JPS5843938B2 - rubidium genshihatsushinki - Google Patents
rubidium genshihatsushinkiInfo
- Publication number
- JPS5843938B2 JPS5843938B2 JP9513975A JP9513975A JPS5843938B2 JP S5843938 B2 JPS5843938 B2 JP S5843938B2 JP 9513975 A JP9513975 A JP 9513975A JP 9513975 A JP9513975 A JP 9513975A JP S5843938 B2 JPS5843938 B2 JP S5843938B2
- Authority
- JP
- Japan
- Prior art keywords
- rubidium
- section
- temperature
- cell
- lamp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052701 rubidium Inorganic materials 0.000 title claims description 26
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 title claims description 26
- 239000000463 material Substances 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 3
- 238000001514 detection method Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/26—Automatic control of frequency or phase; Synchronisation using energy levels of molecules, atoms, or subatomic particles as a frequency reference
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
Description
【発明の詳細な説明】
本発明は光ポンピング法を用いたガスセル形ルビジウム
原子発振器に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas cell type rubidium atomic oscillator using an optical pumping method.
一般にガスセル形ルビジウム原子発振器内における光−
マイクロ波共鳴部は、その特性上ルビジウムランプ部と
ルビジウムセル部で各別に温度制御が行なわれている。Light in a gas cell type rubidium atomic oscillator -
Due to its characteristics, the temperature of the microwave resonance section is controlled separately for the rubidium lamp section and the rubidium cell section.
すなわちルビジウムランプは充分なスペクトル強度を必
要とするため約100℃程度の温度で動作させる必要が
ありルビジウムセルは吸収レベルを必要とするため約7
0’C程度で動作させる必要があるからである。In other words, rubidium lamps require sufficient spectral intensity and must be operated at a temperature of approximately 100°C, while rubidium cells require an absorption level of approximately 7°C.
This is because it is necessary to operate at about 0'C.
このため従来の発振器では2組の温度制御器が用いられ
ている。For this reason, two sets of temperature controllers are used in conventional oscillators.
またランプ部とセル部間相互の熱的な影響を除去するた
めにランプ部とセル部を熱的に遮断する必要がある。Further, it is necessary to thermally isolate the lamp part and the cell part in order to eliminate mutual thermal influence between the lamp part and the cell part.
しかしながら共鳴部を小形に構成しようとする場合、完
全な熱遮断構造を設けることは極めて困難である。However, when trying to make the resonance section compact, it is extremely difficult to provide a complete heat shielding structure.
そのためセル部lこはランプ部よりの熱が流入し、画部
分を希望する温度に保つことは容易ではなく、その動作
範囲が制限されてくる。Therefore, heat from the lamp section flows into the cell section, making it difficult to maintain the image section at a desired temperature, which limits its operating range.
本発明は前述した欠点を除去し、改良されたルビジウム
原子発振器を提供することにある。The object of the present invention is to eliminate the above-mentioned drawbacks and provide an improved rubidium atomic oscillator.
前記目的を達成するために本発明による発振器は光−マ
イクロ波共鳴部で従来使用されていた二つの温度制御器
を1つにし、ランプ部またはセル部の一方に加熱用ヒー
タを巻き、ランプ部とセル部間に温度差を持たせるため
に両端間に温度傾斜を生ぜしめる伝熱材で結合させ、他
方を伝熱材を介して間接的に加熱するように構威しであ
る。In order to achieve the above object, the oscillator according to the present invention combines two temperature controllers conventionally used in the optical-microwave resonant section into one, and winds a heater around one of the lamp section or the cell section. In order to create a temperature difference between the cell portion and the cell portion, they are connected by a heat transfer material that creates a temperature gradient between both ends, and the other end is heated indirectly via the heat transfer material.
このように構成すれば構造は簡略化され発振器の小形化
が容易になり、本発明の目的は完全に達成される。With this configuration, the structure is simplified and the oscillator can be easily miniaturized, so that the object of the present invention is completely achieved.
