JPH05235759A - Rubidium atom oscillator - Google Patents

Rubidium atom oscillator

Info

Publication number
JPH05235759A
JPH05235759A JP3604892A JP3604892A JPH05235759A JP H05235759 A JPH05235759 A JP H05235759A JP 3604892 A JP3604892 A JP 3604892A JP 3604892 A JP3604892 A JP 3604892A JP H05235759 A JPH05235759 A JP H05235759A
Authority
JP
Japan
Prior art keywords
rubidium
cavity
gas cell
spherical
rubidium gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3604892A
Other languages
Japanese (ja)
Inventor
Naoki Ishihara
直樹 石原
Hisami Yamahata
久美 山端
Hiroyuki Kudo
裕之 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
NEC Miyagi Ltd
Original Assignee
NEC Corp
NEC Miyagi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, NEC Miyagi Ltd filed Critical NEC Corp
Priority to JP3604892A priority Critical patent/JPH05235759A/en
Publication of JPH05235759A publication Critical patent/JPH05235759A/en
Pending legal-status Critical Current

Links

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

PURPOSE:To make a cavity of a microwave unit of the rubidium atom oscillator small, to reduce the cost and to make the Q stable. CONSTITUTION:A spherical or semi-spherical rubidium gas cell 7 having one projection 7a and a light receiving element 6 are packed in a cylindrical cavity section 3. A tuning projection rod 1 is fixed to a position at nearly 1/3 of the cavity length while avoiding the rubidium gas cell 7 and a tuning projection rod 5 is formed such that its insertion depth is adjustable. Thus, the resonance frequency of the cavity 3 is easily adjusted so as to be resonated with a micro wave inputted from a microwave entry section 4. As a result, the simple semi- spherical rubidium gas cell is realized. Furthermore, the projection 7a of the rubidium gas cell is cooled by an atmospheric air coming from a vent hole 8 of the cavity section to prevent diffusion of a rubidium metal and a high Q is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子発振器に関し、特
に、光ポンピング法を用いたルビジウム原子発振器に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an atomic oscillator, and more particularly to a rubidium atomic oscillator using an optical pumping method.

【0002】[0002]

【従来の技術】ルビジウム原子発振器においては、原子
共鳴を利用するためにキャビティが必要であり、この中
に挿入するルビジウムガスセルの形状誤差等により、そ
のキャビティは共振周波数の調整を可能にする必要があ
る。キャビティを小型化しようとする時に、キャビティ
内にルビジウムガスセルがいっぱい充填しているため
に、周波数調整にはルビジウムガスセルの中心軸に対し
て直角に1個の凹部をセル壁面に設定して該凹部にキャ
ビティの壁面を貫通する突出部を出没可に突出させる方
式がとられている。また、ルビジウムガスセル周辺のキ
ャビティが密封構造であるために、ルビジウムガスセル
の温度が均一に温まり、ルビジウム金属がルビジウムガ
スセル内に拡散しやすい。
2. Description of the Related Art A rubidium atomic oscillator requires a cavity for utilizing atomic resonance, and the cavity must be capable of adjusting the resonance frequency due to a shape error of a rubidium gas cell inserted therein. is there. When trying to miniaturize the cavity, the cavity is filled with the rubidium gas cell so that for the frequency adjustment, one recess is set on the cell wall surface at right angles to the center axis of the rubidium gas cell. In addition, a method is adopted in which a projecting portion that penetrates the wall surface of the cavity is projectably projectable. In addition, since the cavity around the rubidium gas cell has a sealed structure, the temperature of the rubidium gas cell is uniformly warmed, and rubidium metal easily diffuses into the rubidium gas cell.

【0003】[0003]

【発明が解決しようとする課題】上述した従来の技術で
は、ルビジウムガスセル円周面に凹部を設ける必要があ
るために、そのルビジウムガスセル製造が難しいので高
価なものとなる。また、構造的にガラスの内厚を薄くす
ることが困難なために、ルビジウムガスセルの光通過面
でのガラスによる光のロスが多く、信号強度が低下する
という欠点があった。
In the above-mentioned conventional technique, it is difficult to manufacture the rubidium gas cell because it is necessary to provide a concave portion on the circumferential surface of the rubidium gas cell, which is expensive. In addition, since it is structurally difficult to reduce the inner thickness of the glass, there is a large amount of light loss due to the glass on the light passage surface of the rubidium gas cell, and there is a drawback that the signal strength is reduced.

