JPH03139889A - Rubidium atom oscillator - Google Patents

Rubidium atom oscillator

Info

Publication number
JPH03139889A
JPH03139889A JP27889689A JP27889689A JPH03139889A JP H03139889 A JPH03139889 A JP H03139889A JP 27889689 A JP27889689 A JP 27889689A JP 27889689 A JP27889689 A JP 27889689A JP H03139889 A JPH03139889 A JP H03139889A
Authority
JP
Japan
Prior art keywords
rubidium
light
lens
lamp
reaches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27889689A
Other languages
Japanese (ja)
Inventor
Naoki Ishihara
直樹 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP27889689A priority Critical patent/JPH03139889A/en
Publication of JPH03139889A publication Critical patent/JPH03139889A/en
Pending legal-status Critical Current

Links

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

PURPOSE:To improve the S/N ratio of a photomicrowave resonance part by providing a the photomicrowave resonance part with a concave reflecting plate concentric with a rubidium lamp, a first lens for condensing the light from the rubidium lamp, and a second lens for condensing the light for a rubidium gas cell. CONSTITUTION:Approximately half of the light form a rubidium lamp 3 reaches a lens 4 directly, and a great portion of remaining light reaches a lens 4, being reflected in the same direction as incident light by a circular reflecting plate 2 concentric with the rubidium lamp 3. The luminous flux condensed by the lens 4 reaches a lens 6 while diverging, after converging at a point right before the opening for letting light in a cavity 5. The lens 6 changes the luminous flux into parallel flux so that the light may be supplied efficiently to a rubidium gas cell 7, and this parallel flux reaches a solar battery 8 as it is after passing the rubidium cell 7. Accordingly, by supplying microliquid to a microwave introduction part 9, favorable atom resonance properties can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はルビジウム原子発振器に関し、特に光ボンピン
グ法を用いたルビジウム原子発振器の光マイクロ波共鳴
部の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rubidium atomic oscillator, and particularly to the structure of an optical microwave resonance part of a rubidium atomic oscillator using an optical bombing method.

〔従来の技術〕[Conventional technology]

従来のルビジウム原子発振器における光マイクロ波共鳴
部は、キャビティ部とランプ部によって構成されており
、キャビティ部は入力マイクロ波(約6゜8GHz)に
共振する円筒形キャビティ内にルビジウムガスセルを挿
入し、このルビジウムガスセルにランプ部内のルビジウ
ムランプよりの光を当て、この入射光と入力マイクロ波
により原子共鳴を起こす様に構成されている。
The optical microwave resonance part in a conventional rubidium atomic oscillator is composed of a cavity part and a lamp part, and the cavity part is a cylindrical cavity that resonates with input microwaves (approximately 6°8 GHz).A rubidium gas cell is inserted into the cylindrical cavity. The rubidium gas cell is irradiated with light from a rubidium lamp within the lamp section, and is configured to cause atomic resonance with the incident light and input microwaves.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したルビジウム原子発振器の性能は、光マイクロ波
共鳴部のS/N比によって大きく左右され、このS/N
比を向上させるには、ルビジウムガスセルに充分な光が
照射されている事が必要条件となる。従来のルビジウム
原子発振器では、ルビジウムランプ部とキャビティ部と
の動作温度範囲が異っているため、ランプ部とキャビテ
ィ部が離れており、またキャビティは6.8GHzでモ
ードを発生させる必要があるため、キャビティには大き
な入光用の穴をあける事が困難である。このためルビジ
ウムランプからの光はルビジウムガスセルに到るまでに
大半のものがロスとなっており、またルビジウムガスセ
ルの一部の箇所には光が当たる箇所が存在する。このた
め光マイクロ波共鳴部のS/N比が低下するという欠点
がある。
The performance of the rubidium atomic oscillator described above is greatly influenced by the S/N ratio of the optical microwave resonance part, and this S/N
In order to improve the ratio, it is necessary that the rubidium gas cell be irradiated with sufficient light. In conventional rubidium atomic oscillators, the operating temperature ranges of the rubidium lamp section and the cavity section are different, so the lamp section and the cavity section are separated, and the cavity needs to generate a mode at 6.8 GHz. It is difficult to make a large hole for light entry in the cavity. For this reason, most of the light from the rubidium lamp is lost before reaching the rubidium gas cell, and there are some areas of the rubidium gas cell that are exposed to light. For this reason, there is a drawback that the S/N ratio of the optical microwave resonance part is reduced.

