JPS59124783A - Rubidium atom oscillator - Google Patents

Rubidium atom oscillator

Info

Publication number
JPS59124783A
JPS59124783A JP683A JP683A JPS59124783A JP S59124783 A JPS59124783 A JP S59124783A JP 683 A JP683 A JP 683A JP 683 A JP683 A JP 683A JP S59124783 A JPS59124783 A JP S59124783A
Authority
JP
Japan
Prior art keywords
cavity resonator
rubidium
lamp
cell
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP683A
Other languages
Japanese (ja)
Other versions
JPH0454996B2 (en
Inventor
Hitoshi Oyamada
小山田 仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP683A priority Critical patent/JPS59124783A/en
Publication of JPS59124783A publication Critical patent/JPS59124783A/en
Publication of JPH0454996B2 publication Critical patent/JPH0454996B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/26Automatic control of frequency or phase; Synchronisation using energy levels of molecules, atoms, or subatomic particles as a frequency reference

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

PURPOSE:To make the size of cavity resonator smaller than a TE011 circular cavity resonator having a higher mode of resonance, and to miniaturize the titled oscillator and reduce power consumption as a whole by constituting the cavity resonator by a TE101 square cavity resonator having a lower mode of resonance. CONSTITUTION:The cavity resonator 7 is constituted by the TE101 square cavity resonator having the lower mode of resonance, and the size of the resonator 7 is approximately one eighth of the TE011 circular cavity resonator. A large number of oval light incident holes 12 are bored to the surface irradiated by a rubidium lamp of the cavity resonator 7 so that the direction parallel with pipe- wall currents is used as a major axis, and a rubidium cell 6 is fixed to the recessed section 19 of a lower surface. A discoid screw 11 is inserted to the pipe wall of an upper surface, and resonance frequency can be adjusted minutely. A heater 8 for heating is wound around the cavity resonator 7, the temperature of the rubidium cell 6 is kept at a fixed temperature by a temperature controller 9, and specific wavelength beams are absorbed.

Description

【発明の詳細な説明】 本発明は、光ボンピングを用いたガスセル形ルビジウム
原子発揖器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas cell type rubidium atomic oscillator using optical bombing.

ガスセル形ルビジウム原子発振器は、ルビジウムランプ
によってルビジウムセルを照射し、該ルビジウムセルを
通過した光を太陽電池で電気信号に変換して発振回路構
成部に入力させ、該発振回路構成部の出力によって励振
される空胴共振器内に前記ルビジウムセルを収容して構
成される。従来のこの種発振器は、上記空胴共振器とし
てTEol 。
A gas cell type rubidium atomic oscillator irradiates a rubidium cell with a rubidium lamp, converts the light passing through the rubidium cell into an electrical signal using a solar cell, inputs it to an oscillation circuit component, and excites it by the output of the oscillation circuit component. The rubidium cell is housed in a cavity resonator. A conventional oscillator of this type uses a TEol as the cavity resonator.

円形空胴共振器を使用している。TPO11円形空胴共
振器は、該共振器内に2つの分布を持つ電磁界を発生さ
せ、内包したルビジウムセルにルビジウムランプより発
せられた光によって原子共鳴作用を起とす。上述の空胴
共振器は5例えば直径65型、長さ40瓢程度であり、
寸法が犬である。このため、発振器の小形化が困難であ
り、さらに熱容量が大きいため消費電力も犬となる。ま
た、上配弁振器は、共振器の円形中心部に光を入射させ
るための比較的大きな孔を穿設する必要がある。
It uses a circular cavity resonator. The TPO11 circular cavity resonator generates an electromagnetic field with two distributions within the resonator, and causes an atomic resonance effect in the rubidium cell contained therein by light emitted from a rubidium lamp. The above-mentioned cavity resonator has a diameter of, for example, 65 mm and a length of about 40 mm,
The dimensions are dog. Therefore, it is difficult to miniaturize the oscillator, and furthermore, the heat capacity is large, so the power consumption is also high. Further, in the upper valve resonator, it is necessary to drill a relatively large hole to allow light to enter the circular center of the resonator.

このため共振器の共振特性が劣化する。This deteriorates the resonance characteristics of the resonator.

本発明の目的は、上述の従来の欠点を解決し、小形、低
消費電力のルビジウム原子発振器を桿供することにある
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional drawbacks and to provide a rubidium atomic oscillator that is small in size and has low power consumption.