【0004】また、ルビジウム金属がルビジウムガスセ
ル内に拡散しやすいために、長期的に使用するとキャビ
ティ用のマイクロ波レベルが低下しやすいという欠点が
あった。
Further, since rubidium metal easily diffuses into the rubidium gas cell, there is a drawback that the microwave level for the cavity is easily lowered when it is used for a long period of time.

【0005】本発明は従来の上記実情に鑑みてなされた
ものであり、従って本発明の目的は、従来の技術に内在
する上記諸欠点を解消することを可能とした新規なルビ
ジウム原子発振器を提供することにある。
The present invention has been made in view of the above-mentioned conventional circumstances, and therefore an object of the present invention is to provide a novel rubidium atomic oscillator capable of solving the above-mentioned drawbacks inherent in the conventional technology. To do.

【0006】[0006]

【課題を解決するための手段】上記目的を達成する為
に、本発明に係るルビジウム原子発振器は、突起を有す
る球形または半球形のルビジウムガスセルをキャビティ
内に固定し、キャビティの壁面を貫通する第1または第
2の2個の突出部のうち1個を出没可とし、さらにキャ
ビティ底部に孔をあけてルビジウムガスセルの突起部を
外気にふれさせて冷却するように構成され、しかして、
キャビティ部を小形化すると共に、ルビジウムガスセル
内のルビジウム金属の拡散を防ぐことを特徴とする。
In order to achieve the above object, a rubidium atomic oscillator according to the present invention has a spherical or hemispherical rubidium gas cell having protrusions fixed in a cavity and penetrating a wall surface of the cavity. One of the two protrusions, the first or the second, can be projected and retracted, and a hole is further formed in the bottom of the cavity so that the protrusion of the rubidium gas cell is exposed to the outside air to be cooled.
It is characterized by miniaturizing the cavity and preventing the diffusion of rubidium metal in the rubidium gas cell.

【0007】[0007]

【実施例】次に、本発明をその好ましい一実施例につい
て図面を参照して具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described in detail with reference to the accompanying drawings with reference to the accompanying drawings.

【0008】図1(a)及び(b)は本発明の一実施例
を示すキャビティ部の正面図及び図1(a)のA−A′
線に沿って切断し矢印の方向に見た断面図である。
1 (a) and 1 (b) are front views of a cavity showing an embodiment of the present invention and AA 'in FIG. 1 (a).
It is sectional drawing cut | disconnected along the line and seen in the direction of the arrow.

【0009】図1(a)、(b)を参照するに、円筒形
をしたキャビティ3内には突起7aを有する球形または
半球形をしたルビジウムガスセル7、受光素子6が充填
されている。チューニング用突出棒1はルビジウムガス
セル7を避けてキャビティ長の1/3程度の箇所に固定
され、チューニング用突出棒5は挿入深さを変更可能さ
れている。このようにすることにより、マイクロ波導入
部4から入力されるマイクロ波に共振するようにキャビ
ティ3の共振周波数を容易に調整することができる。こ
れにより、ルビジウムガスセル7には充分な強度のマイ
クロ波が供給されるために、光入射孔2から入射した光
はルビジウムガスセル7に吸収された後に、受光素子6
に至り、原子発振器として動作するために必要な信号が
得られることになる。
Referring to FIGS. 1 (a) and 1 (b), a spherical cavity 3 having a projection 7a and a spherical or hemispherical rubidium gas cell 7 and a light receiving element 6 are filled in a cavity 3 having a cylindrical shape. The tuning protrusion rod 1 is fixed at a position of about 1/3 of the cavity length while avoiding the rubidium gas cell 7, and the tuning protrusion rod 5 can change the insertion depth. By doing so, the resonance frequency of the cavity 3 can be easily adjusted so as to resonate with the microwave input from the microwave introduction unit 4. As a result, microwaves of sufficient intensity are supplied to the rubidium gas cell 7, so that the light incident from the light entrance hole 2 is absorbed by the rubidium gas cell 7 and then the light receiving element 6
Then, the signal necessary for operating as an atomic oscillator can be obtained.

