JPH04139776A - Atomic oscillator - Google Patents
Atomic oscillatorInfo
- Publication number
- JPH04139776A JPH04139776A JP26045190A JP26045190A JPH04139776A JP H04139776 A JPH04139776 A JP H04139776A JP 26045190 A JP26045190 A JP 26045190A JP 26045190 A JP26045190 A JP 26045190A JP H04139776 A JPH04139776 A JP H04139776A
- Authority
- JP
- Japan
- Prior art keywords
- gas cell
- cell
- rubidium gas
- rod
- atomic oscillator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052701 rubidium Inorganic materials 0.000 claims description 35
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 claims description 35
- 230000010355 oscillation Effects 0.000 abstract description 4
- 230000001105 regulatory effect Effects 0.000 abstract 4
- 230000001276 controlling effect Effects 0.000 abstract 1
- 230000002093 peripheral effect Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Landscapes
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、ルビジウムガスセルを備えた原子発振器に関
するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an atomic oscillator equipped with a rubidium gas cell.
一般に、高精度な発振源として光ボンピング法を利用し
た原子発振器が広く知られている。In general, an atomic oscillator using an optical bombing method is widely known as a high-precision oscillation source.
従来、この種の原子発振器には、原子共鳴を利用するた
めの空間をもつ容器と、この容器内に収納され周壁面に
開口する凹部を有するルビジウムガスセルと、このルビ
ジウムガスセルの凹部内に進退自在に設けられ前記容器
の周壁を挿通する調整棒とを備えたものが採用されてい
る。Conventionally, this type of atomic oscillator includes a container with a space for utilizing atomic resonance, a rubidium gas cell housed in the container and having a recess opening to the peripheral wall surface, and a rubidium gas cell that can move freely into and out of the recess. An adjustment rod provided at the container and inserted through the peripheral wall of the container is employed.
ところで、この種の原子発振器において、周波数を調整
するには、調整棒を進退することにより行う。By the way, in this type of atomic oscillator, the frequency is adjusted by moving the adjustment rod back and forth.
しかるに、従来の原子発振器においては、ルビジウムガ
スセルの周壁に凹部を設ける構造であるため、ルビジウ
ムガスセルの製造を困難なものにし、コストが嵩むとい
う問題があった。また、ルビジウムガスセルの周壁に凹
部を設けることは、それだけ肉厚が大きくなり、ルビジ
ウムガスセルを透過する光の損失が多(なり、信号発振
強度が低下するという問題もあった。However, the conventional atomic oscillator has a structure in which a recess is provided in the peripheral wall of the rubidium gas cell, which makes manufacturing the rubidium gas cell difficult and increases costs. Further, providing a concave portion in the peripheral wall of the rubidium gas cell increases the wall thickness, which causes a large loss of light passing through the rubidium gas cell, resulting in a problem that the signal oscillation intensity decreases.
本発明はこのような事情に鑑みてなされたもので、コス
トの低廉化を図ることができると共に、信号発信強度の
低下発生を防止することができる原子発振器を提供する
ものである。The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an atomic oscillator that can reduce the cost and prevent the signal transmission strength from decreasing.
本発明に係る原子発振器は、ルビジウムガスセルの前方
に各々が互いに対向する2つの調整棒を臨ませ、これら
両調整棒を、ルビジウムガスセルの中心軸と垂直な方向
に延在する固定棒と可動棒によって構成したものである
。The atomic oscillator according to the present invention has two adjustment rods facing each other in front of a rubidium gas cell, and these adjustment rods are divided into a fixed rod and a movable rod extending in a direction perpendicular to the central axis of the rubidium gas cell. It was constructed by
本発明においては、ルビジウムガスセルから離間する位
置で固定棒に対して可動棒を進退させることにより周波
数の調整を行うことができる。In the present invention, the frequency can be adjusted by moving the movable rod back and forth with respect to the fixed rod at a position away from the rubidium gas cell.
(実施例〕
以下、本発明の構成等を図に示す実施例によって詳細に
説明する。(Example) Hereinafter, the structure of the present invention will be explained in detail by referring to an example shown in the drawings.