本発明の発振器は、ルビジウムランプ部と、該ルビジウ
ムランプ部により照射されるルビジウムセル部と、該ル
ビジウムセル部を内包する空胴共振器と、前記ルビジウ
ムセル部を通過した光に対応l−だ電気信号を入力し出
力によって前記空胴共振器を励振する発振回路構成部と
を備えたルビジウム原子発振器において、前記空胴共振
器をTE1o1方形空胴共振器で構成したことを特徴と
する。
The oscillator of the present invention includes a rubidium lamp section, a rubidium cell section irradiated by the rubidium lamp section, a cavity resonator containing the rubidium cell section, and a l-type corresponding to the light passing through the rubidium cell section. In the rubidium atomic oscillator, the rubidium atomic oscillator is provided with an oscillation circuit component that inputs an electric signal and excites the cavity resonator with an output, characterized in that the cavity resonator is constituted by a TE1o1 rectangular cavity resonator.

なお、上記空胴共振器の光入射面に、管壁電流に平行な
方向の複数スリットまたは複数のだ円形の孔を配列して
穿設すれば、管壁全面から光を入射させることができ、
かつ共振特性の劣化は小さい。さらに、ルビジウムラン
プ部に、円筒形のルビジウムランプと、開口部が長方形
で断面が凹形の反射鏡を備えることにより、ルビジウム
ランプの発光を効率よくルビジウムセルに照射させろこ
とが可能であり、より一層の小形化、小消費電力化が達
成される。
Note that if a plurality of slits or a plurality of oval holes arranged in a direction parallel to the tube wall current are formed on the light entrance surface of the cavity resonator, light can be made to enter from the entire surface of the tube wall. ,
Moreover, the deterioration of resonance characteristics is small. Furthermore, by equipping the rubidium lamp section with a cylindrical rubidium lamp and a reflecting mirror with a rectangular opening and a concave cross section, it is possible to efficiently irradiate the rubidium cell with the light emitted from the rubidium lamp. Further miniaturization and lower power consumption are achieved.

次に、本発明について図面を参照して詳細に説明する。Next, the present invention will be explained in detail with reference to the drawings.

第1図は、本発明の一実施例を示す概念図である。すな
わち、ルビジウムランプ1は、円筒形であり軸に直角な
方向に一様に照射する。該照射光の一部は、ランプハウ
ス2の内側に設けられた開口面が長方形で断面が凹形の
反射鏡によって反射され、はぼ平行光となって空胴共振
器7の管壁を照射する。ランプ部・ウス2にはまた、加
熱用トランジスタ3が固着されており、温度制御器5の
制御によって、一定温度例えば95℃に保持されている
。ルビジウムランプ1は、ランプ励娠器4によって励振
されて一定波長の光を発光する。
FIG. 1 is a conceptual diagram showing one embodiment of the present invention. That is, the rubidium lamp 1 has a cylindrical shape and emits light uniformly in a direction perpendicular to its axis. A part of the irradiated light is reflected by a reflecting mirror with a rectangular opening and a concave cross section provided inside the lamp house 2, and becomes almost parallel light, which irradiates the tube wall of the cavity resonator 7. do. A heating transistor 3 is also fixed to the lamp portion/mouth 2, and is maintained at a constant temperature, for example, 95° C., under the control of a temperature controller 5. The rubidium lamp 1 is excited by a lamp exciter 4 and emits light of a certain wavelength.

空胴共振器7は、低次共振モードのTFr 1o1方形
空胴共振器で構成し、その寸法は、例えば約15X38
X27m程度であり、従来のTE611円形空胴共振器
に比して約1/8である。空胴共振器7のルビジウムラ
ンプによって照射される面には、管壁電流に平行な方向
を長軸とするだ円孔が多数配列して穿設されている。こ
れは、光を通過させろ光入射孔であり、はぼ管壁全面に
穿設されている。
The cavity resonator 7 is composed of a TFr 1o1 rectangular cavity resonator in a low-order resonance mode, and its dimensions are, for example, approximately 15×38.
This is approximately 1/8 of the conventional TE611 circular cavity resonator. On the surface of the cavity resonator 7 that is irradiated by the rubidium lamp, a large number of elliptical holes whose long axes are parallel to the tube wall current are arranged and bored. This is a light entrance hole through which light passes, and is bored throughout the wall of the tube.

