JP2615816B2 - Rubidium atomic oscillator - Google Patents

Rubidium atomic oscillator

Info

Publication number
JP2615816B2
JP2615816B2 JP10267788A JP10267788A JP2615816B2 JP 2615816 B2 JP2615816 B2 JP 2615816B2 JP 10267788 A JP10267788 A JP 10267788A JP 10267788 A JP10267788 A JP 10267788A JP 2615816 B2 JP2615816 B2 JP 2615816B2
Authority
JP
Japan
Prior art keywords
cavity
rubidium
atomic oscillator
light
rubidium atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10267788A
Other languages
Japanese (ja)
Other versions
JPH01274482A (en
Inventor
直樹 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10267788A priority Critical patent/JP2615816B2/en
Publication of JPH01274482A publication Critical patent/JPH01274482A/en
Application granted granted Critical
Publication of JP2615816B2 publication Critical patent/JP2615816B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/26Automatic control of frequency or phase; Synchronisation using energy levels of molecules, atoms, or subatomic particles as a frequency reference

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はルビジウム原子発振器,特に光ポンピング法
を用いたガスセル型ルビジウム原子発振器に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rubidium atomic oscillator, and more particularly to a gas cell type rubidium atomic oscillator using an optical pumping method.

〔従来の技術〕[Conventional technology]

従来のルビジウム原子発振器においては,原子共鳴部
(OMU)はルビジウムランプ部,ルビジウムガスセル,
キャビティ,太陽電池から構成されており,ルビジウム
ランプ部からの光はルビジウムガスセルを通過して太陽
電池によって検出される。また,キャビティ内にはルビ
ジウムガスセル,太陽電池が設けられており,マイクロ
波(6.8GHz)にて共振する様になっている。
In a conventional rubidium atomic oscillator, the atomic resonance unit (OMU) consists of a rubidium lamp, a rubidium gas cell,
It is composed of a cavity and a solar cell, and light from the rubidium lamp passes through a rubidium gas cell and is detected by the solar cell. A rubidium gas cell and a solar cell are provided in the cavity, and resonate with microwaves (6.8 GHz).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上述した従来のルビジウム原子発振器ではキャビティ
内に太陽電池があるため,キャビティのQを低下させ,
マイクロ波の損失が多くなる。また,キャビティの共振
周波数を調整する時にキャビティの長さを可変する事が
有効であるが,太陽電池を実装した場合に,キャビティ
の長さを可変させる事は困難であるという問題点があ
る。
In the conventional rubidium atomic oscillator described above, since the solar cell is in the cavity, the Q of the cavity is reduced,
Microwave loss increases. Further, it is effective to change the length of the cavity when adjusting the resonance frequency of the cavity, but it is difficult to change the length of the cavity when a solar cell is mounted.

本発明は従来のもののこのような問題点を解決しよう
とするもので,キャビティのQが高く且つキャビティの
長さを可変できるルビジウム原子発振器を提供するもの
である。
SUMMARY OF THE INVENTION The present invention is to solve such a problem of the prior art, and provides a rubidium atomic oscillator having a high cavity Q and a variable cavity length.

〔課題を解決するための手段〕[Means for solving the problem]

本発明によると原子共鳴部のキャビティ内に可動型の
凹面反射部を設け,ルビジウムランプからの光を前記凹
面反射部にて反射させ,この反射光をキャビティ外に設
置した受光素子にて検出するようにしたことを特徴とす
るルビジウム原子発振器が得られる。
According to the present invention, a movable concave reflecting portion is provided in a cavity of an atomic resonance portion, light from a rubidium lamp is reflected by the concave reflecting portion, and the reflected light is detected by a light receiving element installed outside the cavity. A rubidium atomic oscillator characterized by doing so is obtained.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を示す断面図である。1は
ルビジウムランプ,2はキャビティ,3はルビジウムガスセ
ル,4は凹面反射板,5は受光素子で,凹面反射板4は可動
型でキャビティ2内で移動でき,受光素子5はキャビテ
ィ2の外部に設けられている。
FIG. 1 is a sectional view showing an embodiment of the present invention. 1 is a rubidium lamp, 2 is a cavity, 3 is a rubidium gas cell, 4 is a concave reflector, 5 is a light receiving element, concave reflector 4 is a movable type and can move inside the cavity 2, and the light receiving element 5 is outside the cavity 2. Is provided.

ルビジウムランプ1からの光はキャビティ2の入射孔
からルビジウムガスセル3を通過し凹面反射板4に至
る。反射した光は集束しながらルビジウムガスセル3を
再び通過し,キャビティ外に設置された受光素子5によ
って検出される。
Light from the rubidium lamp 1 passes through the entrance hole of the cavity 2, passes through the rubidium gas cell 3, and reaches the concave reflector 4. The reflected light passes through the rubidium gas cell 3 again while being focused, and is detected by the light receiving element 5 installed outside the cavity.

凹面反射板4はキャビティ内にて可動する構造をとっ
ており,キャビティ長を可変する事により,キャビティ
の共振周波数を容易に調整する事ができる。
The concave reflector 4 has a structure movable in the cavity, and the resonance frequency of the cavity can be easily adjusted by changing the cavity length.