本発明の目的は、このような欠点を除き、光マイクロ波
共鳴部のS/N比を向上させたルビジウム原子発振器を
提供することにある。
An object of the present invention is to provide a rubidium atomic oscillator that eliminates such drawbacks and improves the S/N ratio of the optical microwave resonance section.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の構成は、ルビジウムランプを収容するランプハ
ウスと、前記ルビジウムランプからの光を透過するルビ
ジウムガスセルを収容し入力したマイクロ波信号と共鳴
するキャビティとを含む光マイクロ波共鳴部を有するル
ビジウム原子発振器において、前記ランプハウス内に前
記ルビジウムランプと同心円状に配設された凹面反射板
と、この凹面反射板および前記ルビジウムランプからの
光を集光するように設けられた第1のレンズと、この第
1のレンズからの光を集光して前記ルビジウムガスセル
にほぼ平行光として供給する第2のレンズとを備えたこ
とを特徴とする。
The structure of the present invention includes a rubidium atom having an optical microwave resonator including a lamp house that accommodates a rubidium lamp, and a cavity that accommodates a rubidium gas cell that transmits light from the rubidium lamp and that resonates with an input microwave signal. In the oscillator, a concave reflector disposed in the lamp house concentrically with the rubidium lamp, and a first lens provided to condense light from the concave reflector and the rubidium lamp; It is characterized by comprising a second lens that condenses the light from the first lens and supplies it to the rubidium gas cell as substantially parallel light.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の光マイクロ波共鳴部の模式
的断面図である。本実施例は、ルビジウムランプ3から
の光の約半分が直接レンズ4に到り、残りの大半の光は
ルビジウムランプ3と同心円形状の反射板2によって入
射光と同方向に反射されてレンズ4に到る。このレンズ
4によって集光された光束は、キャビティ5の入光孔の
直前で焦点を結んだ後に拡散しながらレンズ6に到る。
FIG. 1 is a schematic cross-sectional view of an optical microwave resonance section according to an embodiment of the present invention. In this embodiment, about half of the light from the rubidium lamp 3 directly reaches the lens 4, and most of the remaining light is reflected by the rubidium lamp 3 and the concentric circular reflection plate 2 in the same direction as the incident light. reach. The light beam condensed by this lens 4 is focused just before the light entrance hole of the cavity 5, and then reaches the lens 6 while being diffused.

このレンズ6では効率よくルビジウムガスセルフに光を
供給するように、光束を平行束に変えており、この平行
束はルビジウムガスセルフを通過した後、そのまま太陽
電池8に到る。
In order to efficiently supply light to the rubidium gas self, this lens 6 converts the light beam into a parallel beam, and after passing through the rubidium gas self, this parallel beam reaches the solar cell 8 as it is.

この様にしてルビジウムランプ3からの光は効率よく集
光されて、ルビジウムガスセルフの全体を平行束として
通過し太陽電池8に供給されるため、マイクロ波導入部
9にマイクロ波を供給する事により、良好な原子共鳴特
性を得る事ができる。
In this way, the light from the rubidium lamp 3 is efficiently focused, passes through the entire rubidium gas self as a parallel beam, and is supplied to the solar cell 8, so that microwaves can be supplied to the microwave introducing section 9. This makes it possible to obtain good atomic resonance characteristics.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、光マイクロ波共鳴部にル
ビジウムランプと同心円状の凹面反射板と、ルビジウム
ランプからの光を集光する第1のレンズと、ルビジウム
ガスセルへの光を集光する第2のレンズとを有する事に
より、ルビジウムランプからの光を効果よくルビジウム
ガスセルへ供給できるため、光マイクロ波共鳴部のS/
N比を向上させる事が可能である。そのため従来のルビ
ジウム原子発振器と比較してより高性能の周波数安定性
をもったルビジウム原子発振器を得ることができるとい
う効果がある。
As explained above, the present invention includes a concave reflector concentric with the rubidium lamp in the optical microwave resonance part, a first lens that focuses light from the rubidium lamp, and a concave reflector that focuses light on the rubidium gas cell. By having the second lens, the light from the rubidium lamp can be effectively supplied to the rubidium gas cell, so the S/
It is possible to improve the N ratio. Therefore, compared to conventional rubidium atomic oscillators, it is possible to obtain a rubidium atomic oscillator with higher performance and frequency stability.

第1図は本発明の一実施例の光マイクロ波共鳴部の模式
的断面図である。
FIG. 1 is a schematic cross-sectional view of an optical microwave resonance section according to an embodiment of the present invention.

1・・・ランプハウス、2・・・反射板、3・・・ルビ
ジウムランプ、4.6・・・レンズ、5・・・キャビテ
ィ、7・・・ルビジウムガスセル、8・・・太陽電池、
9・・・マイクロ波導入部。
DESCRIPTION OF SYMBOLS 1... Lamp house, 2... Reflection plate, 3... Rubidium lamp, 4.6... Lens, 5... Cavity, 7... Rubidium gas cell, 8... Solar cell,
9...Microwave introduction section.

