step (a) is a solution of Mg, Sn and Zn.
(b)前記合金粉末を有する粉末冶金材料を前記マグネシウムの融点未満の温度で焼結させることによりマグネシウム合金を形成する工程、
を有する、マグネシウム合金の製造方法。 (A) Dispersing the solution containing magnesium, the first metal and the additive element into droplets, dispersing the solution and solidifying the solution, the alloy having the magnesium, the first metal and the additive element Forming an alloy powder having particles,
(B) forming a magnesium alloy by sintering a powder metallurgy material having the alloy powder at a temperature less than the melting point of the magnesium;
A method of producing a magnesium alloy, comprising:
前記合金粒子は、複数の結晶粒を有し、前記結晶粒は、等軸粒である、マグネシウム合金の製造方法。 A method of manufacturing a magnesium alloy according to claim 9,
The method for producing a magnesium alloy, wherein the alloy particles have a plurality of crystal grains, and the crystal grains are equiaxed grains.
前記マグネシウム合金の焼結後の結晶粒径は、30μm以下である、マグネシウム合金の製造方法。 A method of producing a magnesium alloy according to claim 10, wherein
The manufacturing method of the magnesium alloy whose crystal grain size after sintering of the said magnesium alloy is 30 micrometers or less.
前記マグネシウム合金は、前記合金粒子に対応する焼結界面を有し、前記焼結界面に前記添加元素または前記添加元素と前記マグネシウムとの化合物を有する、マグネシウム合金の製造方法。 A method for producing a magnesium alloy according to claim 11, wherein
The method for producing a magnesium alloy, wherein the magnesium alloy has a sintered interface corresponding to the alloy particles, and the additive element or a compound of the additive element and the magnesium is included in the sintered interface.
前記焼結界面に前記第1金属と前記マグネシウムとの化合物を有する、マグネシウム合金の製造方法。 A method of producing a magnesium alloy according to claim 12, wherein
The manufacturing method of the magnesium alloy which has a compound of the said 1st metal and the said magnesium in the said sintering interface.
前記第1金属は、融点が前記マグネシウムよりも低く、
前記(b)工程において、前記焼結界面に、前記第1金属と前記マグネシウムとの化合物が液相となってぬれ拡がり、前記焼結界面に前記添加元素または前記添加元素と前記マグネシウムとの化合物が形成される、マグネシウム合金の製造方法。 A method of producing a magnesium alloy according to claim 13, wherein
The first metal has a melting point lower than that of magnesium,
In the step (b), the compound of the first metal and the magnesium is wet spread as a liquid phase at the sintered interface, and the additive element or the compound of the additive element and the magnesium is applied to the sintered interface A method of producing a magnesium alloy, wherein
前記第1金属は、Snであり、前記添加元素は、ホウ素である、マグネシウム合金の製造方法。 A method of manufacturing a magnesium alloy according to claim 14.
The manufacturing method of the magnesium alloy whose said 1st metal is Sn and whose said additional element is boron.
前記(a)工程の溶解液は、MgとSnとZnとホウ素を有する溶解液である、マグネシウム合金の製造方法。 The method for producing a magnesium alloy according to claim 15.
The method for producing a magnesium alloy, wherein the solution in the step (a) is a solution having Mg, Sn, Zn and boron.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017082843A JP6800482B2 (en) | 2017-04-19 | 2017-04-19 | Magnesium alloy manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017082843A JP6800482B2 (en) | 2017-04-19 | 2017-04-19 | Magnesium alloy manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018178225A true JP2018178225A (en) | 2018-11-15 |
JP6800482B2 JP6800482B2 (en) | 2020-12-16 |
Family
ID=64282652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017082843A Active JP6800482B2 (en) | 2017-04-19 | 2017-04-19 | Magnesium alloy manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6800482B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112974836A (en) * | 2021-02-09 | 2021-06-18 | 重庆大学 | High-viscosity full-liquid-phase sintering method for 3D additive manufacturing of magnesium alloy |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02129322A (en) * | 1988-11-09 | 1990-05-17 | Fujitsu Ltd | Magnesium-series composite material |
JPH0310041A (en) * | 1988-09-05 | 1991-01-17 | Takeshi Masumoto | High tensile magnesium-base alloy |
JPH03140427A (en) * | 1989-10-27 | 1991-06-14 | Fujitsu Ltd | Manufacture of magnesium-series sintered composite |
JPH0941065A (en) * | 1994-03-23 | 1997-02-10 | Takeshi Masumoto | High strength magnesium alloy and its production |
WO2009148093A1 (en) * | 2008-06-03 | 2009-12-10 | 独立行政法人物質・材料研究機構 | Mg-BASE ALLOY |
US20130047785A1 (en) * | 2011-08-30 | 2013-02-28 | Zhiyue Xu | Magnesium alloy powder metal compact |
JP2014231638A (en) * | 2013-04-30 | 2014-12-11 | 地方独立行政法人東京都立産業技術研究センター | Method of producing magnesium powder metallurgy sintered body, magnesium powder metallurgy sintered body and magnesium powder metallurgy material |
JP2015074787A (en) * | 2013-10-05 | 2015-04-20 | 独立行政法人物質・材料研究機構 | Mg ALLOY AND PRODUCTION METHOD THEREOF |