【0010】また、キャビティ底部の通気孔8から外気
が入り、ルビジウムガスセル7の突起部7aが冷却され
ることによりルビジウムガスセル内のルビジウム金属が
拡散するのを防ぎ、安定したQが得られる。
Further, outside air enters from the vent holes 8 at the bottom of the cavity, and the projections 7a of the rubidium gas cell 7 are cooled, so that the rubidium metal in the rubidium gas cell is prevented from diffusing and a stable Q is obtained.

【0011】以上説明したように、本発明は、ルビジウ
ムガスセルを突起を有する球形または半球形の構成とし
てキャビティ3に固定し、キャビティ3の壁面を貫通す
る突出部をルビジウムガスセル7の中心軸に対して対称
的に2個設けて一方を固定し、他方を出没可能な構造に
することにより調整が容易になり、更に突出棒が光入射
孔に突出することがなく、信号強度の低下を防ぐことが
できる。また、ルビジウムガスセル内のルビジウム金属
がキャビティ底部に設けられた通気孔8から入る外気に
よって冷却されることにより拡散するの防ぎ、高いQが
得られ、より小型で高性能、低価格のルビジウム原子発
振器を提供できる効果がある。
As described above, according to the present invention, the rubidium gas cell is fixed to the cavity 3 as a spherical or hemispherical structure having a projection, and the protrusion penetrating the wall surface of the cavity 3 is arranged with respect to the central axis of the rubidium gas cell 7. By arranging two symmetrically and fixing one of them and allowing the other to project and retract, the adjustment becomes easy, and further, the protruding rod does not project into the light incident hole, and the decrease in signal strength is prevented. You can Further, the rubidium metal in the rubidium gas cell is prevented from diffusing by being cooled by the outside air entering from the vent hole 8 provided at the bottom of the cavity, a high Q is obtained, and a smaller, high-performance, low-cost rubidium atomic oscillator is obtained. There is an effect that can be provided.

【0012】[0012]

【発明の効果】以上説明したように、本発明によれば、
ルビジウムガスセルを一つの突起を有する球形または半
球形の構成としてキャビティに固定し、キャビティの壁
面を貫通する突出部をルビジウムガスセルの中心軸に対
して対称的に2個設けて一方を固定し、他方を出没可能
な構造にすることにより調整が容易になり、更に突出棒
が光入射孔に突出することがなく信号強度の低下を防ぐ
ことができ、また、ルビジウム金属の拡散を防ぎ、高い
Qが得られるために、小型で高性能低価格のルビジウム
原子発振器を供給できるといういう効果が得られる。
As described above, according to the present invention,
The rubidium gas cell is fixed to the cavity as a spherical or hemispherical structure having one projection, and two protrusions penetrating the wall surface of the cavity are symmetrically provided with respect to the central axis of the rubidium gas cell, and one of them is fixed, and the other is fixed. By making the structure capable of projecting and retracting, the adjustment becomes easy, and further, the protruding rod does not project into the light incident hole, and it is possible to prevent a decrease in signal intensity. Also, it is possible to prevent the diffusion of rubidium metal and to obtain a high Q value. As a result, there is an effect that a small-sized, high-performance and low-cost rubidium atomic oscillator can be supplied.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の一実施例を示すキャビティ部
の正面図であり、(b)は(a)のA−A′線に沿って
切断し矢印の方向に見た断面図である。
FIG. 1A is a front view of a cavity portion showing an embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along the line AA ′ of FIG. Is.

【符号の説明】[Explanation of symbols]