第1図および第2図は本発明に係る原子発振器を示す断
面図と正面図である。同図において、符号1で示すもの
は前方に開口する光入射孔2を有する容器で、全体が円
筒体によって形成されている。3は後述するルビジウム
ガスセルを透過する光を受ける受光素子で、前記容器1
内に収納されている。4は略球形状のルビジウムガスセ
ルで、前記容器1内に収納され、かつ前記受光素子3の
前方に固定されている。5および6は各々が互いに対向
する(ルビジウムガスセル4の中心軸に関して点対称)
2つの調整棒で、前記ルビジウムガスセル4の前方に臨
み前記容器1の周壁に挿通されている。これら両調整捧
5,6は、前記光入射孔2からキャビテイ軸線長の略1
/3だけ後方に位置付けられており、前記ルビジウムガ
スセル4の中心軸と直角な方向に延在する各々固定棒と
可動棒によって構成されている。7は前記両調整棒56
のうち調整棒(可動棒)6の前方に臨むマイクロ波導入
部である。1 and 2 are a sectional view and a front view showing an atomic oscillator according to the present invention. In the figure, a container designated by reference numeral 1 has a light entrance hole 2 that opens at the front, and is entirely formed of a cylindrical body. 3 is a light-receiving element that receives light transmitted through a rubidium gas cell, which will be described later;
It is stored inside. Reference numeral 4 denotes a roughly spherical rubidium gas cell, which is housed in the container 1 and fixed in front of the light receiving element 3. 5 and 6 each face each other (point symmetry with respect to the central axis of the rubidium gas cell 4)
Two adjustment rods face the front of the rubidium gas cell 4 and are inserted through the peripheral wall of the container 1. These adjustment rods 5 and 6 are approximately 1 part of the cavity axis length from the light entrance hole 2.
It is located at the rear by 1/3, and is composed of a fixed rod and a movable rod, each extending in a direction perpendicular to the central axis of the rubidium gas cell 4. 7 is both adjustment rods 56
Of these, it is a microwave introduction part facing in front of the adjustment rod (movable rod) 6.
このように構成された原子発振器においては、ルビジウ
ムガスセル4を共鳴するに十分なマイクロ波が容器1内
に供給されるため、光入射孔2から入射した光がルビジ
ウムガスセル4に吸収された後、受光素子3に至ると、
発振源として機能し所望の信号を得ることができる。こ
のとき、調整捧5に対して調整棒6をルビジウムガスセ
ル4の中心軸と直角な方向に進退させることにより、マ
イクロ波導入部7から入力されたマイクロ波に共振する
ように周波数を調整する。In the atomic oscillator configured in this way, microwaves sufficient to cause the rubidium gas cell 4 to resonate are supplied into the container 1, so that after the light incident from the light entrance hole 2 is absorbed by the rubidium gas cell 4, When reaching the light receiving element 3,
It functions as an oscillation source and can obtain a desired signal. At this time, by moving the adjustment rod 6 forward and backward relative to the adjustment rod 5 in a direction perpendicular to the central axis of the rubidium gas cell 4, the frequency is adjusted so as to resonate with the microwave input from the microwave introducing section 7.
したがって、本実施例における周波数調整は、調整捧6
の進退動作によってルビジウムガスセル4から離間する
位置で行うことができるから、従来のようにルビジウム
ガスセルの周壁に凹部を設ける必要がなくなり、ルビジ
ウムガスセルの製造を簡単に行うことができる。Therefore, the frequency adjustment in this embodiment is
Since it can be carried out at a position away from the rubidium gas cell 4 by the forward and backward movement of , there is no need to provide a recess in the peripheral wall of the rubidium gas cell as in the conventional case, and the rubidium gas cell can be manufactured easily.
また、本実施例において、ルビジウムガスセルの周壁に
凹部が不要であることは、それだけ肉厚を小さい寸法に
設定することができるから、ルビジウムガスセルを透過
する光の損失を低減することができる。Furthermore, in this embodiment, since no concave portion is required in the peripheral wall of the rubidium gas cell, the thickness can be set to a correspondingly small size, and therefore the loss of light passing through the rubidium gas cell can be reduced.
なお、本実施例においては、ルビジウムガスセル4が略
球形である場合を示したが、本発明はこれに限定される
ものではなく、例えば半球形状であってもよく、その形
状は適宜変更することができる。In addition, in this example, the case where the rubidium gas cell 4 is approximately spherical is shown, but the present invention is not limited to this. For example, it may have a hemispherical shape, and the shape may be changed as appropriate. I can do it.
以上説明したように本発明によれば、ルビジウムガスセ
ルの前方に各々が互いに対向する2つの調整棒を臨ませ
、これら両澗整棒を、ルビジウムガスセルの中心軸と垂
直な方向に延在する固定棒と可動棒によって構成したの
で、ルビジウムガスセルから離間する位置で固定棒に対
して可動棒を進退させることにより周波数の調整を行う
ことができる。したがって、従来のようにルビジウムガ
スセルの周壁に凹部を設ける必要がなくなるから、ルビ
ジウムガスセルの製造を簡単に行うことができ、コスト
の低廉化を図ることができる。また、ルビジウムガスセ
ルの周壁に凹部が不要であることは、それだけ肉厚を小
さい寸法に設定することができるから、ルビジウムガス
セルを透過する光の損失を低減することができ、信号発
信強度の低下発生を防止することもできる。As explained above, according to the present invention, two adjustment rods facing each other are provided in front of the rubidium gas cell, and these adjustment rods are fixed to the rods extending in a direction perpendicular to the central axis of the rubidium gas cell. Since it is composed of a rod and a movable rod, the frequency can be adjusted by moving the movable rod back and forth with respect to the fixed rod at a position away from the rubidium gas cell. Therefore, since there is no need to provide a concave portion in the peripheral wall of the rubidium gas cell as in the conventional case, the rubidium gas cell can be manufactured easily and costs can be reduced. In addition, the fact that there is no need for a recess in the peripheral wall of the rubidium gas cell means that the wall thickness can be set to a smaller size, which reduces the loss of light passing through the rubidium gas cell, causing a decrease in signal transmission strength. It can also be prevented.
第1図および第2図は本発明に係る原子発振器を示す断
面図と正面図である。
1・・・・容器、2・・・・光導入孔、3・・・・受光
素子、4・・・・ルビジウムガスセル、・調整棒、
・マイクロ波導
入部。1 and 2 are a sectional view and a front view showing an atomic oscillator according to the present invention. 1... Container, 2... Light introduction hole, 3... Light receiving element, 4... Rubidium gas cell, Adjustment rod, Microwave introduction part.
Claims (1)
蔵する容器を備えた原子発振器において、前記ルビジウ
ンムガスセルの前方に各々が互いに対向する2つの調整
棒を臨ませ、これら両調整棒を、前記ルビジウムガスセ
ルの中心軸と垂直な方向に延在する固定棒と可動棒によ
って構成したことを特徴とする原子発振器。In an atomic oscillator equipped with a container having a front-opening light entrance hole and containing a rubidium gas cell, two adjustment rods facing each other are provided in front of the rubidium gas cell, and these adjustment rods are connected to An atomic oscillator comprising a fixed rod and a movable rod extending in a direction perpendicular to the central axis of the rubidium gas cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26045190A JPH04139776A (en) | 1990-10-01 | 1990-10-01 | Atomic oscillator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26045190A JPH04139776A (en) | 1990-10-01 | 1990-10-01 | Atomic oscillator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04139776A true JPH04139776A (en) | 1992-05-13 |
Family
ID=17348126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26045190A Pending JPH04139776A (en) | 1990-10-01 | 1990-10-01 | Atomic oscillator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04139776A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59124783A (en) * | 1983-01-04 | 1984-07-18 | Nec Corp | Rubidium atom oscillator |
JPH01257381A (en) * | 1988-04-07 | 1989-10-13 | Nec Corp | Rubidium atom oscillator |
JPH02102585A (en) * | 1988-10-12 | 1990-04-16 | Nec Corp | Rubidium atomic oscillator |
-
1990
- 1990-10-01 JP JP26045190A patent/JPH04139776A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59124783A (en) * | 1983-01-04 | 1984-07-18 | Nec Corp | Rubidium atom oscillator |
JPH01257381A (en) * | 1988-04-07 | 1989-10-13 | Nec Corp | Rubidium atom oscillator |
JPH02102585A (en) * | 1988-10-12 | 1990-04-16 | Nec Corp | Rubidium atomic oscillator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9742069B1 (en) | Integrated single-piece antenna feed | |
JP6125645B2 (en) | Alkali metal vapor cell, especially for atomic clocks, and manufacturing method | |
US6922497B1 (en) | Whispering gallery mode resonators based on radiation-sensitive materials | |
EP1828717B1 (en) | Nmr gyroscope | |
GB2127211A (en) | Ring laser gyroscope | |
JPH04139776A (en) | Atomic oscillator | |
CN110174833B (en) | Pyramid-based magneto-optical trap falling type cold atomic clock device and working method thereof | |
CN1379924A (en) | Laser with resonance cavity including circular cone prism being top in shape | |
CA2206966A1 (en) | Circular waveguide cavity and filter having an iris with an eccentric circular aperture and a method of construction thereof | |
JPH02102585A (en) | Rubidium atomic oscillator | |
JP2615816B2 (en) | Rubidium atomic oscillator | |
JP2679099B2 (en) | Rubidium atomic oscillator | |
JPS5646585A (en) | Gas laser device | |
US5144194A (en) | Quasi-optical gyrotron having angularly spaced quasi-optical resonators lying in a common plane | |
JPH05190934A (en) | Rubidium atom oscillator | |
JPS59108381A (en) | Rubidium atom oscillator | |
JPH0697538A (en) | Rubidium atomic oscillator | |
JPH06152407A (en) | Rubidium gas cell for rubidium atom oscillator | |
JPS5675602A (en) | Photoelectric power detector for optical fiber | |
JP3356870B2 (en) | Resonator for atomic oscillator | |
CN2276675Y (en) | Single-mode microwave exciting gas leser with cylindrical cavity resonator | |
EP0379318A1 (en) | Modular rlg aperturing | |
CN117558486A (en) | Hollow optical fiber cold atom guiding device based on pyramid magneto-optical trap and working method | |
JPS64895A (en) | Directional microphone | |
CN2237294Y (en) | Super high light beam mass laser |