以下図面等を参照して本発明による原子発振器をさらに
詳しく説明する。The atomic oscillator according to the present invention will be explained in more detail below with reference to the drawings and the like.
第1図は良く知られでいるガスセル形ルビジウム原子発
振器に本発明による構造を応用した場合を示す概略図で
ある。FIG. 1 is a schematic diagram showing the case where the structure according to the present invention is applied to a well-known gas cell type rubidium atomic oscillator.
ルビジウム原子発振器の回路構成部13は従来の構成と
変るところはない。The circuit configuration section 13 of the rubidium atomic oscillator is the same as the conventional configuration.
12は光−マイクロ波共鳴部を示す。12 indicates a light-microwave resonance part.
ルビジウムランプ部1にはランピアが含まれており、こ
のランプ部1は、伝熱材料よりなる管体2を介してルビ
ジウムセル部14に連結されている。The rubidium lamp section 1 includes a lampia, and the lamp section 1 is connected to a rubidium cell section 14 via a tube body 2 made of a heat transfer material.
このルビジウムセル部14にはフィルタセル8、ガスセ
ル9を含む空洞共振器10、光検出器11が順次配置さ
れている。In this rubidium cell section 14, a filter cell 8, a cavity resonator 10 including a gas cell 9, and a photodetector 11 are arranged in this order.
ルビジウムランプ部1には加熱用ヒータ4が巻き回され
ている。A heater 4 is wound around the rubidium lamp section 1 .
このヒータ4には温度制御器6から加熱電力が供給され
るようになっておりこの供給量は管体2に取りつけられ
ている温度検出素子5の検知温度に従って規制されるよ
うにしである。Heating power is supplied to this heater 4 from a temperature controller 6, and the amount of this supply is regulated in accordance with the temperature detected by a temperature detection element 5 attached to the tube body 2.
第3図は本発明による発振器の光−マイクロ波共鳴部の
構成例を示す斜視図である。FIG. 3 is a perspective view showing an example of the configuration of the optical-microwave resonant section of the oscillator according to the present invention.
ルビジウムランプ部1およびセル部3の外壁は熱漬率の
高い材料例えば銅が用いられておりそれ等を熱的に結合
する伝熱材部分2は、前記した銅などよりは熱漬率の低
い黄銅、ガラス、セラミック、鉄などが用いられている
。The outer walls of the rubidium lamp part 1 and the cell part 3 are made of a material with a high heat soaking rate, such as copper, and the heat transfer material part 2 that thermally connects them has a lower heat soaking rate than the above-mentioned copper. Brass, glass, ceramic, iron, etc. are used.
なお図示の構成例では、さらに熱の輸送をすくなくする
ために、スリット2aを多数本軸方向に設けている。In the illustrated configuration example, a large number of slits 2a are provided in the axial direction in order to further reduce heat transport.
次に第2図を参照して前記光−マイクロ波共鳴部12の
各部の温度分布を説明する。Next, the temperature distribution in each part of the light-microwave resonant section 12 will be explained with reference to FIG.
図は横軸をセルの軸方向の距離にして各点の温度をプロ
ットしたものである。In the figure, the temperature at each point is plotted with the horizontal axis representing the distance in the axial direction of the cell.
ヒータ4が施されているランプ部1のB点、伝熱材より
なる管体2の検温素子5が施されているA点、ルビジウ
ムセル3のC点の各点の温度をす、a、cとして示しで
ある。The temperatures at point B of the lamp part 1 where the heater 4 is installed, point A of the tube body 2 made of a heat transfer material where the temperature measuring element 5 is installed, and point C of the rubidium cell 3 are shown. It is shown as c.
このようにB点の温度は温度傾斜をもってC点に伝達さ
れる。In this way, the temperature at point B is transmitted to point C with a temperature gradient.
なおこの温度分布パターンはA点の位置を左または右に
動かすことにより変化させることができる。Note that this temperature distribution pattern can be changed by moving the position of point A to the left or right.
温度傾斜は熱の輸送率を変化させて、変えることができ
る。Temperature gradients can be varied by changing the rate of heat transport.
例えば2の部分の大きさ、形状、厚さ材質等を変化させ
るとか、第3図に示したようにスリットを設けるなどに
より希望する傾きを得ることができる。For example, a desired inclination can be obtained by changing the size, shape, thickness, material, etc. of the portion 2, or by providing a slit as shown in FIG.
以上の説明から明らかなように本発明によれば光−マイ
クロ波共鳴部内のルビジウムランプ部とルビジウムセル
部を伝熱材にて結合させ適当な温度傾斜を持たせ、1つ
の温度制御器で温度制御するように構成しであるのでラ
ンプ部とセル部の熱遮断の問題はなくなった。As is clear from the above explanation, according to the present invention, the rubidium lamp part and the rubidium cell part in the light-microwave resonance part are combined with a heat transfer material to have an appropriate temperature gradient, and a single temperature controller is used to control the temperature. Since it is configured to be controlled, there is no longer a problem of heat isolation between the lamp section and the cell section.
そして共鳴部を小形に、経済的に構成することができる
。Furthermore, the resonance section can be made compact and economical.
以上詳しく説明した実施例につき本発明の範囲で種々の
変形を施すことができる。Various modifications can be made to the embodiments described in detail above within the scope of the present invention.
例えばヒータの配設位置は、必要に応じ入れ替えること
も可能であり、本発明の範囲は特許請求の範囲記載のす
べてにおよぶものである。For example, the arrangement position of the heater can be changed as necessary, and the scope of the present invention extends to all of the claims.
第1図は、本発明によるガスセル形ルビジウム原子発振
器の構成を示す概略図、第2図は光−マイク0口波共鳴
部内の温度分布を示すグラフ、第3図は光−マイクロ波
共鳴部の具体的構成例を示す斜視図である。
1・・・・・・ルビジウムランプ部、2・・・・・・伝
熱材(管体)、3・・・・・・磁気シールド、4・・・
・・・加熱用ヒータ、5・・・・・・温度検出用素子、
6・・・・・・温度制御器、7・・・・・・ルビジウム
ランプ、8・・・・・・フィルタセル、9・・・・・・
ガスセル、10・・・・・・空胴共振器、11・・・・
・・光検出器、11′・・・・・・検出出力端子、12
・・・・・・光−マイクロ波共鳴部、13・・・・・原
子発振器回路構成部、14・・・・・・ルビジウムセル
部。Fig. 1 is a schematic diagram showing the configuration of a gas cell type rubidium atomic oscillator according to the present invention, Fig. 2 is a graph showing the temperature distribution in the optical-microwave resonance part, and Fig. 3 is a graph showing the temperature distribution in the optical-microwave resonance part. It is a perspective view showing a concrete example of composition. 1... Rubidium lamp part, 2... Heat transfer material (tube body), 3... Magnetic shield, 4...
...Heating heater, 5...Temperature detection element,
6... Temperature controller, 7... Rubidium lamp, 8... Filter cell, 9...
Gas cell, 10...Cavity resonator, 11...
...Photodetector, 11'...Detection output terminal, 12
. . . Optical-microwave resonance section, 13 . . . Atomic oscillator circuit configuration section, 14 . . . Rubidium cell section.
Claims (1)
光−マイクロ波共鳴部を含みガスセル形ルビジウム電子
発振器においで、前記ランプ部とセル部間に温度差を与
えるように伝熱材を結合させ、ランプ部とセル部のいず
れか一方を一つの温度制御器によって制御される発熱体
で一定温度に加熱するとともに他方を前記温度と一定の
関連を有する温度に保つように構威したルビジウム原子
発振器。1. In a gas cell type rubidium electronic oscillator including a light-microwave resonance section consisting of a rubidium lamp section and a rubidium cell section, a heat transfer material is coupled to provide a temperature difference between the lamp section and the cell section, and the lamp section A rubidium atomic oscillator in which either one of the cell parts and the cell part is heated to a constant temperature by a heating element controlled by a temperature controller, and the other is maintained at a temperature having a certain relationship with the said temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9513975A JPS5843938B2 (en) | 1975-08-05 | 1975-08-05 | rubidium genshihatsushinki |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9513975A JPS5843938B2 (en) | 1975-08-05 | 1975-08-05 | rubidium genshihatsushinki |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5219096A JPS5219096A (en) | 1977-01-14 |
JPS5843938B2 true JPS5843938B2 (en) | 1983-09-30 |
Family
ID=14129467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9513975A Expired JPS5843938B2 (en) | 1975-08-05 | 1975-08-05 | rubidium genshihatsushinki |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5843938B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6228197U (en) * | 1985-08-05 | 1987-02-20 | ||
JPH02262098A (en) * | 1989-04-03 | 1990-10-24 | Japan Atom Energy Res Inst | Sealing device of testing tank |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5743484A (en) * | 1980-08-28 | 1982-03-11 | Fujitsu Ltd | Rubidium atomic oscillator |
JPS5879781A (en) * | 1981-11-06 | 1983-05-13 | Nec Corp | Rubidium atomic oscillator |
US4494085A (en) * | 1982-04-28 | 1985-01-15 | Eg&G, Inc. | Miniaturized atomic frequency standard having both filter cell and absorption cell in resonator cavity |
JPS592387A (en) * | 1982-06-28 | 1984-01-07 | Nec Corp | Rubidium atom oscillator |
US5517157A (en) * | 1993-04-27 | 1996-05-14 | Ball Corporation | Evanescent-field interrogator for atomic frequency standards |
US5656189A (en) * | 1994-12-02 | 1997-08-12 | Efratom Time And Frequency Products, Inc. | Heater controller for atomic frequency standards |
US5489821A (en) * | 1994-12-27 | 1996-02-06 | Ball Corporation | Lamp oscillator for atomic frequency standards |
US5670914A (en) * | 1995-09-25 | 1997-09-23 | Northrop Grumman Corporation | Miniature atomic frequency standard |
-
1975
- 1975-08-05 JP JP9513975A patent/JPS5843938B2/en not_active Expired
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6228197U (en) * | 1985-08-05 | 1987-02-20 | ||
JPH02262098A (en) * | 1989-04-03 | 1990-10-24 | Japan Atom Energy Res Inst | Sealing device of testing tank |
Also Published As
Publication number | Publication date |
---|---|
JPS5219096A (en) | 1977-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5843938B2 (en) | rubidium genshihatsushinki | |
US5670914A (en) | Miniature atomic frequency standard | |
RU93004712A (en) | FREQUENCY ATOMIC STANDARD | |
JPH0730420A (en) | Evanescent field interogator of atomic frequency standard | |
JPH057875B2 (en) | ||
JPH0469571B2 (en) | ||
JPS6343904B2 (en) | ||
JPS62106411A (en) | Manufacture of optical fiber having non-circle core transverse plane | |
DK0610061T3 (en) | Microwave heater | |
JPS5743484A (en) | Rubidium atomic oscillator | |
JPS62257776A (en) | Rubidium atomic oscillator | |
CN206209221U (en) | Atom optically-active rejection trap | |
JPS6364911B2 (en) | ||
RU2081506C1 (en) | Quartz generator and process of its manufacture | |
JPS5793702A (en) | Quartz oscillating circuit | |
SU881537A1 (en) | Calibrating radiation source | |
JPS5552951A (en) | Radiation tube for black body furnace | |
JPS6358386B2 (en) | ||
JPH0582090B2 (en) | ||
JPS6358385B2 (en) | ||
SU1501243A1 (en) | Device for thermostat control of quartz oscimllator | |
JPS6032125Y2 (en) | Single crystal manufacturing equipment | |
SU486849A1 (en) | Device for surface drying of the mold | |
JPS605083B2 (en) | Microwave cavity resonator | |
SU1689313A1 (en) | Induction furnace for melting optical fibres |