Claims (1)

【特許請求の範囲】[Claims]  ルビジウムランプを収容するランプハウスと、前記ル
ビジウムランプからの光を透過するルビジウムガスセル
を収容し入力したマイクロ波信号と共鳴するキャビティ
とを含む光マイクロ波共鳴部を有するルビジウム原子発
振器において、前記ランプハウス内に前記ルビジウムラ
ンプと同心円状に配設された凹面反射板と、この凹面反
射板および前記ルビジウムランプからの光を集光するよ
うに設けられた第1のレンズと、この第1のレンズから
の光を集光して前記ルビジウムガスセルにほぼ平行光と
して供給する第2のレンズとを備えたことを特徴とする
ルビジウム原子発振器。
In the rubidium atomic oscillator, the rubidium atomic oscillator has an optical microwave resonator including a lamp house that accommodates a rubidium lamp, and a cavity that accommodates a rubidium gas cell that transmits light from the rubidium lamp and that resonates with an input microwave signal. a concave reflector disposed concentrically with the rubidium lamp; a first lens provided to condense light from the concave reflector and the rubidium lamp; a second lens that condenses the light and supplies it to the rubidium gas cell as substantially parallel light.
JP27889689A 1989-10-25 1989-10-25 Rubidium atom oscillator Pending JPH03139889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27889689A JPH03139889A (en) 1989-10-25 1989-10-25 Rubidium atom oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27889689A JPH03139889A (en) 1989-10-25 1989-10-25 Rubidium atom oscillator

Publications (1)

Publication Number Publication Date
JPH03139889A true JPH03139889A (en) 1991-06-14

Family

ID=17603612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27889689A Pending JPH03139889A (en) 1989-10-25 1989-10-25 Rubidium atom oscillator

Country Status (1)

Country Link
JP (1) JPH03139889A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164331A (en) * 2008-01-07 2009-07-23 Epson Toyocom Corp Atomic oscillator and oscillation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5572093A (en) * 1978-11-27 1980-05-30 Seiko Epson Corp Temperature control system for atomic frequency standard
JPS59124782A (en) * 1983-01-04 1984-07-18 Nec Corp Rubidium atom oscillator
JPS61167297A (en) * 1985-01-21 1986-07-28 Casio Comput Co Ltd Color liquid crystal projector
JPS63135990A (en) * 1986-11-27 1988-06-08 日本電気株式会社 Color thermally writing liquid crystal projection type display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5572093A (en) * 1978-11-27 1980-05-30 Seiko Epson Corp Temperature control system for atomic frequency standard
JPS59124782A (en) * 1983-01-04 1984-07-18 Nec Corp Rubidium atom oscillator
JPS61167297A (en) * 1985-01-21 1986-07-28 Casio Comput Co Ltd Color liquid crystal projector
JPS63135990A (en) * 1986-11-27 1988-06-08 日本電気株式会社 Color thermally writing liquid crystal projection type display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164331A (en) * 2008-01-07 2009-07-23 Epson Toyocom Corp Atomic oscillator and oscillation device

Similar Documents

Publication Publication Date Title
WO2002039013A3 (en) Light projector
JP3963998B2 (en) Atomic oscillator
US5977712A (en) Inductive tuners for microwave driven discharge lamps
CA2408534A1 (en) Micro-cylinder resonator based optical waveguide coupler
JPH03139889A (en) Rubidium atom oscillator
CN114675524B (en) Miniature CPT atomic clock physical system device
CN110750044A (en) Integrated CPT atomic clock physical system device
JP2615816B2 (en) Rubidium atomic oscillator
KR940024644A (en) Raman Laser Oscillation Method and Apparatus Using Induced Brillouin Scattering
US4862101A (en) System for producing spectrally pure optical pumping light
JPH02117185A (en) Rubidium atomic oscillator
CN101592628A (en) A kind of device and method that strengthens photoionization efficiency
KR20220052033A (en) Integrated photoacoustic gas sensor and method for manufacturing the same
JPS59108381A (en) Rubidium atom oscillator
JPS6331442Y2 (en)
JPS55132045A (en) Nitride film forming method
JPS57180191A (en) Laser for wide range of wavelength
JPS60219572A (en) Laser magnetic resonance apparatus
JPS59884Y2 (en) Optical system equipment for fiberscope
JPS6435423A (en) Light wavelength conversion module
JPS6153879B2 (en)
JPH05235759A (en) Rubidium atom oscillator
RU2266586C2 (en) Orotron
JPH01162387A (en) Rubidium atom oscillator
JPH0563260A (en) Laser device