上記光入射孔は、電流に平行なスリットを多数穿設して
もよい。空胴共振器7の図中下面には凹部が形成されて
いて、該凹部にルビジウムセル6が固着される。また、
図中上面の管壁には円板形ねじ11が挿通され、共振周
波数の微調整が可能である。さらに、空胴共振器7の周
囲には加熱用ヒータ8が巻回され、温度制御器9によっ
て、一定温度例えば70℃に保持される。これによって
、ルビジウムセル6の温度が上記一定温度に保持され、
特定の波長光を吸収する。ルビジウムセルを通過した光
は、太陽電池10によって電気信号に変換されて発振回
路構成部14に供給される。塁上で光−マイクロ波共鳴
部13を構成している。
The light entrance hole may have a large number of slits parallel to the current. A recess is formed in the lower surface of the cavity resonator 7 in the figure, and the rubidium cell 6 is fixed to the recess. Also,
A disk-shaped screw 11 is inserted through the tube wall on the upper side in the figure, allowing fine adjustment of the resonance frequency. Further, a heater 8 is wound around the cavity resonator 7, and is maintained at a constant temperature, for example, 70° C., by a temperature controller 9. As a result, the temperature of the rubidium cell 6 is maintained at the above-mentioned constant temperature,
Absorbs specific wavelengths of light. The light that has passed through the rubidium cell is converted into an electrical signal by the solar cell 10 and supplied to the oscillation circuit component 14 . A light-microwave resonance section 13 is formed on the base.

一方、発振回路構成部14は、従来と同様な構成であり
、水晶発振器、低周波発振器2周波数逓倍(5) 器1周波数合成器等を内蔵し、発振出力によって前記空
胴共振器7を励振する。
On the other hand, the oscillation circuit configuration section 14 has the same configuration as the conventional one, and includes a crystal oscillator, a low frequency oscillator, two frequency multipliers (5), one frequency synthesizer, etc., and excites the cavity resonator 7 with the oscillation output. do.

前記空胴共振器7内にルビジウムセル6を固定周波数調
整用円板15は、周波数−1整と、ルビジウムセルの固
定の役割を持つ。勿論円板形ねじ11によっても周波数
調整可能である。
Fixing the rubidium cell 6 in the cavity resonator 7 The frequency adjustment disk 15 has the role of adjusting the frequency by -1 and fixing the rubidium cell. Of course, the frequency can also be adjusted using the disc-shaped screw 11.

第3図は、本実施例のルビジウノ・ランプ部を示す斜視
図であり、ルビジウムランプ1は円筒形であり、励振コ
イル18が巻回され、ランプ固定板1.6FJ:持され
て、ランプハウス2に収容される。
FIG. 3 is a perspective view showing the rubidium lamp section of this embodiment. It is accommodated in 2.

ルビジウムランプ1の後方には、断面が凹形の反射鏡1
7が配設されている。この反射−17の開口部は長方形
となることは勿論である。ルビジウムランプ10発光は
、この長方形の開口部からほぼ平行な光束として投射さ
れる。
Behind the rubidium lamp 1 is a reflector 1 with a concave cross section.
7 are arranged. Of course, the opening of this reflection 17 is rectangular. The light emitted from the rubidium lamp 10 is projected as a substantially parallel light beam from this rectangular opening.

第4図は、本実施例の空胴共振器7を示す斜視図であり
、多数のだ円形の光入射孔12が管壁電流に平行な方向
が長軸になるように穿設されてい(6) る。該光入射孔による管壁電流に対する抵抗増加は小で
あり、共振特性の劣化は小である。
FIG. 4 is a perspective view showing the cavity resonator 7 of this embodiment, in which a large number of oval light entrance holes 12 are bored so that the long axis is parallel to the tube wall current ( 6) Ru. The increase in resistance to tube wall current due to the light entrance hole is small, and the deterioration of resonance characteristics is small.

第5図は、本実施例の空胴共振器の一部はさい斜視図で
あり、空胴共振器内にはセル固定用凹部19が設けられ
、ルビジウムセル6はこの凹部19に固定されている。
FIG. 5 is a perspective view of a part of the cavity resonator of this embodiment. A cell fixing recess 19 is provided in the cavity resonator, and the rubidium cell 6 is fixed in this recess 19. There is.

第6図は、ルビジウムセル6の他の固定方法を示す一部
はさい斜視図であり、周波数調整用円板15に直接固定
されている。
FIG. 6 is a partial perspective view showing another method of fixing the rubidium cell 6, in which the rubidium cell 6 is directly fixed to the frequency adjustment disk 15.

以上のように、本発明においては、ルビジウム原子発振
器の空胴共振器を低次共振モードのTE161方形空胴
共損器によって構成したから、空胴共搗器自体の寸法が
従来の高次共振モードを持つTEo11円形空胴共振器
に比して約1/8に減少し、全体として小形化、低消費
電力化が達成される効果がある。なお、上記空胴共振器
のルビジウムランプによって照射される面に、管壁電流
に平行な方向の複数のスリットまたは多数のだ円孔を穿
設して光入射孔を形成すれば、共振特性の劣化は小であ
る。
As described above, in the present invention, since the cavity resonator of the rubidium atomic oscillator is constituted by the TE161 rectangular cavity resonator of the low-order resonance mode, the dimensions of the cavity resonator itself are smaller than those of the conventional high-order resonance mode. This is reduced to about 1/8 compared to the TEo11 circular cavity resonator having a mode, and has the effect of achieving overall miniaturization and lower power consumption. Note that if a light entrance hole is formed by drilling a plurality of slits or a number of elliptical holes in the direction parallel to the tube wall current on the surface of the cavity resonator that is irradiated by the rubidium lamp, the resonance characteristics can be improved. Deterioration is small.

さらに、ルビジウムランプを円筒形状とし、開口面が長
方形の凹面鏡によって上記ランプから後方に発射される
光を反射させるように構成すれば、ランプの発光が効率
よく使用されるから、より一層の低電力化が達成可能で
ある。
Furthermore, if the rubidium lamp is made into a cylindrical shape and the light emitted backward from the lamp is reflected by a concave mirror with a rectangular aperture, the light emitted from the lamp is used efficiently, resulting in even lower power consumption. is achievable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概念図、第2図はルビ
ジウムセルの他の固定方法を示す断面図、第3図は上記
実施例のルビジウムランプ部を示す斜視図、第4図は、
上記実施例の空胴共振器を示す斜視図、第5図は上記実
施例のルビジウムセル固定方法を示す一部はさい斜視図
、第6図はルビジウムセルの他の固定方法を示す一部は
さい斜視図である。 図において、1・・・ルビジウムランプ、2・・・ラン
プハウス、3・・・加熱用トランジスタ、4・・・ラン
プ励振器、5,9・・・温度制御器、6・・・ルビジウ
ムセル、7・・・空胴共振器、8・・・加熱用ヒータ、
10・・・太陽電池、11・・・円板形ねじ、12・・
・光入射孔、13・・・光マイクロ波共鳴部、14・・
・発振回路構成部、15・・・周波数調整用円板、16
・・・ランプ固定板、17・・・反射値、18・・・励
振コイル、19・・・セル固定用凹部。 代理人 弁理士  住 1)俊 宗 (9) 公、′j2日 第3囚 ふ)4題 特開口a59−124783  (4)多;45図 第61
FIG. 1 is a conceptual diagram showing one embodiment of the present invention, FIG. 2 is a sectional view showing another method of fixing a rubidium cell, FIG. 3 is a perspective view showing the rubidium lamp section of the above embodiment, and FIG. 4 teeth,
FIG. 5 is a partially perspective view showing a method of fixing the rubidium cell of the above embodiment; FIG. 6 is a partially perspective view showing another method of fixing the rubidium cell of the above embodiment; FIG. In the figure, 1... rubidium lamp, 2... lamp house, 3... heating transistor, 4... lamp exciter, 5, 9... temperature controller, 6... rubidium cell, 7...Cavity resonator, 8...Heating heater,
10...Solar cell, 11...Disc-shaped screw, 12...
・Light entrance hole, 13... Optical microwave resonance part, 14...
- Oscillation circuit component, 15... Frequency adjustment disk, 16
...Lamp fixing plate, 17...Reflection value, 18...Excitation coil, 19...Cell fixing recess. Agent Patent Attorney Resident 1) Toshi So (9) Public, 'j2nd 3rd Prisoner) 4-issue Special Opening A59-124783 (4) Multi; 45 Figure 61

Claims (1)

【特許請求の範囲】 (1)ルビジウムランプ部と、該ルビジウムランプ部に
より照射されるルビジウムセル部と、該ルビジウムセル
部を内包する空胴共振器と、前記ルビジウムセル部を通
過した光に対応した電気信号を入力し出力によって前記
空胴共振器を励振する発振回路構成部とを備えたルビジ
ウム原子発振器において、前記空胴共振器をTE□。□
方形空胴共振器で構成したことを特徴とするルビジウム
原子発振器。 (2、特許請求の範囲第1項記載のルビジウム原子発振
器において、前記TE101方形空胴共振器は。 前記ルビジウムランプ部により照射される面に複数の平
行なスリットまたは複数のだ円孔を配列した光入射孔が
穿設されたことを特徴とするもの。 (3)特許請求の範囲第2項記載のルビジウム原子発振
器において、前記ルビジウムランプ部は、円筒形のルビ
ジウムランプと、開口面が長方形で断面が凹形の反射鏡
を有することを特徴とするもの。
[Scope of Claims] (1) A rubidium lamp section, a rubidium cell section irradiated by the rubidium lamp section, a cavity resonator containing the rubidium cell section, and corresponding to the light passing through the rubidium cell section. In the rubidium atomic oscillator, the cavity resonator is TE□. □
A rubidium atomic oscillator characterized by being composed of a square cavity resonator. (2. In the rubidium atomic oscillator according to claim 1, the TE101 rectangular cavity resonator has a plurality of parallel slits or a plurality of elliptical holes arranged on the surface irradiated by the rubidium lamp section. (3) In the rubidium atomic oscillator according to claim 2, the rubidium lamp section includes a cylindrical rubidium lamp and a rectangular aperture. It is characterized by having a reflecting mirror with a concave cross section.
JP683A 1983-01-04 1983-01-04 Rubidium atom oscillator Granted JPS59124783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP683A JPS59124783A (en) 1983-01-04 1983-01-04 Rubidium atom oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP683A JPS59124783A (en) 1983-01-04 1983-01-04 Rubidium atom oscillator

Publications (2)

Publication Number Publication Date
JPS59124783A true JPS59124783A (en) 1984-07-18
JPH0454996B2 JPH0454996B2 (en) 1992-09-01

Family

ID=11462379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP683A Granted JPS59124783A (en) 1983-01-04 1983-01-04 Rubidium atom oscillator

Country Status (1)

Country Link
JP (1) JPS59124783A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04139776A (en) * 1990-10-01 1992-05-13 Nec Corp Atomic oscillator
JP2008195399A (en) * 2002-03-08 2008-08-28 Yamaha Motor Manufacturing Corp Of America Top assembly for compact car

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578205U (en) * 1980-06-16 1982-01-16

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578205U (en) * 1980-06-16 1982-01-16

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04139776A (en) * 1990-10-01 1992-05-13 Nec Corp Atomic oscillator
JP2008195399A (en) * 2002-03-08 2008-08-28 Yamaha Motor Manufacturing Corp Of America Top assembly for compact car
JP2008195398A (en) * 2002-03-08 2008-08-28 Yamaha Motor Manufacturing Corp Of America Manufacturing/transporting methods for top of compact car

Also Published As

Publication number Publication date
JPH0454996B2 (en) 1992-09-01

Similar Documents

Publication Publication Date Title
EP3311454B1 (en) High efficiency laser-sustained plasma light source
US4053845A (en) Optically pumped laser amplifiers
US3388314A (en) Apparatus for generating radiation of frequencies higher than those of light
KR100349015B1 (en) Excimer laser oscillation apparatus and method, excimer laser exposure apparatus, and laser tube
US4704583A (en) Light amplifiers employing collisions to produce a population inversion
AU659270B2 (en) Laser light beam generating apparatus
JPH01502309A (en) Fixed wavelength laser light source
JPH07106665A (en) Solid state laser unit
US3628175A (en) Optical maser having concentric reservoirs and cylindrical resonator
JPS61263128A (en) Apparatus for exciting plasma in gas column by superhigh frequency
US4338570A (en) Raman scattering in a whispering mode optical waveguide
US4887270A (en) Continuous wave, frequency doubled solid state laser systems with stabilized output
JPS59124783A (en) Rubidium atom oscillator
US3223944A (en) Laser employing elliptical reflector cavity
Smith et al. Operation of the continuously pumped, repetitive Q-switched YAlG: Nd laser
US4780882A (en) Optical resonator and laser
Kurosawa et al. High-power narrow-band operation and Raman frequency conversion of an electron-beam pumped krypton excimer laser
JP2002517101A (en) Tunable vertical diode pumped solid-state laser
US3569859A (en) Laser system operable operable at different wavelengths
CA1281402C (en) Continuous wave, frequency-doubled solid state laser systems with stabilized output
JP4256520B2 (en) Laser oscillation apparatus, exposure apparatus, and device manufacturing method
EP0451278B1 (en) Synchrotron radiation excited laser
JPH0374516B2 (en)
JP2501694B2 (en) Second harmonic generator in solid-state laser equipment
JPH02241074A (en) Excimer laser generating device