このように,本実施例では,キャビティ内に凹面反射
板を設置する事により,光検出器をキャビティ外に設置
する事が可能となり,キャビティのQを向上させる事が
できる。またルビジウムランプからの光はルビジウムガ
スセル内を2回通過する為,信号強度を強める事がで
き,これらによって原子共鳴部(OMU)のS/N比を大幅に
向上させ,原子発振器としての特性を向上させる事がで
きる。
As described above, in this embodiment, by installing the concave reflector in the cavity, the photodetector can be installed outside the cavity, and the Q of the cavity can be improved. In addition, since the light from the rubidium lamp passes through the rubidium gas cell twice, the signal intensity can be increased, which greatly improves the S / N ratio of the atomic resonance unit (OMU) and improves the characteristics as an atomic oscillator. Can be improved.

さらに凹面反射板を可動できる構造をとる事によっ
て,キャビティの調整を容易に行う事ができるため,原
子発振器として低価格化できる。
Further, by adopting a structure in which the concave reflector can be moved, the cavity can be easily adjusted, so that the price as an atomic oscillator can be reduced.

〔発明の効果〕〔The invention's effect〕

以上説明したように,本発明は原子共鳴部のキャビテ
ィ内に可動型の凹面反射部を設け,ルビジウムランプか
らの光を前記凹面反射部にて反射させキャビティ外に設
置した受光素子にて検出するようにしたことにより,キ
ャビティのQを高め,且つキャビティの長さを可変でき
る効果がある。
As described above, according to the present invention, a movable concave reflecting portion is provided in a cavity of an atomic resonance portion, and light from a rubidium lamp is reflected by the concave reflecting portion and detected by a light receiving element installed outside the cavity. By doing so, there is an effect that the Q of the cavity can be increased and the length of the cavity can be varied.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す断面図である。 1……ルビジウムランプ,2……キャビティ,3……ルビジ
ウムガスセル,4……凹面反射板,5……受光素子。
FIG. 1 is a sectional view showing an embodiment of the present invention. 1 ... rubidium lamp, 2 ... cavity, 3 ... rubidium gas cell, 4 ... concave reflector, 5 ... light receiving element.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原子共鳴部のキャビティ内に可動型の凹面
反射部を設け,ルビジウムランプからの光を前記凹面反
射部にて反射させ,この反射光をキャビティ外に設置し
た受光素子にて検出するようにしたことを特徴とするル
ビジウム原子発振器。
1. A movable concave reflecting portion is provided in a cavity of an atomic resonance portion, light from a rubidium lamp is reflected by the concave reflecting portion, and the reflected light is detected by a light receiving element installed outside the cavity. A rubidium atomic oscillator characterized in that:
JP10267788A 1988-04-27 1988-04-27 Rubidium atomic oscillator Expired - Lifetime JP2615816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10267788A JP2615816B2 (en) 1988-04-27 1988-04-27 Rubidium atomic oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10267788A JP2615816B2 (en) 1988-04-27 1988-04-27 Rubidium atomic oscillator

Publications (2)

Publication Number Publication Date
JPH01274482A JPH01274482A (en) 1989-11-02
JP2615816B2 true JP2615816B2 (en) 1997-06-04

Family

ID=14333864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10267788A Expired - Lifetime JP2615816B2 (en) 1988-04-27 1988-04-27 Rubidium atomic oscillator

Country Status (1)

Country Link
JP (1) JP2615816B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009141048A (en) * 2007-12-05 2009-06-25 Epson Toyocom Corp Optical system and atomic oscillator
JP5343356B2 (en) * 2008-01-07 2013-11-13 セイコーエプソン株式会社 Atomic oscillator
JP2009164331A (en) * 2008-01-07 2009-07-23 Epson Toyocom Corp Atomic oscillator and oscillation device

Also Published As

Publication number Publication date
JPH01274482A (en) 1989-11-02

Similar Documents

Publication Publication Date Title
JPH02183904A (en) Electrodeless lamp having composite resonance constitution
KR930015207A (en) Atomic frequency standard
JP2615816B2 (en) Rubidium atomic oscillator
JP3963998B2 (en) Atomic oscillator
Boucher et al. A far-infrared heterodyne sidebands spectrometer
CN114675524A (en) Miniature CPT atomic clock physical system device
JPS59108381A (en) Rubidium atom oscillator
JPH03139889A (en) Rubidium atom oscillator
CA2228384A1 (en) Novel opto-electronic oscillators
JPS5816459A (en) High frequency discharge light source unit
JPS6488416A (en) Illuminator
JPS6316707U (en)
RU2266586C2 (en) Orotron
JPH05235759A (en) Rubidium atom oscillator
JP2806124B2 (en) Rubidium atomic oscillator
JP2679099B2 (en) Rubidium atomic oscillator
CN1034146C (en) Program control/manual continuously adjustable narrow line wide cavity semiconductor laser
JPH04247703A (en) Parabolic antenna
CN1136635C (en) High power tunable CO2 laser
Buscher APPLICATION OF MICROWAVE FARBY-PEROT RESONATORS IN INSTRUMENTATION FOR AIR POLLUTION RESEARCH
RU97108203A (en) OPTICAL GYROSCOPE WITH PASSIVE RING RESONATOR
JPS62262485A (en) Semiconductor laser device
Khar’kovskii et al. Excitation of ray oscillations in quasioptical dielectric cavities with whispering gallery modes
CN2403011Y (en) Active neodymium atom resonance optical filter
Fisun Monofrequency excitation of open resonator with inclined comb grating