CN105568024A (en) * | 2016-01-26 | 2016-05-11 | 广东工业大学 | Preparation method for nano ceramic reinforced metal-matrix composite |
-
2017
- 2017-04-19 JP JP2017082843A patent/JP6800482B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0310041A (en) * | 1988-09-05 | 1991-01-17 | Takeshi Masumoto | High tensile magnesium-base alloy |
JPH02129322A (en) * | 1988-11-09 | 1990-05-17 | Fujitsu Ltd | Magnesium-series composite material |
JPH03140427A (en) * | 1989-10-27 | 1991-06-14 | Fujitsu Ltd | Manufacture of magnesium-series sintered composite |
JPH0941065A (en) * | 1994-03-23 | 1997-02-10 | Takeshi Masumoto | High strength magnesium alloy and its production |
WO2009148093A1 (en) * | 2008-06-03 | 2009-12-10 | 独立行政法人物質・材料研究機構 | Mg-BASE ALLOY |
US20130047785A1 (en) * | 2011-08-30 | 2013-02-28 | Zhiyue Xu | Magnesium alloy powder metal compact |
JP2014231638A (en) * | 2013-04-30 | 2014-12-11 | 地方独立行政法人東京都立産業技術研究センター | Method of producing magnesium powder metallurgy sintered body, magnesium powder metallurgy sintered body and magnesium powder metallurgy material |
JP2015074787A (en) * | 2013-10-05 | 2015-04-20 | 独立行政法人物質・材料研究機構 | Mg ALLOY AND PRODUCTION METHOD THEREOF |
CN105568024A (en) * | 2016-01-26 | 2016-05-11 | 广东工业大学 | Preparation method for nano ceramic reinforced metal-matrix composite |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112974836A (en) * | 2021-02-09 | 2021-06-18 | 重庆大学 | High-viscosity full-liquid-phase sintering method for 3D additive manufacturing of magnesium alloy |
CN112974836B (en) * | 2021-02-09 | 2023-04-25 | 重庆大学 | High-viscosity all-liquid-phase sintering method for magnesium alloy 3D additive manufacturing |
Also Published As
Publication number | Publication date |
---|---|
JP6800482B2 (en) | 2020-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6835139B2 (en) | Manufacturing method of alloy members | |
US11359638B2 (en) | Alloy article, method for manufacturing said alloy article, product formed of said alloy article, and fluid machine having said product | |
JP6439683B2 (en) | Flame retardant magnesium alloy and method for producing the same | |
JP5326114B2 (en) | High strength copper alloy | |
JP4923498B2 (en) | High strength and low specific gravity aluminum alloy | |
JP2020520413A (en) | Method for manufacturing aluminum alloy parts | |
AU2018394139B2 (en) | Use of alloy containing aluminium for additive manufacturing | |
TW201011116A (en) | Method for producing al-based alloy sputtering target material | |
US20220213579A1 (en) | Method for manufacturing an aluminum alloy part | |
Peng et al. | An investigation on the ZnO retained ratio, microstructural evolution, and mechanical properties of ZnO doped Sn3. 0Ag0. 5Cu composite solder joints | |
JP6800482B2 (en) | Magnesium alloy manufacturing method | |
US20160167129A1 (en) | Incorporation of nano-size particles into aluminum or other light metals by decoration of micron size particles | |
JP2020007594A (en) | Aluminum alloy material, manufacturing method of aluminum alloy cast material, and manufacturing method of aluminum alloy powder extrusion material | |
WO2019123537A1 (en) | Magnesium alloy powder and sintered component thereof | |
JP5287171B2 (en) | Aluminum alloy and method for producing the same | |
JP2008255461A (en) | Intermetallic compound dispersion type aluminum based material and its manufacturing method | |
WO1992007676A1 (en) | Hypereutectic aluminum/silicon alloy powder and production thereof | |
US11085109B2 (en) | Method of manufacturing a crystalline aluminum-iron-silicon alloy | |
JP2009091624A (en) | Aluminum-based material and manufacturing method therefor | |
JP4699786B2 (en) | Al-based alloy with excellent workability and heat resistance | |
JP7339412B2 (en) | Ni-based alloy powder for additive manufacturing and additive manufacturing | |
JP2007327080A (en) | INTERMETALLIC COMPOUND-DISPERSED TYPE Al-BASED MATERIAL AND ITS PRODUCTION METHOD | |
US20240261854A1 (en) | Methods of making gold-titanium alloys from sintered powders | |
JP4704722B2 (en) | Heat-resistant Al-based alloy with excellent wear resistance and workability | |
JP4699787B2 (en) | Heat-resistant Al-based alloy with excellent wear resistance and rigidity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191120 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200819 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200825 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201026 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201117 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6800482 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |