WO2019123537A1 - Magnesium alloy powder and sintered component thereof - Google Patents

Magnesium alloy powder and sintered component thereof Download PDF

Info

Publication number
WO2019123537A1
WO2019123537A1 PCT/JP2017/045538 JP2017045538W WO2019123537A1 WO 2019123537 A1 WO2019123537 A1 WO 2019123537A1 JP 2017045538 W JP2017045538 W JP 2017045538W WO 2019123537 A1 WO2019123537 A1 WO 2019123537A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy powder
alloy
mass
powder
oxide film
Prior art date
Application number
PCT/JP2017/045538
Other languages
French (fr)
Japanese (ja)
Inventor
伊達 賢治
拓 岩岡
Original Assignee
日立化成株式会社
地方独立行政法人東京都立産業技術研究センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社, 地方独立行政法人東京都立産業技術研究センター filed Critical 日立化成株式会社
Priority to JP2019559901A priority Critical patent/JPWO2019123537A1/en
Priority to PCT/JP2017/045538 priority patent/WO2019123537A1/en
Publication of WO2019123537A1 publication Critical patent/WO2019123537A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent

Definitions

  • the present disclosure relates to magnesium alloy powder and sintered parts thereof.
  • Mg Magnesium
  • Al aluminum
  • biosafety of WE43 (Mg-4Y-3RE) alloy has been confirmed by Western organizations, and the development of biostructural materials such as bioabsorbable stent materials or biohard tissue implant materials Is expected.
  • Mg alloys are attracting attention as materials suitable for reducing the weight of transport equipment because they have the lowest specific gravity and high specific strength among typical metals used as structural materials. .
  • Mg alloy has high damping property and electromagnetic wave shielding property. Therefore, it is considered that the material can be an effective material also from the viewpoint of measures against vibration that are specific to transportation equipment or measures against noise accompanying electronic control such as a drive system.
  • Structural materials including Mg alloys are roughly classified into ingot materials and powder metallurgy materials, depending on the method of forming the structure (formed body).
  • the molten material is used in a method of casting molten Mg alloy into a mold and casting it to a shape close to the final product or a method of hot or cold plastic working of a cast material of Mg alloy having a simple shape such as billet Be
  • powder metallurgy materials are used in a method of filling and pressure forming Mg alloy powder in a mold or the like and then sintering.
  • a compact obtained by sintering a metal powder (hereinafter referred to as a sintered part) has a finer and more uniform structure than a compact (hereinafter referred to as a cast) obtained by casting. Because of the presence, it is easy to obtain strong toughness.
  • a sintered part a structure in which ceramic particles or intermetallic compound particles are uniformly finely dispersed in the above-mentioned base material by mixing ceramic particles or intermetallic compound particles with Mg alloy powder as a base material. Design is possible. In addition, for example, it is also possible to design a structure having dispersion density, such as setting the dispersion concentration near the surface layer of each particle higher than that inside.
  • tissue design not only the strength but also various functions such as the improvement of the wear resistance and the impartation of the affinity with bone cells can be easily added depending on the application. It has the advantage of being able to
  • the atomizing method or the plasma rotating electrode method is known as a typical production method of metal powder used as a powder metallurgy material.
  • metal powder is obtained by refining and quenching molten metal.
  • the molten Mg alloy is active and easily burnt in the atmosphere. Therefore, pulverization of the Mg alloy by the above method is usually carried out under an atmosphere of an expensive inert gas such as argon or helium.
  • the atomization method is a method of pulverizing a metal melt by refining a molten metal of metal using gas or water and quenching it, and is excellent in mass productivity.
  • an object of the present disclosure relates to providing a Mg alloy powder that is inexpensive and capable of improving sinterability.
  • the present invention relates to the embodiments described below.
  • the present invention is not limited to the embodiments described below, but includes various embodiments.
  • One embodiment is a Mg alloy powder manufactured by an air atomizing method, containing Mg as a main component, and 3.5 to 12 mass% based on the total mass of the Mg alloy powder as a first auxiliary component
  • the present invention relates to an Mg alloy powder containing Al.
  • the said Mg alloy powder has an oxide film on the surface, and the said oxide film contains Al of a said 1st subcomponent.
  • One embodiment is a Mg alloy powder containing Mg as a main component and containing 3.5 to 12% by mass of Al based on the total mass of the Mg alloy powder as a first accessory component,
  • the present invention relates to a Mg alloy powder having an oxide film having a thickness of less than 1 ⁇ m on the surface, and the oxide film containing Al as the first subcomponent.
  • the Mg alloy powder further contains one or more elements selected from the group consisting of Zn, Ca, Mn, Si, Ni, Cu, Zr and Sn as a second accessory component. It is preferable to contain.
  • the content of the second accessory component is preferably 0.01 to 12% by mass based on the total mass of the Mg alloy powder.
  • the Mg alloy powder preferably has an irregular shape.
  • the Mg alloy powder preferably has a composition of Mg-Al alloy, Mg-Al-Zn alloy, Mg-Al-Ca alloy, or Mg-Al-Zn-Ca alloy. .
  • One embodiment relates to a sintered part using the Mg alloy powder of the above embodiment.
  • FIG. 1 is a schematic cross-sectional view showing a structural example of an air atomizing device.
  • FIG. 2 is a SEM photograph showing the shape of the Mg alloy powder produced in Example 1.
  • FIG. 3 is a SEM photograph showing the shape of the Mg alloy powder produced in Example 2.
  • FIG. 4 is a STEM photograph showing a state (cross section) near the surface of the Mg alloy powder produced in Example 1.
  • FIG. 5A shows an image of elemental mapping (O) by EDX analysis (STEM / EDX) of a region corresponding to the STEM photograph shown in FIG.
  • FIG. 5B shows an image of elemental mapping (Ca) by EDX analysis (STEM / EDX) of a region corresponding to the STEM photograph shown in FIG.
  • FIG. 5C shows an image of elemental mapping (Al) by EDX analysis (STEM / EDX) of a region corresponding to the STEM photograph shown in FIG.
  • FIG. 6 is a STEM photograph showing a state (cross section) near the surface of the Mg alloy powder produced in Example 2.
  • 7A shows an image of elemental mapping (O) by EDX analysis (STEM / EDX) of a region corresponding to the STEM photograph shown in FIG.
  • FIG. 7B shows an image of elemental mapping (Al) by EDX analysis (STEM / EDX) of a region corresponding to the STEM photograph shown in FIG.
  • FIG. 8 is a graph showing the results of line analysis of Al distribution in the Mg alloy powder produced in Example 1.
  • FIG. 9 is a graph showing the results of line analysis of Al distribution in the Mg alloy powder produced in Example 2.
  • the Mg alloy powder is manufactured by an air atomizing method and contains Mg as a main component, and 3.5 mass% to 12 mass% based on the total mass of the Mg alloy powder as a first auxiliary component Contains Al.
  • the Mg alloy powder preferably has an oxide film on the surface, and the oxide film preferably contains Al as the first subcomponent.
  • the Mg alloy powder of the above embodiment has an alloy composition containing at least a specific amount of Al as a first subcomponent in addition to Mg as the main component, whereby Mg alloy powder in the air atomization method is obtained.
  • the cost of argon gas accounts for 90% of the operation cost of powdering. Therefore, according to the above embodiment, since air is used instead of expensive argon gas, the operation cost can be significantly reduced, and the Mg alloy powder can be provided at low cost.
  • the Mg alloy powder contains Mg as a main component and Al as a first subcomponent, and has an oxide film with a film thickness of less than 1 ⁇ m on the surface, and the above-mentioned oxide film is the above-mentioned first 1 contains a minor component of Al.
  • the Mg alloy powder preferably contains more than 76% by mass of Mg as a main component.
  • the Mg alloy powder preferably contains more than 80% by mass of Mg, more than 85% by mass It is more preferable to contain Mg.
  • the thickness of the oxide film on the powder surface is less than 1 ⁇ m, and it is thought that it is easy to obtain a high strength sintered part because it is thin.
  • the Mg alloy powder of the above embodiment may be manufactured by any method, but from the viewpoint of cost reduction, it is preferable to be manufactured by a method to which the air atomization method is applied. As described above, it is generally considered difficult to apply air atomization as a method of pulverizing pure Mg or Mg alloy, but Mg alloy powder has a specific composition containing at least Al. This makes it possible to safely carry out the production of Mg alloy powder by air atomization without using expensive inert gas.
  • the concentration of the first subcomponent Al in the oxide film makes the film growth rate slower and the thickness of the oxide film after solidification becomes thinner.
  • the thickness of the oxide film formed on the surface of the Mg alloy powder It has been confirmed that the height can be reduced to less than 1 .mu.m.
  • the thickness of the oxide film on the surface of the Mg alloy powder is preferably 800 nm or less, more preferably 500 nm or less, and still more preferably 200 nm or less, from the viewpoint of facilitating obtaining a high-strength sintered part.
  • the formation of the oxide film is suitably controlled by containing at least Al, and it becomes easy to adjust the thickness of the oxide film within the above range.
  • the Mg alloy powder is preferably in an irregular shape (indeterminate non-spherical shape).
  • the irregularly shaped powder increases the strength of the green compact after molding due to the anchor effect between the powder particles.
  • the binder is decomposed after the degreasing step, and the molded body is hardly deformed even after being dissipated.
  • air atomization is applied in the production of Mg alloy powder, it is easy to obtain a desired irregularly shaped powder.
  • the Mg alloy powder contains 3.5 to 12 mass% of Al as a first minor component based on the total mass of the Mg alloy powder, and the balance of the alloy composition is Mg and a unavoidable component. It is preferable to have In the above embodiment, the content of the first subcomponent is more preferably 4.5 to 11% by mass, and still more preferably 5.5 to 10% by mass.
  • the Mg alloy powder may further include a second subcomponent in addition to Mg and the first subcomponent from the viewpoint of further improving the functionality of the Mg alloy powder.
  • the second accessory component preferably contains one or more selected from the group consisting of Zn, Ca, Mn, Si, Ni, Cu, Zr, and Sn.
  • the content is preferably 0.01% by mass or more based on the total mass of the Mg alloy powder from the viewpoint of expressing the effect of improving the functionality of the second additive in the Mg alloy powder, and the mass is 0.05%
  • the content of the second subcomponent is preferably 12% by mass or less, more preferably 11% by mass or less, and still more preferably 10% by mass or less, based on the total mass of the Mg alloy powder.
  • Mg alloy powder has an alloy composition including the second subcomponent in the above proportion in addition to Mg and the above-mentioned first subcomponent Al, desirable characteristics by Mg, flame retardancy, and other functions It becomes easy to obtain a good balance with the sex.
  • the Mg alloy powder contains 3.5 to 12% by mass of the first subcomponent Al, 0.01 to 12% by mass of the second subcomponent, based on the total mass, and the balance thereof It is preferable to contain Mg and an unavoidable component.
  • the above-mentioned "unavoidable component” means a component which is originally contained in the Mg raw material or is inevitably mixed in the production process. Usually, it means an element that does not affect the properties of the Mg alloy, and the amount is a slight amount.
  • the "unavoidable component” refers to an element component contained in an alloy raw material such as a molten raw material except Mg, the first accessory component, and the second accessory component.
  • the content of each of the unavoidable components is preferably less than 0.01% by mass based on the total mass of the alloy material.
  • the Mg alloy powder contains Al as at least a first accessory component.
  • the presence of Al in the Mg alloy powder is preferable in that it is easy to improve the strength of the sintered body, in addition to being advantageous for the improvement of the flame retardancy in the pulverization.
  • the content of Al is preferably 3.5 to 12% by mass, more preferably 4.5 to 11% by mass, and still more preferably 5.5 to 10% by mass, based on the total mass of the Mg alloy powder.
  • Al is easily concentrated to the oxide film and the liquid phase immediately inside the oxide film. Since the molar volume of Al 2 O 3 is larger than that of MgO, densification of the oxide film can be expected. Further, also in the liquid phase immediately inside the oxide film, effects such as a decrease in Mg vapor pressure accompanying the concentration of Al can be expected. From these facts, it is considered that Al can avoid the danger due to the burning of droplets.
  • the Mg alloy powder of the above embodiment preferably contains at least Zn as a second accessory component.
  • Mg alloy powder containing Al and Zn as minor components is easy to obtain a good balance of mechanical properties and processability.
  • the content of Zn in the Mg alloy powder is preferably 0.1 to 8 mass%, more preferably 0.2 to 6 mass%, based on the total mass of the Mg alloy powder, from the viewpoint of improving the mechanical properties. 0.3 to 4% by mass is more preferable.
  • the Mg alloy powder comprises 3.5 to 12 wt% of the first accessory component Al, at least 0.1 to 8 wt% of Zn as the second accessory component, and the balance thereof. It is preferable to contain Mg and an unavoidable component as
  • the Mg alloy powder of the above embodiment may be manufactured using a mixture obtained by combining each metal material to achieve a desired composition, or using an Mg alloy material (billet or ingot) having a desired composition. it can.
  • an example of a usable Mg alloy material is a Mg-Al based alloy material. Specific examples thereof include AM100A (containing 10% by mass Al), AM60A (containing 6% by mass Al), and AM50A (containing 5% by mass Al).
  • Mg-Zn-Al based alloy materials include Mg-Zn-Al based alloy materials.
  • AZ91D containing 9% by mass Al and 1% by mass Zn
  • AZ61A containing 6% by mass Al and 1% by mass Zn
  • AZ63 containing 6% by mass Al and 3% by mass Zn
  • AZ81A Containing 8% by mass Al, 1% by mass Zn.
  • Mg alloy material mentioned as a specific example content (mass%) of each element indicated in the parenthesis has described a typical value, and there is width actually. The same applies to the Mg alloy materials described below.
  • the Mg alloy powder preferably contains at least Ca as a second accessory component.
  • the presence of Ca in the Mg alloy is advantageous in the formation of the oxide film, it is possible to finely precipitate and disperse Mg-Al-Ca-based intermetallic compounds, Al 2 Ca, etc. It is preferable also in the point which can improve the intensity
  • the content of Ca in the Mg alloy powder is preferably 0.5 to 10% by mass, more preferably 1 to 8% by mass, and still more preferably 2 to 5% by mass, based on the total mass of the Mg alloy powder.
  • the content of Ca to 0.5% by mass or more it becomes easy to form a fine oxide film containing Ca on the droplet surface during atomization by air atomization, and the danger due to the combustion of the molten metal It becomes easier to avoid.
  • the content of Ca to 10% by mass or less the embrittlement of the sintered part due to the increase of the precipitation amount of the intermetallic compound is suppressed, and it becomes easy to obtain excellent processability.
  • the Mg alloy powder comprises 3.5 to 12% by mass of the first accessory component Al, at least 0.5 to 8% by mass of Ca as the second accessory component, and the balance thereof. It is preferable to contain Mg and an unavoidable component as
  • the Mg alloy powder of the above embodiment may be manufactured using a mixture obtained by combining each metal material to achieve a desired composition, or using an Mg alloy material (billet or ingot) having a desired composition. it can.
  • an example of a usable Mg alloy material is a Mg-Al-Ca based alloy material.
  • AMX602 the Mg 85 Al 10 Ca 5 (10 atomic% (10.7 mass%) Al, 5 atomic% (7.9 wt%) Ca Contained).
  • the Mg alloy powder preferably contains Zn and Ca as second additives.
  • Zn and Ca are contained as the second accessory component
  • the total content thereof is preferably 0.6 to 12% by mass, more preferably 1 to 11% by mass, based on the total mass of the Mg alloy powder. And 2 to 10% by mass is more preferable.
  • the total content of Al and Ca in the Mg alloy powder is preferably 20 mass% or less, more preferably 15 mass% or less, 10 mass% or less is further more preferable.
  • the Mg alloy powder contains 3.5 to 12% by mass of Al as the first accessory component, 0.1 to 6% by mass of Zn as the second accessory component, and 0.2% of Ca. It is preferable to contain 5 to 6% by mass, and Mg and the unavoidable components as the balance thereof.
  • the Mg alloy powder of the above embodiment may be manufactured using a mixture obtained by combining each metal material to achieve a desired composition, or using an Mg alloy material (billet or ingot) having a desired composition. it can.
  • a Mg-Al-Zn-Ca based alloy material can be mentioned.
  • AZX 912 (containing 9 mass% Al, 1 mass% Zn, 2 mass% Ca), AZX 311 (containing 3 mass% Al, 1 mass% Zn, 1 mass% Ca), and AZX 611 (6 mass%) Al, containing 1% by mass Zn, containing 1% by mass Ca).
  • AZX 912 can be suitably used.
  • the Mg alloy powder of the above embodiment can be manufactured by applying a typical technique used in a gas atomization method.
  • the method of manufacturing the Mg alloy powder comprises (a) melting the molten material to obtain a molten Mg alloy, and (b) spraying the molten magnesium alloy using air. And obtaining the Mg alloy powder.
  • the above step (b) can be carried out by applying a typical technique used in the air atomization method.
  • Production of metal powder by gas atomization is generally carried out using a pulverizing apparatus having divisions such as dissolution, atomization, classification and accumulation.
  • the manufacturing method of the above embodiment can be carried out using at least an apparatus for constituting a melting section and an atomizing section, in which at least air is used to spray the molten metal in the atomizing section.
  • the step of (a) melting the molten material to obtain the molten metal of Mg alloy can be carried out using a melting furnace equipped with a graphite crucible or the like.
  • the molten metal of the Mg alloy can be obtained by using the mixture or alloy material having the composition of the Mg alloy described above as the raw material for melting and putting the raw material for melting in a melting furnace and heating it. .
  • the melting temperature can be adjusted according to the raw material to be used, the characteristics of the apparatus, and the target powder particle size.
  • the melting temperature should be set in consideration of the temperature drop while the molten metal moves from the melting furnace to the position where it is sprayed from the viewpoint of melting the molten material of the Mg alloy and obtaining a preferable liquid phase state when spraying the molten metal. Is preferred.
  • the dissolution temperature is preferably set to a temperature 50 to 300 ° C. higher than the liquidus temperature of the dissolution raw material.
  • the temperature drop in the movement of the molten metal from the melting furnace to the nozzle can be suppressed, the temperature of the molten metal at the atomizing position can be controlled, and the oxidation of the molten metal can be suppressed.
  • the atmosphere in the melting furnace is pressurized, it is easy to control the flow rate of the molten metal from the molten metal nozzle, and the formation of oxides in the molten metal and on the surface of the molten metal can be suppressed.
  • the operability is easily improved, for example, the nozzles are less likely to be clogged, and the quality of the obtained powder is also stabilized.
  • the step of spraying the molten metal of the Mg alloy using (b) air to obtain the Mg alloy powder can be performed using a general atomizing device.
  • the type of injection of air during atomization may be either a free fall type or a confined type. Whichever method is used, air can be efficiently injected from the periphery of the melt flow, so it is possible to produce finer Mg alloy powder.
  • the pouring direction from a dan dish is generally downward, it can also be sideways or upward. In the case where the pouring direction is horizontal or upward, it is possible to prevent combustion due to dripping of the molten metal to the deposited powder, and atomization can be performed more safely.
  • an inert gas may be mixed into the air if necessary.
  • an inert gas it is considered that it becomes easy to control the film thickness and the like of the oxide film.
  • an inert gas although argon gas or helium gas can be used typically, nitrogen gas can also be used.
  • FIG. 1 is a schematic cross-sectional view showing a structural example of an air atomizing device.
  • a molten material is obtained by heating the molten material in a melting furnace, and then the molten metal is manually transferred to a tundish of the atomizing apparatus.
  • an air nozzle is provided so that air can be jetted laterally to the flow of the molten metal falling from the molten metal nozzle under the tundish.
  • the step (b) will be more specifically described by taking the case of using the atomizing apparatus 9 shown in FIG. 1 as an example.
  • the molten metal 1 obtained in the step (a) is transferred to the tundish 2, and the molten metal 1 is made to flow from the nozzle 3 provided below the tundish 2.
  • the molten metal 1 is sprayed by injecting the air 5 from the air nozzle 4 to the flow of the molten metal to form a droplet (sprayed molten metal) 6.
  • a powder is obtained by solidification of the droplets 6.
  • the molten metal dropped without being atomized is recovered by the molten metal receiving plate 7.
  • the powder (not shown) formed by atomization is collected by the powder receiver 8.
  • the temperature at the time of pouring is preferably set in consideration of the temperature drop while the molten metal moves from the tundish to the position where it is sprayed. It is preferable to adjust the temperature at the time of pouring so that the temperature higher than the liquidus temperature can be secured at the position where the molten metal is sprayed.
  • the injection of air can be carried out applying a conventional injection method.
  • air pressurized by a compressor is injected from an air nozzle.
  • the flow velocity of air at the time of injection is adjusted by the injection pressure.
  • the method of performing atomization using air can suppress oxidation because it uses air as a medium in contrast to the water atomization method, and there is no need to worry about the generation of hydrogen due to the reaction between powder and water. .
  • a large pump for pressurizing water and a water recovery and purification device are unnecessary, and a drying process of the recovered powder is also unnecessary, significant simplification of the device and process is possible.
  • the shape and size of the Mg alloy powder can be adjusted by the shape of the melt nozzle, the temperature of the melt, the injection pressure of air, and the like.
  • the Mg alloy powder obtained by the above-mentioned production method preferably has an irregular shape (amorphous non-spherical shape).
  • the irregularly shaped powder increases the strength of the green compact after molding due to the anchor effect between the powder particles.
  • the droplets immediately after atomization have an irregular shape, but usually, spherical particles are obtained by being spherical due to surface tension before the droplets solidify.
  • the method of manufacturing the Mg alloy powder of the above embodiment since air is used, an oxide film is formed on the surface of the droplet immediately after atomization, and it is easy to obtain a powder having an irregular shape.
  • a spherical Mg alloy powder is usually obtained, which is considered to be because the formation of an oxide film on the droplet surface is suppressed by the argon gas. From such a point of view, the air atomization method can be said to be a method suitable for producing irregularly shaped Mg alloy powder because the droplet surface is rapidly oxidized by air.
  • Mg alloy powder manufactured by the manufacturing method of the above-mentioned embodiment has a composition corresponding to a dissolution raw material used at the time of manufacture.
  • the Mg alloy powder can be used in various applications.
  • the oxide film on the powder surface exceeds 1 ⁇ m, whereas according to the manufacturing method of the above embodiment, the film thickness of the oxide film is controlled to a thickness less than 1 ⁇ m. It is easy to do.
  • the thickness of the oxide film can be observed by a scanning transmission electron microscope (STEM) of a cross section near the surface of the powder.
  • the thickness of the oxide film on the surface of the Mg alloy powder is preferably 800 nm or less, more preferably 500 nm or less, and still more preferably 200 nm or less. According to the above manufacturing method, it is easy to control the thickness of the oxide film within the above range. Therefore, in one embodiment, the Mg alloy powder of the above embodiment has excellent sinterability and can be suitably used as a powder metallurgy material. By using the Mg alloy powder of the above embodiment, sintered parts excellent in various characteristics can be easily manufactured.
  • a sintered part can be manufactured by the method of filling and press forming Mg alloy powder in a metal mold etc., and then sintering. Since the thickness of the oxide film on the surface of the Mg alloy powder of the above embodiment is thin, a strong bond between metals is formed during sintering, and it is easy to obtain a sintered part with high strength.
  • the sintering temperature is preferably adjusted appropriately according to the composition of the Mg alloy powder. For example, in the case of Mg alloy powder having a composition of Mg—Al—Zn based alloy material, it is preferable to carry out sintering at a temperature of 450 to 550 ° C. By appropriately adjusting the sintering temperature, it becomes easier to obtain a sintered part with high strength.
  • the sintered parts are not particularly limited, and can be used in various applications. Sintered parts are, for example, parts for transportation equipment such as automobiles, railway vehicles, and aircrafts, parts for electronic equipment such as personal computers and mobile phones, and materials for living bodies such as artificial bones and implants because of characteristics of Mg alloy. It can be suitably used in applications such as
  • Examples 1 to 3 and Comparative Examples 1 and 2 Production of Mg Alloy Powder
  • the Mg alloy material shown in Table 1 was used as a raw material for dissolution, and air atomization was performed according to the procedure shown below.
  • First, commercially available billets or ingots of Mg alloy materials shown in Table 1 were cut into appropriate sizes as melting materials. About 80 g of the cut billet or ingot was weighed and placed in a graphite crucible, placed in a heating furnace, and heated to 650 ° C. in an argon gas atmosphere to melt the billet or ingot.
  • the graphite crucible was promptly taken out from the heating furnace, and the molten metal was poured into a tundish of an internally-made air atomizing device (see FIG. 1).
  • air was injected from the air nozzle installed sideways, the molten metal was sprayed and atomized (powdering).
  • the bore diameter of the molten metal nozzle was ⁇ 10 mm
  • the injection pressure of air was 10 kgf / cm 2
  • the bore diameter of the air nozzle was ⁇ 1.8 mm.
  • Example 1 combustion was not confirmed at the time of atomization, and the Mg alloy powder obtained after atomization could be recovered. However, in Example 3, a part of the admixing was insufficient and the molten metal scattered around the molten metal saucer turned blackish, but the fine powder sprayed far showed silver white.
  • the yields of the Mg alloy powder in Examples 1, 2 and 3 were approximately 40 g, 40 g and 20 g in order.
  • Comparative Example 1 the molten metal burned violently at the time of taking out the graphite crucible from the heating furnace and pouring it into a tundish. The experiment was stopped because it was judged that the combustion became more intense by the injection of air. Moreover, about the comparative example 2, the droplet immediately after being sprayed by injection of air turns black, and it collides with the wall of the atomizing apparatus, or after falling to a powder receiving tray, it burned with intense flash and white smoke. The molten metal that did not atomize and dropped to the molten metal pan also burned violently as well. From the above, it can be seen that when the dissolution raw material contains a specific amount of Al, the flame retardancy of Mg is improved, and the production of Mg alloy powder by the air atomization method becomes possible.
  • FIG. 5A is an image showing elemental mapping of O
  • FIG. 5B is an elemental mapping of Ca
  • FIG. 5C is an image showing elemental mapping of Al
  • FIG. 7A and 7B the image of the element mapping by STEM / EDX corresponding to the STEM photograph shown in FIG. 6 is shown to FIG. 7A and 7B.
  • FIG. 7A is an image showing elemental mapping of O
  • FIG. 7B is an image showing elemental mapping of Al.
  • the concentration of oxygen (O) can be confirmed across the above-mentioned layers, and thus it was found to be an oxide film having a thickness of about 130 nm.
  • concentration of Ca and Al was also confirmed in the oxide film.
  • the concentration of oxygen (O) can be confirmed, which indicates that the layer is an oxide film having a thickness of about 70 nm.
  • the element mapping (Al) shown in FIG. 7B in the test piece of the Mg alloy manufactured in Example 2, the clear Al as seen in the test piece of the Mg alloy manufactured in Example 1 No thickening to the oxide film (see FIG. 5C) was observed.
  • the Mg alloy powder contains a specific amount of Al, so that the molten metal of the melting material is refined by the injection of air, and is quenched to become droplets, and at the same time Al is deposited on the droplet surface. A thick, thin and dense oxide film was formed, and the film blocked the contact between the liquid phase inside the droplet and oxygen in the air atmosphere, so that the molten metal could form powder particles without burning at the time of atomization. Conceivable.
  • the Mg alloy powder produced by the production method of the above embodiment is considered to be effective as a powder sintered material for producing a sintered part.

Abstract

The present invention provides: a Mg alloy powder which can be produced at low cost and which is capable of bringing about improved sintering properties; and a sintered component using same. This Mg alloy powder is produced by an air atomization method, and contains Mg as a main component and contains 3.5-12 mass% of Al as a first accessory component, with respect to a total mass of the Mg alloy powder.

Description

マグネシウム合金粉末及びその焼結部品Magnesium alloy powder and sintered parts thereof
 本開示は、マグネシウム合金粉末及びその焼結部品に関する。 The present disclosure relates to magnesium alloy powder and sintered parts thereof.
 マグネシウム(Mg)は、地球上に豊富に存在する資源であり、アルミニウム(Al)と同様にリサイクル性に優れている。そのため、様々な分野において、Mgを使用した材料の開発が進められている。
 例えば、最近、医療分野では、WE43(Mg-4Y-3RE)合金の生体安全性が欧米機関によって確認され、生体吸収性ステント材、又は生体硬組織用インプラント材といった生体用の構造材料への展開が期待されている。
Magnesium (Mg) is a resource abundantly present on the earth, and is excellent in recyclability like aluminum (Al). Therefore, development of materials using Mg is in progress in various fields.
For example, recently, in the medical field, biosafety of WE43 (Mg-4Y-3RE) alloy has been confirmed by Western organizations, and the development of biostructural materials such as bioabsorbable stent materials or biohard tissue implant materials Is expected.
 また、自動車、鉄道車両、航空機等の輸送機器の分野では、燃費効率向上による省エネルギー化およびCOガス排出低減による環境対策のために、車両の軽量化への対応が必須となっている。そのため、従来の鉄鋼系材料から、Mg合金およびAl合金等の軽量金属材料への転換の要求が高まっている。このような要求に対し、Mg合金は、構造材料として使用される代表的な金属の中で比重が最も低く、高比強度であるため、輸送機器の軽量化に適した材料として注目されている。また、Mg合金は、高い制振性及び電磁波シールド性を有する。そのため、輸送機器に特有となる振動対策又は駆動系統等の電子制御化に伴うノイズ対策の観点からも、有効な材料になり得ると考えられる。 In addition, in the field of transportation equipment such as automobiles, railway vehicles and aircrafts, it is essential to cope with the weight reduction of vehicles for energy saving by improving fuel efficiency and environmental measures by reducing CO 2 gas emission. Therefore, the demand for conversion from conventional steel-based materials to lightweight metallic materials such as Mg alloy and Al alloy is increasing. In response to these requirements, Mg alloys are attracting attention as materials suitable for reducing the weight of transport equipment because they have the lowest specific gravity and high specific strength among typical metals used as structural materials. . Moreover, Mg alloy has high damping property and electromagnetic wave shielding property. Therefore, it is considered that the material can be an effective material also from the viewpoint of measures against vibration that are specific to transportation equipment or measures against noise accompanying electronic control such as a drive system.
 Mg合金を含む構造材料は、構造体(成形体)の成形方法によって、溶製材と、粉末冶金材とに大別される。溶製材は、溶融したMg合金を鋳型に鋳込んで最終製品に近い形状に鋳造する方法、又はビレット等の単純形状を有するMg合金の鋳造材を熱間又は冷間で塑性加工する方法に用いられる。一方、粉末冶金材は、Mg合金粉末を金型等に充填及び加圧成形し、次いで焼結する方法に用いられる。 Structural materials including Mg alloys are roughly classified into ingot materials and powder metallurgy materials, depending on the method of forming the structure (formed body). The molten material is used in a method of casting molten Mg alloy into a mold and casting it to a shape close to the final product or a method of hot or cold plastic working of a cast material of Mg alloy having a simple shape such as billet Be On the other hand, powder metallurgy materials are used in a method of filling and pressure forming Mg alloy powder in a mold or the like and then sintering.
 一般的に、金属粉末を焼結して得た成形体(以下、焼結部品という)は、鋳造による成形体(以下、鋳造体という)と比較して、組織が微細であり、かつ均一であるため、強い靭性を得ることが容易である。また、焼結部品では、母材となるMg合金粉末に対して、セラミックス粒子又は金属間化合物粒子を混合することにより、セラミックス粒子又は金属間化合物粒子を上記母材に均一に微細分散させた組織設計が可能である。その他、例えば、上記各粒子の表層付近での分散濃度を内部よりも高くする等、分散濃淡を有する組織設計も可能である。このように、焼結部品では、組織設計において、強度の向上だけでなく、用途に応じて、耐摩耗性の向上、及び骨細胞との親和性の付与等の様々な機能性を容易に追加できるという利点を有する。 In general, a compact obtained by sintering a metal powder (hereinafter referred to as a sintered part) has a finer and more uniform structure than a compact (hereinafter referred to as a cast) obtained by casting. Because of the presence, it is easy to obtain strong toughness. In a sintered part, a structure in which ceramic particles or intermetallic compound particles are uniformly finely dispersed in the above-mentioned base material by mixing ceramic particles or intermetallic compound particles with Mg alloy powder as a base material. Design is possible. In addition, for example, it is also possible to design a structure having dispersion density, such as setting the dispersion concentration near the surface layer of each particle higher than that inside. Thus, in the sintered part, in the tissue design, not only the strength but also various functions such as the improvement of the wear resistance and the impartation of the affinity with bone cells can be easily added depending on the application. It has the advantage of being able to
 粉末冶金材として使用される金属粉末の代表的な製造方法として、アトマイズ法、又はプラズマ回転電極法が知られている。これらの方法では、溶融した金属を微細化、急冷することによって金属粉末を得る。しかし、Mg合金の溶湯は活性であり、大気中で燃焼しやすい。そのため、通常、上記方法によるMg合金の粉末化は、アルゴン又はヘリウムといった高価な不活性ガスの雰囲気下で実施される。
 アトマイズ法は、ガス、又は水を用いて金属の溶湯を微細化し、急冷することで金属の粉末化を行う方法であり、量産性に優れている。しかし、ガスアトマイズ法によってMg合金の粉末化を行う場合、高価な不活性ガスを大量に使用する必要があるため、操業コストが増加し、Mg合金粉末は非常に高価になる。そのため、粉末冶金材として好適に使用でき、かつ安価であるMg合金粉末が望まれている。
The atomizing method or the plasma rotating electrode method is known as a typical production method of metal powder used as a powder metallurgy material. In these methods, metal powder is obtained by refining and quenching molten metal. However, the molten Mg alloy is active and easily burnt in the atmosphere. Therefore, pulverization of the Mg alloy by the above method is usually carried out under an atmosphere of an expensive inert gas such as argon or helium.
The atomization method is a method of pulverizing a metal melt by refining a molten metal of metal using gas or water and quenching it, and is excellent in mass productivity. However, in the case of pulverizing the Mg alloy by gas atomization, it is necessary to use a large amount of expensive inert gas, which increases the operation cost and makes the Mg alloy powder very expensive. Therefore, a Mg alloy powder that can be suitably used as a powder metallurgy and is inexpensive is desired.
 これに対し、高速回転水流を用いて、カルシウム(Ca)をMg合金に添加した溶湯を噴霧して粉末化を行う、水アトマイズ法によるMg合金粉末の製造方法が提案されている(特許文献1~3)。 On the other hand, there has been proposed a method of producing Mg alloy powder by a water atomizing method, in which a molten metal in which calcium (Ca) is added to a Mg alloy is sprayed and powdered using a high-speed rotational water flow. ~ 3).
特開2014-162991号公報JP, 2014-162991, A 特開2014-167136号公報JP, 2014-167136, A 特開2017-61753号公報JP, 2017-61753, A
 焼結部品の製造では、金属粉末の成形工程又は成形後の焼結工程での加圧、あるいは焼結後の熱間加工によって、粉末同士の接触界面にはせん断応力が加わる。そのため、粉末表面に薄い酸化被膜が存在しても、通常の処理工程において酸化被膜は破壊され、強固な金属結合を得ることができる。しかし、酸化被膜が数ミクロンオーダーの厚さになると、通常の処理工程では酸化被膜を十分に破壊することが困難となり、焼結性が低下しやすい。 In the production of a sintered part, shear stress is applied to the contact interface between powders by pressing in a forming step of a metal powder or in a sintering step after forming, or by hot working after sintering. Therefore, even if a thin oxide film is present on the powder surface, the oxide film is broken in the normal processing step, and a strong metal bond can be obtained. However, when the oxide film has a thickness on the order of several microns, it becomes difficult to sufficiently destroy the oxide film in a normal treatment process, and the sinterability tends to be reduced.
 上述の水アトマイズ法によるMg合金粉末の製造方法によれば、高価な不活性ガスではなく、水を使用するため、製造コストの低減が可能である。しかし、上述の製造方法では、水を使用してMg合金を粉末化し、水中で粉末を回収する。そのため、粉末の表面には、数ミクロンオーダーの厚い酸化被膜が生成し、優れた焼結性を得ることは困難であると考えられる。このようなことから、安価で、かつ優れた焼結性を得ることができるMg合金粉末の実現に向けて、更なる改善が望まれている。
 したがって、本開示の目的は、上述の状況に鑑み、安価であり、かつ焼結性の向上が可能なMg合金粉末を提供することに関する。
According to the method of manufacturing Mg alloy powder by the above-described water atomization method, since water is used instead of expensive inert gas, the manufacturing cost can be reduced. However, in the above-mentioned production method, water is used to pulverize the Mg alloy and the powder is recovered in water. Therefore, a thick oxide film of several microns is formed on the surface of the powder, and it is considered difficult to obtain excellent sinterability. From such a thing, the further improvement is desired towards realization of Mg alloy powder which can be obtained cheap and excellent sinterability.
Therefore, in view of the above-described situation, an object of the present disclosure relates to providing a Mg alloy powder that is inexpensive and capable of improving sinterability.
 ガスアトマイズ法による金属粉末の製造コストを低減するために、溶湯の噴霧時に高価な不活性ガスにかえて、空気を使用する空気アトマイズ法を適用することが考えられる。しかし、Mg合金の溶湯は活性であるため、通常、空気アトマイズ法を適用することは困難である。
 これに対し、本発明者らは、Mg合金の粉末化について種々の検討を行い、Mg合金が特定の元素を含む場合、Mg合金の溶湯の難燃性を高めることができ、空気アトマイズ法の適用が可能となることを見出した。また、Mg合金粉末の製造に空気アトマイズ法を適用した場合、粉末化工程における酸化被膜の生成を良好に制御できることを見出し、本発明を完成するに至った。
In order to reduce the production cost of the metal powder by the gas atomizing method, it is conceivable to apply an air atomizing method using air in place of expensive inert gas at the time of spraying the molten metal. However, it is usually difficult to apply the air atomization method because the molten Mg alloy is active.
On the other hand, the present inventors variously study powderization of the Mg alloy, and when the Mg alloy contains a specific element, the flame retardance of the molten Mg alloy can be enhanced, and the air atomizing method We found that it would be possible to apply. Moreover, when the air atomization method is applied to manufacture of Mg alloy powder, it discovers that formation of the oxide film in a pulverization process can be controlled favorably, and came to complete this invention.
 すなわち、本発明は、以下に記載する実施形態に関する。しかし、本発明は、以下に記載する実施形態に限定されるものではなく、様々な実施形態を含む。 That is, the present invention relates to the embodiments described below. However, the present invention is not limited to the embodiments described below, but includes various embodiments.
 一実施形態は、空気アトマイズ法により製造されたMg合金粉末であって、主成分としてMgを含有し、かつ第1の副成分としてMg合金粉末の全質量を基準として3.5~12質量%のAlを含有する、Mg合金粉末に関する。 One embodiment is a Mg alloy powder manufactured by an air atomizing method, containing Mg as a main component, and 3.5 to 12 mass% based on the total mass of the Mg alloy powder as a first auxiliary component The present invention relates to an Mg alloy powder containing Al.
 上記実施形態において、上記Mg合金粉末は、表面に酸化被膜を有し、上記酸化被膜が上記第1の副成分のAlを含有することが好ましい。 In the said embodiment, it is preferable that the said Mg alloy powder has an oxide film on the surface, and the said oxide film contains Al of a said 1st subcomponent.
 一実施形態は、主成分としてMgを含有し、かつ第1の副成分としてMg合金粉末の全質量を基準として3.5~12質量%のAlを含有するMg合金粉末であって、
 表面に膜厚1μm未満の酸化被膜を有し、上記酸化被膜が前記第1の副成分のAlを含有する、Mg合金粉末に関する。
One embodiment is a Mg alloy powder containing Mg as a main component and containing 3.5 to 12% by mass of Al based on the total mass of the Mg alloy powder as a first accessory component,
The present invention relates to a Mg alloy powder having an oxide film having a thickness of less than 1 μm on the surface, and the oxide film containing Al as the first subcomponent.
 上記実施形態において、上記Mg合金粉末は、第2の副成分として、Zn、Ca、Mn、Si、Ni、Cu、Zr及びSnからなる群から選択される1種又は2種以上の元素をさらに含有することが好ましい。 In the above embodiment, the Mg alloy powder further contains one or more elements selected from the group consisting of Zn, Ca, Mn, Si, Ni, Cu, Zr and Sn as a second accessory component. It is preferable to contain.
 上記第2の副成分の含有量は、Mg合金粉末の全質量を基準として、0.01~12質量%であることが好ましい。 The content of the second accessory component is preferably 0.01 to 12% by mass based on the total mass of the Mg alloy powder.
 上記実施形態において、上記Mg合金粉末は、不規則形状を有することが好ましい。 In the above embodiment, the Mg alloy powder preferably has an irregular shape.
 上記実施形態において、上記Mg合金粉末は、Mg-Al系合金、Mg-Al-Zn系合金、Mg-Al-Ca系合金、又はMg-Al-Zn-Ca系合金の組成を有することが好ましい。 In the above embodiment, the Mg alloy powder preferably has a composition of Mg-Al alloy, Mg-Al-Zn alloy, Mg-Al-Ca alloy, or Mg-Al-Zn-Ca alloy. .
 一実施形態は、上記実施形態のMg合金粉末を使用した焼結部品に関する。 One embodiment relates to a sintered part using the Mg alloy powder of the above embodiment.
 本発明によれば、安価であり、かつ優れた焼結性を得ることが容易であるMg合金粉末を提供することができる。 According to the present invention, it is possible to provide an Mg alloy powder which is inexpensive and easy to obtain excellent sinterability.
図1は、空気アトマイズ装置の構造例を示す模式的断面図である。FIG. 1 is a schematic cross-sectional view showing a structural example of an air atomizing device. 図2は、実施例1で製造したMg合金粉末の形状を示すSEM写真である。FIG. 2 is a SEM photograph showing the shape of the Mg alloy powder produced in Example 1. 図3は、実施例2で製造したMg合金粉末の形状を示すSEM写真である。FIG. 3 is a SEM photograph showing the shape of the Mg alloy powder produced in Example 2. 図4は、実施例1で製造したMg合金粉末の表面付近の状態(断面)を示すSTEM写真である。FIG. 4 is a STEM photograph showing a state (cross section) near the surface of the Mg alloy powder produced in Example 1. 図5Aは、図4に示すSTEM写真に対応する領域のEDX分析(STEM/EDX)による元素マッピング(O)の画像を示す。FIG. 5A shows an image of elemental mapping (O) by EDX analysis (STEM / EDX) of a region corresponding to the STEM photograph shown in FIG. 図5Bは、図4に示すSTEM写真に対応する領域のEDX分析(STEM/EDX)による元素マッピング(Ca)の画像を示す。FIG. 5B shows an image of elemental mapping (Ca) by EDX analysis (STEM / EDX) of a region corresponding to the STEM photograph shown in FIG. 図5Cは、図4に示すSTEM写真に対応する領域のEDX分析(STEM/EDX)による元素マッピング(Al)の画像を示す。FIG. 5C shows an image of elemental mapping (Al) by EDX analysis (STEM / EDX) of a region corresponding to the STEM photograph shown in FIG. 図6は、実施例2で製造したMg合金粉末の表面付近の状態(断面)を示すSTEM写真である。FIG. 6 is a STEM photograph showing a state (cross section) near the surface of the Mg alloy powder produced in Example 2. 図7Aは、図6に示すSTEM写真に対応する領域のEDX分析(STEM/EDX)による元素マッピング(O)の画像を示す。7A shows an image of elemental mapping (O) by EDX analysis (STEM / EDX) of a region corresponding to the STEM photograph shown in FIG. 図7Bは、図6に示すSTEM写真に対応する領域のEDX分析(STEM/EDX)による元素マッピング(Al)の画像を示す。FIG. 7B shows an image of elemental mapping (Al) by EDX analysis (STEM / EDX) of a region corresponding to the STEM photograph shown in FIG. 図8は、実施例1で製造したMg合金粉末におけるAl分布のライン分析の結果を示すグラフである。FIG. 8 is a graph showing the results of line analysis of Al distribution in the Mg alloy powder produced in Example 1. 図9は、実施例2で製造したMg合金粉末におけるAl分布のライン分析の結果を示すグラフである。FIG. 9 is a graph showing the results of line analysis of Al distribution in the Mg alloy powder produced in Example 2.
 以下、本発明について実施形態に沿って具体的に説明する。但し、本発明は、以下に記載する実施形態に限定されるものではない。
 一実施形態において、Mg合金粉末は、空気アトマイズ法によって製造され、主成分としてMgを含有し、第1の副成分としてMg合金粉末の全質量を基準として3.5質量%~12質量%のAlを含有する。Mg合金粉末は、表面に酸化被膜を有し、酸化被膜は上記第1の副成分のAlを含有することが好ましい。
Hereinafter, the present invention will be specifically described along the embodiments. However, the present invention is not limited to the embodiments described below.
In one embodiment, the Mg alloy powder is manufactured by an air atomizing method and contains Mg as a main component, and 3.5 mass% to 12 mass% based on the total mass of the Mg alloy powder as a first auxiliary component Contains Al. The Mg alloy powder preferably has an oxide film on the surface, and the oxide film preferably contains Al as the first subcomponent.
 空気アトマイズ法による粉末化において、純Mgの溶湯は、溶滴になるとすぐに、その表面にMgO被膜が生成すると考えられる。しかし、MgOは多孔質であるため、MgOの表面被膜によって、液滴内部の液相Mgを空気から遮蔽できず、Mg溶滴は激しく燃焼することになる。そのため、一般に、純Mg又はMg合金の粉末化方法として、空気アトマイズ法を適用することは困難であり、粉末化には不活性ガスの使用が不可欠であると考えられている。これに対し、上記実施形態のMg合金粉末は、主成分のMgに加えて、少なくとも、第1の副成分として特定量のAlを含む合金組成を有することにより、空気アトマイズ法でのMg合金粉末の製造が可能となる。 In powderization by the air atomization method, it is considered that a molten Mg of pure Mg forms a MgO film on its surface as soon as it becomes a droplet. However, since MgO is porous, the surface film of MgO can not shield the liquid phase Mg inside the droplet from the air, and the Mg droplet burns violently. Therefore, it is generally difficult to apply the air atomization method as a method of pulverizing pure Mg or a Mg alloy, and it is considered that the use of an inert gas is essential for the pulverization. On the other hand, the Mg alloy powder of the above embodiment has an alloy composition containing at least a specific amount of Al as a first subcomponent in addition to Mg as the main component, whereby Mg alloy powder in the air atomization method is obtained. Production of
 より詳細には、Mg溶滴の燃焼を抑制するためには、大気中の酸素と溶滴内部の液相とを十分に遮蔽できる酸化被膜等の緻密な被膜の形成、および、液相におけるMg蒸気圧の降下等により、粉末化における難燃性を高める必要がある。これに対し、上記実施形態によれば、Mg合金の溶湯の噴霧時に、Mg合金に特定量のAlが存在することによって、難燃性を高めることが容易となると考えられる。また、製造されたMg合金粉末は、表面に緻密な酸化被膜を有することから、長期保管した場合にも、特性低下の一因となる酸化が進み難いと考えられる。さらに、焼結部品の製造の観点から、上記第1の副成分のAlを含有する緻密な酸化物が組織中に微細分散することで、焼結部品の強度向上にも有効であると考えられる。 More specifically, in order to suppress the combustion of Mg droplets, formation of a dense film such as an oxide film capable of sufficiently shielding oxygen in the atmosphere and the liquid phase inside the droplets, and Mg in the liquid phase It is necessary to enhance the flame retardancy in pulverization by lowering the vapor pressure and the like. On the other hand, according to the above-described embodiment, it is considered that the flame retardancy can be easily enhanced by the presence of a specific amount of Al in the Mg alloy when the molten metal of the Mg alloy is sprayed. Further, since the manufactured Mg alloy powder has a dense oxide film on the surface, it is considered that oxidation, which contributes to the deterioration of characteristics, does not proceed easily even when stored for a long time. Furthermore, from the viewpoint of production of the sintered part, it is considered that the fine oxide containing Al as the first subcomponent finely disperses in the structure, which is also effective for improving the strength of the sintered part. .
 例えば、アルゴンガスを用いてガスアトマイズ法によって粉末化を行う場合、一般的に、粉末化の操業コストの90%をアルゴンガスの費用が占めるといわれている。したがって、上記実施形態によれば、高価なアルゴンガスでなく空気を使用するため、操業コストの大幅な低減を図ることができ、Mg合金粉末を低コストで提供することが可能となる。 For example, when powdering is performed by gas atomization using argon gas, it is generally said that the cost of argon gas accounts for 90% of the operation cost of powdering. Therefore, according to the above embodiment, since air is used instead of expensive argon gas, the operation cost can be significantly reduced, and the Mg alloy powder can be provided at low cost.
 他の実施形態において、Mg合金粉末は、主成分としてMgを含有し、かつ第1の副成分としてAlを含有し、表面に膜厚1μm未満の酸化被膜を有し、上記酸化被膜が上記第1の副成分のAlを含有する。一実施形態において、Mg合金粉末は、主成分として76質量%を超えるMgを含有することが好ましい、Mg合金粉末は、80質量%を超えるMgを含有することがより好ましく、85質量%を超えるMgを含有することがさらに好ましい。 In another embodiment, the Mg alloy powder contains Mg as a main component and Al as a first subcomponent, and has an oxide film with a film thickness of less than 1 μm on the surface, and the above-mentioned oxide film is the above-mentioned first 1 contains a minor component of Al. In one embodiment, the Mg alloy powder preferably contains more than 76% by mass of Mg as a main component. The Mg alloy powder preferably contains more than 80% by mass of Mg, more than 85% by mass It is more preferable to contain Mg.
 一般的に、Mg合金粉末を用いた焼結部品の製造では、成形時又は焼結時の加圧処理時、あるいは焼結後の熱間加工処理時に、粉末同士の接触界面に対してせん断応力が加わる。Mg合金粉末の表面に酸化被膜が存在する場合でも、上記処理時にMg合金粉末表面の酸化被膜が破壊することで強固な金属結合が形成され、高強度の焼結部品を得ることが容易になると考えられる。しかし、酸化被膜の膜厚が数ミクロンオーダーになると、通常の処理によって酸化被膜を破壊することが困難となり、焼結部品の強度に影響を及ぼす可能性が高い。これに対し、上記実施形態のMg合金粉末は、粉末表面の酸化被膜の厚さが1μm未満となり、薄いため、高強度の焼結部品を得ることが容易であると考えられる。 Generally, in the production of sintered parts using Mg alloy powder, shear stress is applied to the contact interface between the powders at the time of pressure treatment at the time of forming or sintering, or at the time of hot working after sintering Is added. Even when the oxide film is present on the surface of the Mg alloy powder, the oxide film on the surface of the Mg alloy powder is broken during the above treatment to form a strong metal bond, which makes it easy to obtain a sintered part with high strength. Conceivable. However, if the film thickness of the oxide film is on the order of several microns, it becomes difficult to break the oxide film by ordinary processing, which is likely to affect the strength of the sintered part. On the other hand, in the Mg alloy powder of the above-described embodiment, the thickness of the oxide film on the powder surface is less than 1 μm, and it is thought that it is easy to obtain a high strength sintered part because it is thin.
 上記実施形態のMg合金粉末は、いかなる方法で製造されたものであってもよいが、低コスト化の観点から、空気アトマイズ法を適用した方法によって製造されることが好ましい。上述のように、一般に、純Mg又はMg合金の粉末化方法として、空気アトマイズ法を適用することは困難であると考えられているが、Mg合金粉末が少なくともAlを含有する特定の組成を有することによって、高価な不活性ガスを使用することなく、空気アトマイズ法によるMg合金粉末の製造を安全に実施することが可能となる。 The Mg alloy powder of the above embodiment may be manufactured by any method, but from the viewpoint of cost reduction, it is preferable to be manufactured by a method to which the air atomization method is applied. As described above, it is generally considered difficult to apply air atomization as a method of pulverizing pure Mg or Mg alloy, but Mg alloy powder has a specific composition containing at least Al. This makes it possible to safely carry out the production of Mg alloy powder by air atomization without using expensive inert gas.
 また、理論によって拘束するものではないが、酸化被膜に第1の副成分のAlが濃化することで、被膜の成長速度が遅くなり、凝固後の酸化被膜の厚さが薄くなると考えられる。実際のところ、本発明者らの検討において、水アトマイズ法によって製造したMg合金粉末との対比において、空気アトマイズ法を適用した製造方法によれば、Mg合金粉末の表面に生成する酸化被膜の厚さを1μm未満まで低減できることが確認されている。 Also, without being bound by theory, it is believed that the concentration of the first subcomponent Al in the oxide film makes the film growth rate slower and the thickness of the oxide film after solidification becomes thinner. As a matter of fact, in comparison with the Mg alloy powder manufactured by the water atomization method in the study of the present inventors, according to the manufacturing method to which the air atomization method is applied, the thickness of the oxide film formed on the surface of the Mg alloy powder It has been confirmed that the height can be reduced to less than 1 .mu.m.
 一実施形態において、Mg合金粉末の表面の酸化被膜の厚さは、高強度の焼結部品を得ることが容易となる観点から、800nm以下が好ましく、500nm以下がより好ましく、200nm以下がさらに好ましい。上記実施形態のMg合金粉末は、少なくともAlを含有することによって酸化被膜の形成が好適に制御され、酸化被膜の厚さを上記範囲内に調整することが容易となる。 In one embodiment, the thickness of the oxide film on the surface of the Mg alloy powder is preferably 800 nm or less, more preferably 500 nm or less, and still more preferably 200 nm or less, from the viewpoint of facilitating obtaining a high-strength sintered part. . In the Mg alloy powder of the above embodiment, the formation of the oxide film is suitably controlled by containing at least Al, and it becomes easy to adjust the thickness of the oxide film within the above range.
 さらに、一実施形態において、Mg合金粉末は、不規則形状(不定形の非球状)であることが好ましい。不規則形状の粉末は、粉末粒子間のアンカー効果によって、成形後の圧粉体の強度が高くなる。また、脱脂工程後、バインダーが分解し、気散した後も成形体が変形し難いという利点がある。Mg合金粉末の製造において空気アトマイズ法を適用した場合、所望とする不規則形状の粉末を得ることが容易である。 Furthermore, in one embodiment, the Mg alloy powder is preferably in an irregular shape (indeterminate non-spherical shape). The irregularly shaped powder increases the strength of the green compact after molding due to the anchor effect between the powder particles. In addition, there is an advantage that the binder is decomposed after the degreasing step, and the molded body is hardly deformed even after being dissipated. When air atomization is applied in the production of Mg alloy powder, it is easy to obtain a desired irregularly shaped powder.
 一実施形態において、Mg合金粉末は、Mg合金粉末の全質量を基準として、第1の副成分としてAlを3.5~12質量%含み、その残部がMg及び不回避的成分である合金組成を有することが好ましい。上記実施形態において、第1の副成分の含有量は、4.5~11質量%がより好ましく、5.5~10質量%がさらに好ましい。 In one embodiment, the Mg alloy powder contains 3.5 to 12 mass% of Al as a first minor component based on the total mass of the Mg alloy powder, and the balance of the alloy composition is Mg and a unavoidable component. It is preferable to have In the above embodiment, the content of the first subcomponent is more preferably 4.5 to 11% by mass, and still more preferably 5.5 to 10% by mass.
 他の実施形態において、Mg合金粉末は、Mg合金粉末の機能性をさらに向上させる観点から、Mg及び上記第1の副成分に加えて、さらに第2の副成分を含んでもよい。第2の副成分は、Zn、Ca、Mn、Si、Ni、Cu、Zr、およびSnからなる群から選択される1種又は2種以上を含むことが好ましい。 In another embodiment, the Mg alloy powder may further include a second subcomponent in addition to Mg and the first subcomponent from the viewpoint of further improving the functionality of the Mg alloy powder. The second accessory component preferably contains one or more selected from the group consisting of Zn, Ca, Mn, Si, Ni, Cu, Zr, and Sn.
 Mg合金粉末において第2の副成分による機能性の向上効果を発現させる観点から、その含有量は、Mg合金粉末の全質量を基準として、0.01質量%以上が好ましく、質量0.05%以上がより好ましく、0.1質量%以上がさらに好ましい。一方、上記第2の副成分の含有量は、Mg合金粉末の全質量を基準として、12質量%以下が好ましく、11質量%以下がより好ましく、10質量%以下であることがさらに好ましい。 The content is preferably 0.01% by mass or more based on the total mass of the Mg alloy powder from the viewpoint of expressing the effect of improving the functionality of the second additive in the Mg alloy powder, and the mass is 0.05% The above is more preferable, and 0.1 mass% or more is more preferable. On the other hand, the content of the second subcomponent is preferably 12% by mass or less, more preferably 11% by mass or less, and still more preferably 10% by mass or less, based on the total mass of the Mg alloy powder.
 Mg合金粉末が、Mg及び上記第1の副成分であるAlに加えて、上記割合で第2の副成分を含む合金組成を有する場合、Mgによる望ましい特性と、難燃性と、その他の機能性との良好なバランスを得ることが容易となる。一実施形態において、Mg合金粉末は、全質量を基準として、第1の副成分であるAlを3.5~12質量%、第2の副成分を0.01~12質量%、その残部としてMgと不可避的成分とを含むことが好ましい。 When Mg alloy powder has an alloy composition including the second subcomponent in the above proportion in addition to Mg and the above-mentioned first subcomponent Al, desirable characteristics by Mg, flame retardancy, and other functions It becomes easy to obtain a good balance with the sex. In one embodiment, the Mg alloy powder contains 3.5 to 12% by mass of the first subcomponent Al, 0.01 to 12% by mass of the second subcomponent, based on the total mass, and the balance thereof It is preferable to contain Mg and an unavoidable component.
 上記「不可避的成分」とは、もともとMg原料に含まれるか、製造工程において不可避的に混入した成分を意味する。通常、Mg合金の特性に影響を及ぼさない元素を意味し、その量は微量である。本明細書において、「不可避的成分」とは、溶解原料などの合金原料に含まれる、Mg、第1の副成分、および第2の副成分を除いた元素成分を意味する。一実施形態において、合金原料の全質量を基準として、不可避的成分の含有量は、それぞれ0.01質量%未満であることが好ましい。 The above-mentioned "unavoidable component" means a component which is originally contained in the Mg raw material or is inevitably mixed in the production process. Usually, it means an element that does not affect the properties of the Mg alloy, and the amount is a slight amount. In the present specification, the "unavoidable component" refers to an element component contained in an alloy raw material such as a molten raw material except Mg, the first accessory component, and the second accessory component. In one embodiment, the content of each of the unavoidable components is preferably less than 0.01% by mass based on the total mass of the alloy material.
 以下、Mg合金粉末の組成について具体的に説明する。
 一実施形態において、Mg合金粉末は、少なくとも第1の副成分としてAlを含む。Mg合金粉末におけるAlの存在は、粉末化における難燃性の向上に有利であることに加えて、焼結体の強度を向上することが容易になる点でも好ましい。
Hereinafter, the composition of the Mg alloy powder will be specifically described.
In one embodiment, the Mg alloy powder contains Al as at least a first accessory component. The presence of Al in the Mg alloy powder is preferable in that it is easy to improve the strength of the sintered body, in addition to being advantageous for the improvement of the flame retardancy in the pulverization.
 Mg合金粉末の全質量を基準として、Alの含有量は、3.5~12質量%が好ましく、4.5~11質量%がより好ましく、5.5~10質量%がさらに好ましい。Mg合金粉末におけるAlの含有量を3.5質量%以上に調整した場合、Alは酸化被膜およびその直ぐ内部の液相にかけて濃化しやすくなる。AlはMgOに比べてモル体積が大きいため、酸化被膜の緻密化が期待できる。また、酸化被膜より直ぐ内部の液相についても、Alの濃化に伴うMg蒸気圧の低下等の効果が期待できる。これらのことから、Alによって、溶滴の燃焼による危険性を回避することができると考えられる。一方、Mg合金粉末におけるAlの含有量を12質量%以下に調整した場合、Mg-Al系の金属間化合物の析出量の増加による焼結部品の脆化を抑制し、優れた加工性を得ることが容易となる。 The content of Al is preferably 3.5 to 12% by mass, more preferably 4.5 to 11% by mass, and still more preferably 5.5 to 10% by mass, based on the total mass of the Mg alloy powder. When the content of Al in the Mg alloy powder is adjusted to 3.5% by mass or more, Al is easily concentrated to the oxide film and the liquid phase immediately inside the oxide film. Since the molar volume of Al 2 O 3 is larger than that of MgO, densification of the oxide film can be expected. Further, also in the liquid phase immediately inside the oxide film, effects such as a decrease in Mg vapor pressure accompanying the concentration of Al can be expected. From these facts, it is considered that Al can avoid the danger due to the burning of droplets. On the other hand, when the content of Al in the Mg alloy powder is adjusted to 12% by mass or less, the embrittlement of the sintered part due to the increase of the precipitation amount of the Mg-Al intermetallic compound is suppressed, and excellent workability is obtained. Becomes easy.
 上記実施形態のMg合金粉末は、第2の副成分として、少なくともZnを含むことが好ましい。副成分としてAlとZnとを含むMg合金粉末は、機械的性質および加工性の良好なバランスを得ることが容易である。Mg合金粉末におけるZnの含有量は、機械的特性の向上の観点から、Mg合金粉末の全質量を基準として、0.1~8質量%が好ましく、0.2~6質量%がより好ましく、0.3~4質量%がさらに好ましい。
 より具体的な実施形態において、Mg合金粉末は、第1の副成分であるAlを3.5~12質量%、第2の副成分として少なくともZnを0.1~8質量%、およびその残部としてMgと不回避的成分とを含むことが好ましい。
The Mg alloy powder of the above embodiment preferably contains at least Zn as a second accessory component. Mg alloy powder containing Al and Zn as minor components is easy to obtain a good balance of mechanical properties and processability. The content of Zn in the Mg alloy powder is preferably 0.1 to 8 mass%, more preferably 0.2 to 6 mass%, based on the total mass of the Mg alloy powder, from the viewpoint of improving the mechanical properties. 0.3 to 4% by mass is more preferable.
In a more specific embodiment, the Mg alloy powder comprises 3.5 to 12 wt% of the first accessory component Al, at least 0.1 to 8 wt% of Zn as the second accessory component, and the balance thereof. It is preferable to contain Mg and an unavoidable component as
 上記実施形態のMg合金粉末は、所望の組成となるように各金属材料を組合せた混合物を使用するか、又は所望の組成を有するMg合金材料(ビレット又はインゴット)を使用して製造することができる。
 例えば、使用可能なMg合金材料の一例として、Mg-Al系合金材料が挙げられる。具体例として、AM100A(10質量%Alを含有)、AM60A(6質量%Alを含有)、およびAM50A(5質量%Alを含有)が挙げられる。
The Mg alloy powder of the above embodiment may be manufactured using a mixture obtained by combining each metal material to achieve a desired composition, or using an Mg alloy material (billet or ingot) having a desired composition. it can.
For example, an example of a usable Mg alloy material is a Mg-Al based alloy material. Specific examples thereof include AM100A (containing 10% by mass Al), AM60A (containing 6% by mass Al), and AM50A (containing 5% by mass Al).
 他の例として、Mg-Zn-Al系合金材料が挙げられる。具体例として、AZ91D(9質量%Al,1質量%Znを含有)、AZ61A(6質量%Al,1質量%Znを含有)、AZ63(6質量%Al,3質量%Znを含有)、AZ81A(8質量%Al,1質量%Znを含有)が挙げられる。
 なかでも、AZ91Dを好適に使用することができる。なお、具体例として挙げた上記Mg合金材料において、括弧内に記載した各元素の含有量(質量%)は、代表的な値を記載しており、実際には幅がある。以下に記載するMg合金材料についても同様である。
Other examples include Mg-Zn-Al based alloy materials. As specific examples, AZ91D (containing 9% by mass Al and 1% by mass Zn), AZ61A (containing 6% by mass Al and 1% by mass Zn), AZ63 (containing 6% by mass Al and 3% by mass Zn), AZ81A (Containing 8% by mass Al, 1% by mass Zn).
Among them, AZ91D can be suitably used. In addition, in the above-mentioned Mg alloy material mentioned as a specific example, content (mass%) of each element indicated in the parenthesis has described a typical value, and there is width actually. The same applies to the Mg alloy materials described below.
 他の実施形態において、Mg合金粉末は、第2の副成分として少なくともCaを含むことが好ましい。Mg合金におけるCaの存在は、酸化被膜の生成において有利であることに加えて、Mg-Al-Ca系の金属間化合物やAlCa等を微細に析出分散させることができ、そのことにより焼結部品の強度を向上できる点でも好ましい。 In another embodiment, the Mg alloy powder preferably contains at least Ca as a second accessory component. In addition to the fact that the presence of Ca in the Mg alloy is advantageous in the formation of the oxide film, it is possible to finely precipitate and disperse Mg-Al-Ca-based intermetallic compounds, Al 2 Ca, etc. It is preferable also in the point which can improve the intensity | strength of a connection part.
 Mg合金粉末におけるCaの含有量は、Mg合金粉末の全質量を基準として、0.5~10質量%が好ましく、1~8質量%がより好ましく、2~5質量%がさらに好ましい。Caの含有量を0.5質量%以上に調整することによって、空気アトマイズ法によるアトマイズ時に溶滴表面にCaを含有する緻密な酸化被膜を生成することが容易となり、溶湯の燃焼による危険性を回避することがいっそう容易となる。一方、Caの含有量を10質量%以下に調整することによって、金属間化合物の析出量の増加による焼結部品の脆化を抑制し、優れた加工性を得ることが容易となる。金属間化合物の析出量の増加を抑制する観点から、Mg合金粉末におけるAl及びCaの含有量の合計は、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましい。
 より具体的な実施形態において、Mg合金粉末は、第1の副成分であるAlを3.5~12質量%、第2の副成分として少なくともCaを0.5~8質量%、およびその残部としてMgと不回避的成分とを含むことが好ましい。
The content of Ca in the Mg alloy powder is preferably 0.5 to 10% by mass, more preferably 1 to 8% by mass, and still more preferably 2 to 5% by mass, based on the total mass of the Mg alloy powder. By adjusting the content of Ca to 0.5% by mass or more, it becomes easy to form a fine oxide film containing Ca on the droplet surface during atomization by air atomization, and the danger due to the combustion of the molten metal It becomes easier to avoid. On the other hand, by adjusting the content of Ca to 10% by mass or less, the embrittlement of the sintered part due to the increase of the precipitation amount of the intermetallic compound is suppressed, and it becomes easy to obtain excellent processability. 20 mass% or less is preferable, as for the sum total of content of Al and Ca in Mg alloy powder from a viewpoint of suppressing the increase in the precipitation amount of an intermetallic compound, 15 mass% or less is more preferable, and 10 mass% or less is more preferable .
In a more specific embodiment, the Mg alloy powder comprises 3.5 to 12% by mass of the first accessory component Al, at least 0.5 to 8% by mass of Ca as the second accessory component, and the balance thereof. It is preferable to contain Mg and an unavoidable component as
 上記実施形態のMg合金粉末は、所望の組成となるように各金属材料を組合せた混合物を使用するか、又は所望の組成を有するMg合金材料(ビレット又はインゴット)を使用して製造することができる。例えば、使用可能なMg合金材料の一例として、Mg-Al-Ca系合金材料が挙げられる。具体例として、AMX602(6質量%Al,2質量%Caを含有)、Mg85Al10Ca(10原子%(10.7質量%)Al,5原子%(7.9質量%)Caを含有)が挙げられる。 The Mg alloy powder of the above embodiment may be manufactured using a mixture obtained by combining each metal material to achieve a desired composition, or using an Mg alloy material (billet or ingot) having a desired composition. it can. For example, an example of a usable Mg alloy material is a Mg-Al-Ca based alloy material. As a specific example, (containing 6 wt% Al, 2 wt% Ca) AMX602, the Mg 85 Al 10 Ca 5 (10 atomic% (10.7 mass%) Al, 5 atomic% (7.9 wt%) Ca Contained).
 さらに他の実施形態において、Mg合金粉末は、第2の副成分としてZnとCaとを含むことが好ましい。第2の副成分としてZnとCaとを含む場合、これらの含有量の合計は、Mg合金粉末の全質量を基準として、0.6~12質量%が好ましく、1~11質量%がより好ましく、2~10質量%がさらに好ましい。但し、Mg合金粉末において、金属間化合物の析出量の増加を抑制する観点から、Mg合金粉末におけるAl及びCaの含有量の合計は、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましい。
 より具体的な実施形態において、Mg合金粉末は、第1の副成分であるAlを3.5~12質量%、第2の副成分としてZnを0.1~6質量%、Caを0.5~6質量%、およびその残部としてMgと不回避的成分とを含むことが好ましい。
In yet another embodiment, the Mg alloy powder preferably contains Zn and Ca as second additives. When Zn and Ca are contained as the second accessory component, the total content thereof is preferably 0.6 to 12% by mass, more preferably 1 to 11% by mass, based on the total mass of the Mg alloy powder. And 2 to 10% by mass is more preferable. However, in view of suppressing an increase in the precipitation amount of the intermetallic compound in the Mg alloy powder, the total content of Al and Ca in the Mg alloy powder is preferably 20 mass% or less, more preferably 15 mass% or less, 10 mass% or less is further more preferable.
In a more specific embodiment, the Mg alloy powder contains 3.5 to 12% by mass of Al as the first accessory component, 0.1 to 6% by mass of Zn as the second accessory component, and 0.2% of Ca. It is preferable to contain 5 to 6% by mass, and Mg and the unavoidable components as the balance thereof.
 上記実施形態のMg合金粉末は、所望の組成となるように各金属材料を組合せた混合物を使用するか、又は所望の組成を有するMg合金材料(ビレット又はインゴット)を使用して製造することができる。例えば、使用可能なMg合金材料の一例として、Mg-Al-Zn-Ca系合金材料が挙げられる。具体例として、AZX912(9質量%Al,1質量%Zn,2質量%Caを含有)、AZX311(3質量%Al,1質量%Zn,1質量%Caを含有)、およびAZX611(6質量%Al,1質量%Zn,1質量%Caを含有)が挙げられる。なかでも、AZX912を好適に使用することができる。 The Mg alloy powder of the above embodiment may be manufactured using a mixture obtained by combining each metal material to achieve a desired composition, or using an Mg alloy material (billet or ingot) having a desired composition. it can. For example, as an example of the usable Mg alloy material, a Mg-Al-Zn-Ca based alloy material can be mentioned. As a specific example, AZX 912 (containing 9 mass% Al, 1 mass% Zn, 2 mass% Ca), AZX 311 (containing 3 mass% Al, 1 mass% Zn, 1 mass% Ca), and AZX 611 (6 mass%) Al, containing 1% by mass Zn, containing 1% by mass Ca). Among them, AZX 912 can be suitably used.
 上記実施形態のMg合金粉末は、ガスアトマイズ法で用いられる代表的な技術を適用して製造することができる。一実施形態において、上記Mg合金粉末の製造方法は、(a)溶解原料を溶解して、Mg合金の溶湯を得る工程と、(b)空気を用いて、上記Mg合金の溶湯を噴霧して、Mg合金粉末を得る工程とを有する。上記工程(b)は、空気アトマイズ法で用いられる代表的な技術を適用して実施することができる。ガスアトマイズ法による金属粉末の製造は、一般的に、溶解、アトマイズ、分級、集積といった区分を有する粉末化装置を用いて実施される。上記実施形態の製造方法は、少なくとも、溶解区分、およびアトマイズ区分を構成する装置を使用して実施することができ、アトマイズ区分では少なくとも空気を使用して溶湯を噴霧する。
 より具体的には、上記製造方法において、(a)溶解原料を溶解して、Mg合金の溶湯を得る工程は、黒鉛坩堝等を備えた溶解炉を使用して実施することができる。工程(a)において、Mg合金の溶湯は、溶解原料として、先に説明したMg合金の組成を有する混合物又は合金材料を使用し、溶解原料を溶解炉に入れて加熱することによって得ることができる。
The Mg alloy powder of the above embodiment can be manufactured by applying a typical technique used in a gas atomization method. In one embodiment, the method of manufacturing the Mg alloy powder comprises (a) melting the molten material to obtain a molten Mg alloy, and (b) spraying the molten magnesium alloy using air. And obtaining the Mg alloy powder. The above step (b) can be carried out by applying a typical technique used in the air atomization method. Production of metal powder by gas atomization is generally carried out using a pulverizing apparatus having divisions such as dissolution, atomization, classification and accumulation. The manufacturing method of the above embodiment can be carried out using at least an apparatus for constituting a melting section and an atomizing section, in which at least air is used to spray the molten metal in the atomizing section.
More specifically, in the above manufacturing method, the step of (a) melting the molten material to obtain the molten metal of Mg alloy can be carried out using a melting furnace equipped with a graphite crucible or the like. In the step (a), the molten metal of the Mg alloy can be obtained by using the mixture or alloy material having the composition of the Mg alloy described above as the raw material for melting and putting the raw material for melting in a melting furnace and heating it. .
 溶解温度は、使用する溶解原料、装置の特性、目標とする粉末粒径に応じて調整することができる。Mg合金の溶解原料を溶解し、溶湯の噴霧時に好ましい液相の状態を得る観点から、溶解温度は、溶解炉から噴霧される位置まで溶湯が移動する間の温度低下を考慮して設定することが好ましい。通常、溶湯が噴霧される位置において、液相線温度以上の温度を確保できるように溶解温度を設定することが好ましい。一般的に、溶解温度は、溶解原料の液相線温度よりも50~300℃高い温度に設定することが好ましい。 The melting temperature can be adjusted according to the raw material to be used, the characteristics of the apparatus, and the target powder particle size. The melting temperature should be set in consideration of the temperature drop while the molten metal moves from the melting furnace to the position where it is sprayed from the viewpoint of melting the molten material of the Mg alloy and obtaining a preferable liquid phase state when spraying the molten metal. Is preferred. In general, it is preferable to set the melting temperature so that a temperature higher than the liquidus temperature can be secured at the position where the molten metal is sprayed. In general, the dissolution temperature is preferably set to a temperature 50 to 300 ° C. higher than the liquidus temperature of the dissolution raw material.
 溶解炉の底にストッパー付のノズルを装着した場合、溶湯の溶解炉からノズルへの移動における温度低下を抑えることができ、アトマイズ位置での溶湯温度を制御すること、また溶湯の酸化を抑えることが容易となる。また、溶解炉内の雰囲気を加圧した場合、溶湯ノズルからの溶湯の流出速度を制御することが容易となり、溶湯中や溶湯表面への酸化物の生成を抑制することができる。また、ノズルが閉塞し難くなる等、操業性の向上が容易であり、得られる粉末の品質も安定する。 When a nozzle with a stopper is attached to the bottom of the melting furnace, the temperature drop in the movement of the molten metal from the melting furnace to the nozzle can be suppressed, the temperature of the molten metal at the atomizing position can be controlled, and the oxidation of the molten metal can be suppressed. Becomes easy. In addition, when the atmosphere in the melting furnace is pressurized, it is easy to control the flow rate of the molten metal from the molten metal nozzle, and the formation of oxides in the molten metal and on the surface of the molten metal can be suppressed. In addition, the operability is easily improved, for example, the nozzles are less likely to be clogged, and the quality of the obtained powder is also stabilized.
 上記製造方法において、(b)空気を用いて、上記Mg合金の溶湯を噴霧して、Mg合金粉末を得る工程は、一般的なアトマイズ装置を使用して実施することができる。アトマイズ時の空気の噴射形式は、自然落下式(free fall type)、および拘束式(confined type)のいずれでもよい。いずれの方法を用いても、溶湯流の周囲から効率的に空気を噴射できるため、より微細なMg合金粉末を製造することが可能である。また、ダンディッシュからの出湯方向は、一般的に下向きであるが、横向き、又は上向きとすることもできる。出湯方向を横向き又は上向きにした場合、堆積した粉末への溶湯の滴下による燃焼を防止することが可能であり、より安全にアトマイズを実施することができる。
 一実施形態において、製造コストを抑える観点から、空気のみを使用して溶湯の噴霧を行うことが好ましいが、必要に応じて不活性ガスを空気に混入してもよい。不活性ガスを混入した場合、酸化被膜の膜厚などを制御することが容易になると考えられる。不活性ガスとしては、代表的にアルゴンガス又はヘリウムガスを使用できるが、窒素ガスを使用することもできる。
In the manufacturing method, the step of spraying the molten metal of the Mg alloy using (b) air to obtain the Mg alloy powder can be performed using a general atomizing device. The type of injection of air during atomization may be either a free fall type or a confined type. Whichever method is used, air can be efficiently injected from the periphery of the melt flow, so it is possible to produce finer Mg alloy powder. Moreover, although the pouring direction from a dan dish is generally downward, it can also be sideways or upward. In the case where the pouring direction is horizontal or upward, it is possible to prevent combustion due to dripping of the molten metal to the deposited powder, and atomization can be performed more safely.
In one embodiment, it is preferable to use only air to spray the molten metal from the viewpoint of suppressing the manufacturing cost, but an inert gas may be mixed into the air if necessary. When an inert gas is mixed, it is considered that it becomes easy to control the film thickness and the like of the oxide film. As an inert gas, although argon gas or helium gas can be used typically, nitrogen gas can also be used.
 図1は、空気アトマイズ装置の構造例を示す模式的断面図である。図1に示したアトマイズ装置では、構造を簡略化するために、溶解炉で溶解原料を加熱して溶湯を得た後に、溶湯をアトマイズ装置のタンディッシュに手動で移す構造にしている。また、タンディッシュ下の溶湯ノズルから落下する溶湯の流れに対し、横向きに空気を噴射できるように空気ノズルが設置されている。 FIG. 1 is a schematic cross-sectional view showing a structural example of an air atomizing device. In the atomizing apparatus shown in FIG. 1, in order to simplify the structure, a molten material is obtained by heating the molten material in a melting furnace, and then the molten metal is manually transferred to a tundish of the atomizing apparatus. In addition, an air nozzle is provided so that air can be jetted laterally to the flow of the molten metal falling from the molten metal nozzle under the tundish.
 以下、図1に示したアトマイズ装置9を使用した場合を例にして、工程(b)について、より具体的に説明する。
 先ず、工程(a)で得た溶湯1をタンディッシュ2に移し、タンディッシュ2の下に設けたノズル3から溶湯1を流出させる。一方、この溶湯の流れに対して空気ノズル4から空気5を噴射することで溶湯1を噴霧し、溶滴(噴霧された溶湯)6を形成する。この溶滴6が凝固することによって粉末が得られる。アトマイズされずに落下した溶湯は溶湯受皿7によって回収される。また、アトマイズによって形成された粉末(不図示)は粉末受皿8によって回収される。
Hereinafter, the step (b) will be more specifically described by taking the case of using the atomizing apparatus 9 shown in FIG. 1 as an example.
First, the molten metal 1 obtained in the step (a) is transferred to the tundish 2, and the molten metal 1 is made to flow from the nozzle 3 provided below the tundish 2. On the other hand, the molten metal 1 is sprayed by injecting the air 5 from the air nozzle 4 to the flow of the molten metal to form a droplet (sprayed molten metal) 6. A powder is obtained by solidification of the droplets 6. The molten metal dropped without being atomized is recovered by the molten metal receiving plate 7. Also, the powder (not shown) formed by atomization is collected by the powder receiver 8.
 溶湯をタンディッシュに移す時、すなわち注湯時の温度は、タンディッシュから噴霧される位置まで溶湯が移動する間の温度低下を考慮して設定することが好ましい。溶湯が噴霧される位置において、液相線温度以上の温度を確保できるように注湯時の温度を調整することが好ましい。 When the molten metal is transferred to the tundish, that is, the temperature at the time of pouring is preferably set in consideration of the temperature drop while the molten metal moves from the tundish to the position where it is sprayed. It is preferable to adjust the temperature at the time of pouring so that the temperature higher than the liquidus temperature can be secured at the position where the molten metal is sprayed.
 空気の噴射は、通常の噴射方法を適用して実施することができる。例えば、コンプレッサーで加圧した空気を空気ノズルから噴射させる。噴射時の空気の流速は、噴射圧力によって調整される。空気を用いてアトマイズを行う方法は、水アトマイズ法との対比において、空気を媒体とすることから酸化を抑えることが可能であり、粉末と水との反応による水素の発生を心配する必要がない。また、水を加圧する大きなポンプや水の回収浄化装置が不要であり、回収した粉末の乾燥工程も不要であるため、装置および工程の大幅な簡略化が可能である。 The injection of air can be carried out applying a conventional injection method. For example, air pressurized by a compressor is injected from an air nozzle. The flow velocity of air at the time of injection is adjusted by the injection pressure. The method of performing atomization using air can suppress oxidation because it uses air as a medium in contrast to the water atomization method, and there is no need to worry about the generation of hydrogen due to the reaction between powder and water. . In addition, since a large pump for pressurizing water and a water recovery and purification device are unnecessary, and a drying process of the recovered powder is also unnecessary, significant simplification of the device and process is possible.
 Mg合金粉末の形状および大きさは、溶湯ノズルの形状、溶湯温度、および空気の噴射圧力等によって調整することができる。一実施形態において、上記製造方法によって得られるMg合金粉末は、不規則形状(不定形の非球状)を有することが好ましい。不規則形状の粉末は、粉末粒子間のアンカー効果によって、成形後の圧粉体の強度が高くなる。また、脱脂工程後、バインダーが分解し、気散した後も成形体が変形し難いという利点がある。 The shape and size of the Mg alloy powder can be adjusted by the shape of the melt nozzle, the temperature of the melt, the injection pressure of air, and the like. In one embodiment, the Mg alloy powder obtained by the above-mentioned production method preferably has an irregular shape (amorphous non-spherical shape). The irregularly shaped powder increases the strength of the green compact after molding due to the anchor effect between the powder particles. In addition, there is an advantage that the binder is decomposed after the degreasing step, and the molded body is hardly deformed even after being dissipated.
 ガスアトマイズ法による金属粉末の製造において、アトマイズ直後の溶滴は不規則形状を有しているが、通常は、溶滴が凝固する前に表面張力によって球状となることで球状の粉末が得られる。これに対し、上記実施形態のMg合金粉末の製造方法では、空気を用いるため、アトマイズ直後に溶滴の表面に酸化被膜が生成され、不規則形状を維持した粉末を得ることが容易である。
 アルゴンガスを用いたアトマイズ法では、通常、球状のMg合金粉末が得られるが、これはアルゴンガスによって溶滴表面での酸化被膜の生成が抑制されているためと考えられる。このような観点から、空気アトマイズ法は、溶滴表面が空気によって速やかに酸化されるため、不規則形状のMg合金粉末を製造するのに適した方法といえる。
In the production of metal powder by gas atomization, the droplets immediately after atomization have an irregular shape, but usually, spherical particles are obtained by being spherical due to surface tension before the droplets solidify. On the other hand, in the method of manufacturing the Mg alloy powder of the above embodiment, since air is used, an oxide film is formed on the surface of the droplet immediately after atomization, and it is easy to obtain a powder having an irregular shape.
In the atomizing method using argon gas, a spherical Mg alloy powder is usually obtained, which is considered to be because the formation of an oxide film on the droplet surface is suppressed by the argon gas. From such a point of view, the air atomization method can be said to be a method suitable for producing irregularly shaped Mg alloy powder because the droplet surface is rapidly oxidized by air.
 上記実施形態の製造方法によって製造されたMg合金粉末は、製造時に使用した溶解原料に対応する組成を有する。上記Mg合金粉末は様々な用途に使用することができる。通常、水アトマイズ法によって製造されたMg合金粉末では、粉末表面の酸化被膜が1μmを超えるのに対し、上記実施形態の製造方法によれば、酸化被膜の膜厚を1μm未満の厚さに制御することが容易である。酸化被膜の厚さは、粉末の表面付近の断面を走査型透過電子顕微鏡(STEM)によって観察することができる。 Mg alloy powder manufactured by the manufacturing method of the above-mentioned embodiment has a composition corresponding to a dissolution raw material used at the time of manufacture. The Mg alloy powder can be used in various applications. Usually, in the Mg alloy powder produced by the water atomization method, the oxide film on the powder surface exceeds 1 μm, whereas according to the manufacturing method of the above embodiment, the film thickness of the oxide film is controlled to a thickness less than 1 μm. It is easy to do. The thickness of the oxide film can be observed by a scanning transmission electron microscope (STEM) of a cross section near the surface of the powder.
 一実施形態において、Mg合金粉末表面の酸化被膜の厚さは、優れた焼結性を得る観点から、800nm以下が好ましく、500nm以下がより好ましく、200nm以下がさらに好ましい。上記製造方法によれば、酸化被膜の厚さを上記範囲内に制御することが容易である。したがって、一実施形態において、上記実施形態のMg合金粉末は、優れた焼結性を有し、粉末冶金材として好適に使用することができる。上記実施形態のMg合金粉末を使用することで、各種特性に優れた焼結部品を容易に製造することができる。 In one embodiment, from the viewpoint of obtaining excellent sinterability, the thickness of the oxide film on the surface of the Mg alloy powder is preferably 800 nm or less, more preferably 500 nm or less, and still more preferably 200 nm or less. According to the above manufacturing method, it is easy to control the thickness of the oxide film within the above range. Therefore, in one embodiment, the Mg alloy powder of the above embodiment has excellent sinterability and can be suitably used as a powder metallurgy material. By using the Mg alloy powder of the above embodiment, sintered parts excellent in various characteristics can be easily manufactured.
 焼結部品は、Mg合金粉末を金型等に充填および加圧成形し、次いで焼結する方法によって製造することができる。上記実施形態のMg合金粉末は表面の酸化被膜の厚さが薄いため、焼結時に金属間の強い結合が形成され、強度の高い焼結部品を得ることが容易である。焼結温度は、Mg合金粉末の組成に応じて、適宜調整することが好ましい。例えば、Mg-Al-Zn系合金材料の組成を有するMg合金粉末の場合は、450~550℃の温度で焼結を実施することが好ましい。焼結時の温度を適切に調整することによって、強度の高い焼結部品を得ることがより容易となる。また、その後に熱間加工の工程を入れることにより、さらに緻密化し、歪の導入により焼結体の強度はさらに向上する。ホットプレスやパルス通電加圧焼結法による焼結も緻密化と高強度化に有効である。
 焼結部品は、特に限定されず、様々な用途で使用することができる。焼結部品は、例えば、Mg合金の特性から、自動車、鉄道車両、および航空機等の輸送機器用部品、パソコン、および携帯電話等の電子機器用部品、並びに人口骨、およびインプラント等の生体用材料などの用途で好適に使用することができる。
A sintered part can be manufactured by the method of filling and press forming Mg alloy powder in a metal mold etc., and then sintering. Since the thickness of the oxide film on the surface of the Mg alloy powder of the above embodiment is thin, a strong bond between metals is formed during sintering, and it is easy to obtain a sintered part with high strength. The sintering temperature is preferably adjusted appropriately according to the composition of the Mg alloy powder. For example, in the case of Mg alloy powder having a composition of Mg—Al—Zn based alloy material, it is preferable to carry out sintering at a temperature of 450 to 550 ° C. By appropriately adjusting the sintering temperature, it becomes easier to obtain a sintered part with high strength. Further, by adding a step of hot working after that, it is further densified, and the strength of the sintered body is further improved by the introduction of strain. Sintering by hot pressing or pulse current pressure sintering is also effective for densification and high strength.
The sintered parts are not particularly limited, and can be used in various applications. Sintered parts are, for example, parts for transportation equipment such as automobiles, railway vehicles, and aircrafts, parts for electronic equipment such as personal computers and mobile phones, and materials for living bodies such as artificial bones and implants because of characteristics of Mg alloy. It can be suitably used in applications such as
 以下、本発明を実施例によって具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to the following examples.
(実施例1~3、及び比較例1、2)
1.Mg合金粉末の製造
 溶解原料として表1に示すMg合金材料を使用し、以下に示す手順で空気アトマイズを実施した。
 まず、溶解原料として、表1に示すMg合金材料の市販のビレットまたはインゴットを適当な大きさに切出した。切出したビレットまたはインゴットを約80g秤量して黒鉛坩堝に入れ、加熱炉に設置し、アルゴンガス雰囲気中で650℃まで昇温して上記ビレット又はインゴットを溶解した。
(Examples 1 to 3 and Comparative Examples 1 and 2)
1. Production of Mg Alloy Powder The Mg alloy material shown in Table 1 was used as a raw material for dissolution, and air atomization was performed according to the procedure shown below.
First, commercially available billets or ingots of Mg alloy materials shown in Table 1 were cut into appropriate sizes as melting materials. About 80 g of the cut billet or ingot was weighed and placed in a graphite crucible, placed in a heating furnace, and heated to 650 ° C. in an argon gas atmosphere to melt the billet or ingot.
 次に、加熱炉から速やかに黒鉛坩堝を取り出し、内製の空気アトマイズ装置(図1を参照)のタンディッシュに溶湯を注湯した。タンディッシュの下方に設定した溶湯ノズルから落下する溶湯の流れに対し、横向きに設置した空気ノズルから空気を噴射し、溶湯を噴霧してアトマイズ(粉末化)した。溶湯ノズルの口径はφ10mmであり、空気の噴射圧力は10kgf/cmであり、空気ノズルの口径はφ1.8mmであった。 Next, the graphite crucible was promptly taken out from the heating furnace, and the molten metal was poured into a tundish of an internally-made air atomizing device (see FIG. 1). With respect to the flow of the molten metal falling from the molten metal nozzle set to the downward direction of the tundish, air was injected from the air nozzle installed sideways, the molten metal was sprayed and atomized (powdering). The bore diameter of the molten metal nozzle was φ10 mm, the injection pressure of air was 10 kgf / cm 2 , and the bore diameter of the air nozzle was φ1.8 mm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~3については、アトマイズ時に燃焼は確認されず、アトマイズ後に得られたMg合金粉末を回収することができた。但し、実施例3については、一部アドマイズが不十分となり溶湯受皿付近に飛散した溶湯は黒っぽく変色したが、遠くまで噴霧された微細な粉末は銀白色を示した。実施例1、2、3におけるMg合金粉末の収量は、順におよそ40g、40g、及び20gであった。 In Examples 1 to 3, combustion was not confirmed at the time of atomization, and the Mg alloy powder obtained after atomization could be recovered. However, in Example 3, a part of the admixing was insufficient and the molten metal scattered around the molten metal saucer turned blackish, but the fine powder sprayed far showed silver white. The yields of the Mg alloy powder in Examples 1, 2 and 3 were approximately 40 g, 40 g and 20 g in order.
 一方、比較例1については、黒鉛坩堝を加熱炉から取り出してタンディッシュへ注湯する時点で溶湯が激しく燃焼した。空気の噴射によってさらに燃焼が激しくなると判断されたため、実験を中断した。また、比較例2については、空気の噴射により噴霧された直後の溶滴は黒くなり、アトマイズ装置の壁に衝突又は粉末受皿に落下した後、激しい閃光と白煙を伴って燃焼した。アトマイズされずに溶湯受皿に落下した溶湯も同様に激しく燃焼した。
 以上のことから、溶解原料が、特定量のAlを含む場合、Mgの難燃性が向上し、空気アトマイズ法によるMg合金粉末の製造が可能となることがわかる。
On the other hand, in Comparative Example 1, the molten metal burned violently at the time of taking out the graphite crucible from the heating furnace and pouring it into a tundish. The experiment was stopped because it was judged that the combustion became more intense by the injection of air. Moreover, about the comparative example 2, the droplet immediately after being sprayed by injection of air turns black, and it collides with the wall of the atomizing apparatus, or after falling to a powder receiving tray, it burned with intense flash and white smoke. The molten metal that did not atomize and dropped to the molten metal pan also burned violently as well.
From the above, it can be seen that when the dissolution raw material contains a specific amount of Al, the flame retardancy of Mg is improved, and the production of Mg alloy powder by the air atomization method becomes possible.
2.Mg合金粉末の分析
(1)走査型電子顕微鏡(SEM)による粉末形状の観察
 実施例1および2で製造した空気アトマイズ法によるMg合金粉末について、SEMを用いて、それぞれの粉末形状を観察した。観察は、FEI社製のQuanta200 3D FEGを使用し、加速電圧15kVの条件下で電子線を照射して実施した。それぞれのSEM写真を、図2(実施例1)、および図3(実施例2)に示す。SEM写真から明らかなように、実施例1および2で製造したMg合金粉末のいずれも不規則形状を有することがわかった。
2. Analysis of Mg Alloy Powder (1) Observation of Powder Shape by Scanning Electron Microscope (SEM) The powder shape of each of Mg alloy powders by the air atomization method manufactured in Examples 1 and 2 was observed using SEM. The observation was performed by irradiating an electron beam under conditions of an acceleration voltage of 15 kV using Quanta 200 3D FEG manufactured by FEI. Each SEM photograph is shown in FIG. 2 (Example 1) and FIG. 3 (Example 2). As apparent from the SEM photographs, it was found that any of the Mg alloy powders produced in Examples 1 and 2 had irregular shapes.
(2)Mg合金粉末の断面の分析
 実施例1および2で製造したMg合金粉末の表面付近の状態(断面)を分析するために、各Mg合金粉末に対し収束イオンビーム(FIB)加工を行い、箔状の試験片(厚さ約100nm)をそれぞれ採取した。FIB加工は、日本電子株式会社製の複合ビーム加工観察装置「JIB4501」を使用し、イオンビーム:Gaイオン、加速電圧:30kV、保護膜:炭素の条件下で実施した。
(2) Analysis of Cross Section of Mg Alloy Powder In order to analyze the state (cross section) in the vicinity of the surface of the Mg alloy powder manufactured in Examples 1 and 2, focused ion beam (FIB) processing is performed on each Mg alloy powder. And foil-like test pieces (about 100 nm thick) were respectively collected. FIB processing was performed under conditions of ion beam: Ga ion, acceleration voltage: 30 kV, protective film: carbon, using a composite beam processing and observation apparatus “JIB4501” manufactured by Nippon Denshi Co., Ltd.
 上記のようにして採取した実施例1および2の各試験片について、日本電子株式会社製の走査型透過電子顕微鏡(STEM)「JEM‐2100F」を使用し、加速電圧:200kVの条件下で、それぞれの断面を観察した。また、STEM写真の測定領域に対応させて、日本電子株式会社製のエネルギー分散型X線検出器「JED-2300」を使用して元素マッピングの分析を実施し、元素の分布状態を観察した。 Using the scanning transmission electron microscope (STEM) “JEM-2100F” manufactured by JEOL Ltd. for each of the test pieces of Examples 1 and 2 collected as described above, under the conditions of an accelerating voltage of 200 kV, Each cross section was observed. Further, analysis of element mapping was performed using an energy dispersive X-ray detector “JED-2300” manufactured by Nippon Denshi Co., corresponding to the measurement region of the STEM photograph, and the distribution state of the elements was observed.
 実施例1で製造したMg合金粉末の表面付近の状態(断面)を示すSTEM写真を図4に示す。また、図4に示すSTEM写真に対応するSTEM/EDXによる元素マッピングの画像を図5A~5Cに示す。図5AはOの元素マッピング、図5BはCaの元素マッピング、図5CはAlの元素マッピングをそれぞれ示す画像である。
 実施例2で製造したMg合金粉末の表面付近の状態(断面)を示すSTEM写真を図6に示す。また、図6に示すSTEM写真に対応するSTEM/EDXによる元素マッピングの画像を図7Aおよび図7Bに示す。図7AはOの元素マッピング、図7BはAlの元素マッピングをそれぞれ示す画像である。
The STEM photograph which shows the state (cross section) of the surface vicinity of Mg alloy powder manufactured in Example 1 is shown in FIG. Further, images of elemental mapping by STEM / EDX corresponding to the STEM photograph shown in FIG. 4 are shown in FIGS. 5A to 5C. FIG. 5A is an image showing elemental mapping of O, FIG. 5B is an elemental mapping of Ca, and FIG. 5C is an image showing elemental mapping of Al.
The STEM photograph which shows the state (cross section) of the surface vicinity of Mg alloy powder manufactured in Example 2 is shown in FIG. Moreover, the image of the element mapping by STEM / EDX corresponding to the STEM photograph shown in FIG. 6 is shown to FIG. 7A and 7B. FIG. 7A is an image showing elemental mapping of O, and FIG. 7B is an image showing elemental mapping of Al.
 実施例1で製造したMg合金の試験片では、図4に示したSTEM写真からわかるように、試験片の表面側(画像の上方)に、黒い層とその下に薄い灰色の層が存在した。図5Aに示す元素マッピング(O)において、酸素(O)の濃化が上記両方の層にわたって確認できることから、厚さ130nm程度の酸化被膜であることがわかった。また、図5Bに示す元素マッピング(Ca)および図5Cに示す元素マッピング(Al)からわかるように、酸化被膜ではCaおよびAlの濃化も確認された。 In the test piece of the Mg alloy manufactured in Example 1, as can be seen from the STEM photograph shown in FIG. 4, a black layer and a thin gray layer under the black layer were present on the surface side (above the image) of the test piece. . In the element mapping (O) shown in FIG. 5A, the concentration of oxygen (O) can be confirmed across the above-mentioned layers, and thus it was found to be an oxide film having a thickness of about 130 nm. Further, as can be seen from the element mapping (Ca) shown in FIG. 5B and the element mapping (Al) shown in FIG. 5C, concentration of Ca and Al was also confirmed in the oxide film.
 実施例2で製造したMg合金の試験片では、図6に示したSTEM画像からわかるように、試験片の表面側(画像の上方)に、黒い層が存在した。図7Aに示す元素マッピング(O)において、酸素(O)の濃化が確認できることから、上記層は厚さ70nm程度の酸化被膜であることがわかった。なお、図7Bに示す元素マッピング(Al)からわかるように、実施例2で製造したMg合金の試験片では、実施例1で製造したMg合金の試験片で見られたような明瞭なAlの酸化被膜への濃化(図5Cを参照)は確認されなかった。 In the test piece of the Mg alloy manufactured in Example 2, as can be seen from the STEM image shown in FIG. 6, a black layer was present on the surface side of the test piece (above the image). From the element mapping (O) shown in FIG. 7A, the concentration of oxygen (O) can be confirmed, which indicates that the layer is an oxide film having a thickness of about 70 nm. As can be seen from the element mapping (Al) shown in FIG. 7B, in the test piece of the Mg alloy manufactured in Example 2, the clear Al as seen in the test piece of the Mg alloy manufactured in Example 1 No thickening to the oxide film (see FIG. 5C) was observed.
(3)Al分布のライン分析
 実施例1および実施例2のMg合金粉末について、Alの分布を比較するためにライン分析を実施した。実施例1および実施例2の各試験片のライン分析結果を図8及び図9に示す。粉末表面の酸化被膜は観察面および分析ラインに対して垂直な平面ではないため、最表面および母材界面の情報を拾うことによって酸化被膜の境界はシャープにはならない。ここでは、酸素(O)のピークの領域を酸化被膜の領域と定義した。なお、ライン分析は、図4、図6に示した実施例1および実施例2のSTEM写真に示した点線(図中、a)を中心とした幅200nmの範囲について、EDXによる元素マッピングデータを使用して、ライン分析結果に変換したものである。
(3) Line Analysis of Al Distribution For the Mg alloy powders of Example 1 and Example 2, line analysis was performed to compare the distribution of Al. The line analysis result of each test piece of Example 1 and Example 2 is shown in FIG. 8 and FIG. Since the oxide film on the powder surface is not a plane perpendicular to the observation surface and the analysis line, the boundary of the oxide film is not sharpened by picking up the information on the outermost surface and the matrix interface. Here, the area of the oxygen (O) peak is defined as the area of the oxide film. In line analysis, the elemental mapping data by EDX was used for the range of 200 nm in width centered on the dotted line (a in the figure) shown in the STEM photographs of Example 1 and Example 2 shown in FIG. 4 and FIG. It is used to convert line analysis results.
 試料の厚さや合金成分等の影響により、図8と図9との間で強度の絶対値の比較はできないが、いずれの場合も、表面から内部に向けてのAl強度(濃度)の上昇開始位置またはピーク位置は他元素に比べて、粉末の内側(内部)にずれていることがわかった。実施例1のMg合金粉末では、酸化被膜の領域にAlのピークがみられ(図8を参照)、Alが濃化していることがわかった。一方、実施例2のMg合金粉末は、酸化被膜の内部側の境界付近にブロードなAlのピークがみられ(図9を参照)、酸化被膜から内部の母材にわたってAlが濃化していることがわかった。 Although the absolute value of strength can not be compared between FIG. 8 and FIG. 9 due to the influence of the thickness of the sample, the alloy composition, etc., in either case, the rise of the Al strength (concentration) from the surface to the inside starts It was found that the position or peak position was shifted to the inner side (inside) of the powder compared to other elements. In the Mg alloy powder of Example 1, a peak of Al was observed in the region of the oxide film (see FIG. 8), and it was found that Al was enriched. On the other hand, in the Mg alloy powder of Example 2, a broad Al peak is observed in the vicinity of the inner side boundary of the oxide film (see FIG. 9), and Al is concentrated from the oxide film to the inner base material. I understand.
 以上の結果から、実施例1および2に代表されるように、Mg合金において特定量のAlが存在する場合、溶湯の難燃性向上に効果的であることがわかった。理論によって拘束するものではないが、Mg合金粉末が特定量のAlを含有することによって、溶解材料の溶湯が空気の噴射によって微細化、急冷されて溶滴になると同時に、溶滴表面にAlが濃化した薄く緻密な酸化被膜が形成され、その被膜が溶滴内部の液相と大気雰囲気中の酸素との接触を遮断することにより、アトマイズ時に溶湯が燃焼せずに粉末粒子を形成できたと考えられる。また、Alと同時にCaを含有する場合は、Alの酸化被膜への濃化が促進されるため、さらに酸化被膜は緻密化し、難燃性が向上すると考えられる。また、実施例2のMg合金粉末のライン分析の結果から、酸化被膜に濃化したAlは酸化被膜の緻密化に寄与し、酸化被膜より内部の母材に濃化したAlはMgの蒸気圧の降下等に寄与することによって、難燃性の向上に寄与していると推測される。 From the above results, as represented by Examples 1 and 2, it was found that the presence of a specific amount of Al in the Mg alloy is effective for improving the flame retardancy of the molten metal. Without being bound by theory, the Mg alloy powder contains a specific amount of Al, so that the molten metal of the melting material is refined by the injection of air, and is quenched to become droplets, and at the same time Al is deposited on the droplet surface. A thick, thin and dense oxide film was formed, and the film blocked the contact between the liquid phase inside the droplet and oxygen in the air atmosphere, so that the molten metal could form powder particles without burning at the time of atomization. Conceivable. In addition, when Ca is contained simultaneously with Al, the concentration of Al into the oxide film is promoted, so the oxide film is further densified and it is considered that the flame retardancy is improved. Also, from the results of line analysis of the Mg alloy powder of Example 2, Al concentrated in the oxide film contributes to the densification of the oxide film, and Al concentrated in the base material from the oxide film has a vapor pressure of Mg It is inferred that it contributes to the improvement of the flame retardance by contributing to the descent of the
 一方、実施例3のアトマイズ時の状況から、Al濃度の低下に伴い溶湯における難燃性の効果が小さくなっていることがわかる。したがって、空気アトマイズ法を適用するためには、Mg合金において特定量のAlが必要となることが明らかであり、そのため、Alを含まない比較例1の純Mgでは燃焼が発生してアトマイズが不可能になったと考えられる。 On the other hand, it is understood from the condition at the time of atomization in Example 3 that the effect of the flame retardancy in the molten metal decreases with the decrease in the Al concentration. Therefore, it is clear that in order to apply the air atomization method, a specific amount of Al is required in the Mg alloy, and therefore, in the pure Mg of Comparative Example 1 containing no Al, combustion occurs and the atomization is not possible. It is thought that it became possible.
 実施例1~3に代表されるように、本発明の実施形態によれば、不規則形状のMg合金粉末を得ることができ、また粉末表面の酸化被膜の厚さは70~130nm程度と薄いため、優れた焼結性を得ることが容易であると考えられる。そのため、一実施形態において、上記実施形態の製造方法によって製造されたMg合金粉末は、焼結部品を製造するための粉末焼結材として有効であると考えられる。 As typified by Examples 1 to 3, according to the embodiment of the present invention, irregular shaped Mg alloy powder can be obtained, and the thickness of the oxide film on the powder surface is as thin as about 70 to 130 nm. Therefore, it is considered easy to obtain excellent sinterability. Therefore, in one embodiment, the Mg alloy powder produced by the production method of the above embodiment is considered to be effective as a powder sintered material for producing a sintered part.
 1:溶湯、2:タンディッシュ、3:溶湯ノズル、4:空気ノズル、5:空気、6:溶滴、7:溶湯受皿、8:粉末受皿、9:アトマイズ装置 1: Molten metal 2: Tundish 3: Molten metal nozzle 4: Air nozzle 5: Air 6: Droplet 7: Molten metal pan, 8: Powder pan, 9: Atomizing device

Claims (8)

  1.  空気アトマイズ法により製造されたMg合金粉末であって、主成分としてMgを含有し、かつ第1の副成分としてMg合金粉末の全質量を基準として3.5~12質量%のAlを含有する、Mg合金粉末。 Mg alloy powder manufactured by air atomizing method, containing Mg as a main component and containing 3.5 to 12 mass% of Al as a first subcomponent based on the total mass of the Mg alloy powder , Mg alloy powder.
  2.  表面に酸化被膜を有し、前記酸化被膜が前記第1の副成分のAlを含有する、請求項1に記載のMg合金粉末。  The Mg alloy powder according to claim 1, having an oxide film on the surface, wherein the oxide film contains Al as the first subcomponent.
  3.  主成分としてMgを含有し、かつ第1の副成分としてMg合金粉末の全質量を基準として3.5~12質量%のAlを含有するMg合金粉末であって、
     表面に膜厚1μm未満の酸化被膜を有し、前記酸化被膜が前記第1の副成分のAlを含有する、Mg合金粉末。
    An Mg alloy powder containing Mg as a main component and containing 3.5 to 12% by mass of Al based on the total mass of the Mg alloy powder as a first accessory component,
    Mg alloy powder which has an oxide film with a film thickness of less than 1 micrometer on the surface, and the oxide film contains Al of the 1st subcomponent.
  4.  第2の副成分として、Zn、Ca、Mn、Si、Ni、Cu、Zr及びSnからなる群から選択される1種又は2種以上の元素をさらに含有する、請求項1~3のいずれか1項に記載のMg合金粉末。 The method according to any one of claims 1 to 3, further comprising one or more elements selected from the group consisting of Zn, Ca, Mn, Si, Ni, Cu, Zr and Sn as a second accessory component. Mg alloy powder according to item 1.
  5.  前記第2の副成分の含有量が、Mg合金粉末の全質量を基準として、0.01~12質量%である、請求項4に記載のMg合金粉末。 The Mg alloy powder according to claim 4, wherein the content of the second accessory component is 0.01 to 12% by mass based on the total mass of the Mg alloy powder.
  6.  不規則形状を有する、請求項1~5のいずれか1項に記載のMg合金粉末。 The Mg alloy powder according to any one of claims 1 to 5, which has an irregular shape.
  7.  Mg-Al系合金、Mg-Al-Zn系合金、Mg-Al-Ca系合金、又はMg-Al-Zn-Ca系合金の組成を有する、請求項1~3のいずれか1項に記載のMg合金粉末。 The composition according to any one of claims 1 to 3, which has a composition of Mg-Al alloy, Mg-Al-Zn alloy, Mg-Al-Ca alloy, or Mg-Al-Zn-Ca alloy. Mg alloy powder.
  8.  請求項1~7いずれか1項に記載のMg合金粉末を使用した焼結部品。 A sintered part using the Mg alloy powder according to any one of claims 1 to 7.
PCT/JP2017/045538 2017-12-19 2017-12-19 Magnesium alloy powder and sintered component thereof WO2019123537A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019559901A JPWO2019123537A1 (en) 2017-12-19 2017-12-19 Magnesium alloy powder and its sintered parts
PCT/JP2017/045538 WO2019123537A1 (en) 2017-12-19 2017-12-19 Magnesium alloy powder and sintered component thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/045538 WO2019123537A1 (en) 2017-12-19 2017-12-19 Magnesium alloy powder and sintered component thereof