1…チューニング用突出棒 2…光入射孔 3…キャビティ 4…マイクロ波導入部 5…チューニング用突出棒 6…光受光素子 7…ルビジウムガスセル 8…通気孔 1 ... Tuning protrusion rod 2 ... Light incident hole 3 ... Cavity 4 ... Microwave introducing part 5 ... Tuning protrusion rod 6 ... Light receiving element 7 ... Rubidium gas cell 8 ... Vent hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 工藤 裕之 宮城県黒川郡大和町吉岡字雷神2番地宮城 日本電気株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroyuki Kudo No.2 Raijin, Yoshioka, Yamato-cho, Kurokawa-gun, Miyagi Miyagi NEC Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ルビジウムランプ部、キャビティ部より
なる光マイクロ波共鳴部を含むルビジウム原子発振器、
特に前記キャビティ部に於いて、前記キャビティ内に設
けられ一つの突起を有する球形または半球形のルビジウ
ムガスセルと、前記キャビティの側面を貫通して固定さ
れている第1の突出部と、該第1の突出部と前記ルビジ
ウムガスセル中心軸に対して対称的に設定され、前記キ
ャビティの側面を貫通する出没可能な第2の突出部と、
前記キャビティの外壁に形成された通気孔とを有するこ
とを特徴とするルビジウム原子発振器。
1. A rubidium atomic oscillator including a rubidium lamp portion and an optical microwave resonance portion including a cavity portion,
In particular, in the cavity portion, a spherical or hemispherical rubidium gas cell provided in the cavity and having one protrusion, a first protruding portion fixed through the side surface of the cavity, and the first protrusion And a second protrusion that is symmetrically set with respect to the central axis of the rubidium gas cell and that can project and retract through the side surface of the cavity.
A rubidium atomic oscillator, comprising: a ventilation hole formed on an outer wall of the cavity.
【請求項2】 前記通気孔を前記ルビジウムガスセルの
前記突起の近傍に形成したことを更に特徴とする請求項
1に記載のルビジウム原子発振器。
2. The rubidium atomic oscillator according to claim 1, further comprising the vent hole formed in the vicinity of the protrusion of the rubidium gas cell.
JP3604892A 1992-02-24 1992-02-24 Rubidium atom oscillator Pending JPH05235759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3604892A JPH05235759A (en) 1992-02-24 1992-02-24 Rubidium atom oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3604892A JPH05235759A (en) 1992-02-24 1992-02-24 Rubidium atom oscillator

Publications (1)

Publication Number Publication Date
JPH05235759A true JPH05235759A (en) 1993-09-10

Family

ID=12458829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3604892A Pending JPH05235759A (en) 1992-02-24 1992-02-24 Rubidium atom oscillator

Country Status (1)

Country Link
JP (1) JPH05235759A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122795A (en) * 1993-10-25 1995-05-12 Nec Corp Rubidium atom oscillator
JP2008206001A (en) * 2007-02-22 2008-09-04 Epson Toyocom Corp Lamp exciter and atomic oscillator
CN111245434A (en) * 2020-01-21 2020-06-05 中国科学院武汉物理与数学研究所 Cavity bubble system for high-precision rubidium atomic frequency standard

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122795A (en) * 1993-10-25 1995-05-12 Nec Corp Rubidium atom oscillator
JP2008206001A (en) * 2007-02-22 2008-09-04 Epson Toyocom Corp Lamp exciter and atomic oscillator
CN111245434A (en) * 2020-01-21 2020-06-05 中国科学院武汉物理与数学研究所 Cavity bubble system for high-precision rubidium atomic frequency standard

Similar Documents

Publication Publication Date Title
JPH11512876A (en) Small atomic frequency standard
JPS59158102A (en) Cavity resonator
US4349798A (en) Compact microwave resonant cavity for use in atomic frequency standards
JPH0936634A (en) Feedome, primary radiator and antenna for microwave
JPH05235759A (en) Rubidium atom oscillator
JPH10284772A (en) Atomic oscillator
JPS5843938B2 (en) rubidium genshihatsushinki
JP2679099B2 (en) Rubidium atomic oscillator
JPH05190934A (en) Rubidium atom oscillator
JP2720772B2 (en) Rubidium atomic oscillator
JPH06152407A (en) Rubidium gas cell for rubidium atom oscillator
JPH02102585A (en) Rubidium atomic oscillator
JP2615816B2 (en) Rubidium atomic oscillator
JPH0131316B2 (en)
JP2874476B2 (en) Rubidium atomic oscillator
JPH04139776A (en) Atomic oscillator
JP2643808B2 (en) Rubidium atomic oscillator
JP2743906B2 (en) Rubidium atomic oscillator
JPH0397196U (en)
JPH05218862A (en) Rubidium atom oscillator
JPS5889886A (en) Laser oscillator
SU1571710A1 (en) Tuneable resonator
RU2080716C1 (en) Radio spectroscope with absorbing cell
JPS6358386B2 (en)
JPS5864809A (en) Parabola antenna