Publications (1)

Publication Number Publication Date
WO2019123537A1 true WO2019123537A1 (en) 2019-06-27

Family

ID=66993293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045538 WO2019123537A1 (en) 2017-12-19 2017-12-19 Magnesium alloy powder and sintered component thereof

Country Status (2)

Country Link
JP (1) JPWO2019123537A1 (en)
WO (1) WO2019123537A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019123538A1 (en) * 2017-12-19 2020-12-17 昭和電工マテリアルズ株式会社 Magnesium alloy powder and its sintered parts
CN114074186A (en) * 2020-08-13 2022-02-22 北京理工大学 Preparation method of spherical atomized magnesium-silicon-based multi-element alloy powder and obtained alloy powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04231435A (en) * 1990-06-01 1992-08-20 Pechiney Electrometall Strontium-containing magnesium alloy with high mechanical strength and preparation thereof by means of rapid coagulation
JP2017061753A (en) * 2016-11-21 2017-03-30 セイコーエプソン株式会社 Manganese-based alloy powder and manganese-based alloy molding
JP2017155270A (en) * 2016-02-29 2017-09-07 昭和電工株式会社 Aluminum alloy atomized powder for extrusion material, manufacturing method of aluminum alloy atomized powder for extrusion material, manufacturing method of extrusion material, manufacturing method of forging article and forging article

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019123538A1 (en) * 2017-12-19 2020-12-17 昭和電工マテリアルズ株式会社 Magnesium alloy powder and its sintered parts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04231435A (en) * 1990-06-01 1992-08-20 Pechiney Electrometall Strontium-containing magnesium alloy with high mechanical strength and preparation thereof by means of rapid coagulation
JP2017155270A (en) * 2016-02-29 2017-09-07 昭和電工株式会社 Aluminum alloy atomized powder for extrusion material, manufacturing method of aluminum alloy atomized powder for extrusion material, manufacturing method of extrusion material, manufacturing method of forging article and forging article
JP2017061753A (en) * 2016-11-21 2017-03-30 セイコーエプソン株式会社 Manganese-based alloy powder and manganese-based alloy molding

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ESTRADA ET AL.: "SURFACE OXIDE FILM ANALYSIS OF RAPIDLY SOLIDIFIED ALUMINIUM ALLOYS BY AUGER ELECTRON SPECTROSCOPY", ADVANCES IN POWDER METALLURGY & PARTICULATE MATERIALS, vol. 2, 1994, pages 141 - 155, ISBN: 1-878954-46-6 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019123538A1 (en) * 2017-12-19 2020-12-17 昭和電工マテリアルズ株式会社 Magnesium alloy powder and its sintered parts
CN114074186A (en) * 2020-08-13 2022-02-22 北京理工大学 Preparation method of spherical atomized magnesium-silicon-based multi-element alloy powder and obtained alloy powder

Also Published As

Publication number Publication date
JPWO2019123537A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
US10710156B2 (en) Process for additive manufacturing of parts by melting or sintering particles of powder(s) using a high-energy beam with powders adapted to the targeted process/material pair
Umeda et al. Microstructural and mechanical properties of titanium particulate reinforced magnesium composite materials
KR101226174B1 (en) Process for manufacturing a nano aluminum/alumina metal matrix composite
CA3043233A1 (en) Aluminum alloy products having fine eutectic-type structures, and methods for making the same
CN112368407A (en) Method for manufacturing aluminum alloy parts
JP2020520413A (en) Method for manufacturing aluminum alloy parts
US20190194781A1 (en) Aluminum alloy powder for additive manufacturing, and method for manufacturing a piece by manufacturing from this powder
WO2019123538A1 (en) Magnesium alloy powder and sintered component thereof
JP6376209B2 (en) Magnesium-based alloy powder and magnesium-based alloy compact
JP6048217B2 (en) Magnesium-based alloy powder and magnesium-based alloy compact
CN111742072A (en) Use of aluminium-containing alloys for additive manufacturing
Božić et al. Synthesis and properties of a Cu–Ti–TiB2 composite hardened by multiple mechanisms
WO2019123537A1 (en) Magnesium alloy powder and sintered component thereof
US10058917B2 (en) Incorporation of nano-size particles into aluminum or other light metals by decoration of micron size particles
WO2017051541A1 (en) Method for manufacturing alloy steel powder for sintered member raw material
JP6867657B2 (en) Manufacturing method of magnesium alloy powder
CN112352061A (en) Method for manufacturing aluminum alloy parts
US11932921B2 (en) Alloy composition, method for producing alloy composition, and die
Maischner et al. Laser additive manufacturing of copper–chromium–niobium alloys using gas atomized powder
Bomfim et al. Characterization of AlCoCrFeNi high entropy alloy gas atomized powder
Moazami-Goudarzi et al. RETRACTED ARTICLE: Novel approach based on in situ powder metallurgy (IPM) method for embedding of SiC nanoparticles in aluminium powders
CN113412172A (en) Method for manufacturing aluminum alloy parts
Zheng Fundamental Study on Nanoparticle Incorporation, Dispersion, and Effects in Fe-based Nanocomposites
Kim et al. Microstructure and Sintering Behaviors of Al–Cr–xSi (at.%) System Alloys Processed by Spark Plasma Sintering
Kim et al. Microstructures and mechanical properties of CNT/AZ31 composites produced by mechanical alloying

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935076

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559901

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935076

Country of ref document: EP

Kind code of ref document: A1