JPH05235174A - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPH05235174A
JPH05235174A JP3363592A JP3363592A JPH05235174A JP H05235174 A JPH05235174 A JP H05235174A JP 3363592 A JP3363592 A JP 3363592A JP 3363592 A JP3363592 A JP 3363592A JP H05235174 A JPH05235174 A JP H05235174A
Authority
JP
Japan
Prior art keywords
layer
conductor layer
pattern
resist pattern
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3363592A
Other languages
Japanese (ja)
Inventor
Teruhide Koga
輝秀 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3363592A priority Critical patent/JPH05235174A/en
Publication of JPH05235174A publication Critical patent/JPH05235174A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To provide the title manufacturing method capable of forming a wiring layer with high precision even on a rugged surface. CONSTITUTION:The title manufacturing method of semiconductor device is composed of the four steps enumarated as follows, i.e., a first step forming the first conductor layer 3 comprising an exposed light absorptive material on a rugged substrate l; a second step forming a resist pattern 5 by pattern exposing step after forming a photoresist film on the first conductor layer 3; a third step etching the first conductor layer 3 so as to locate the pattern edge on the recess of the rugged substrate l using the resist pattern 5 as a mask for removing the resist pattern 5; and a fourth step selectively growing the second conductor layer 6 on the first conductor layer 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法
に係り、特に、凹凸を有する基板表面でのパターン形成
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to pattern formation on a substrate surface having irregularities.

【0002】[0002]

【従来の技術】近年、半導体装置の高集積化に伴い、回
路の微細化は進む一方であり、配線においても微細化お
よび多層化が急速に進められている。
2. Description of the Related Art In recent years, with the high integration of semiconductor devices, miniaturization of circuits has been progressing, and miniaturization and multi-layering of wiring have been rapidly promoted.

【0003】このような状況の中で配線などのパターン
形成に際し、凹凸のある表面への形成となることは必至
である。凹凸のある段差表面に写真食刻工程において配
線を設ける場合、段差凹部のレジストパターンは段差凸
部の影響で異常に細くなり、コンタクトホール内部に配
線が落ち込んでしまうことがあった。段差が大きくなる
とこの現象は特に顕著となる。
Under such circumstances, it is inevitable that a wiring or other pattern is formed on an uneven surface. When wiring is provided on the uneven surface of a step in the photo-etching process, the resist pattern of the step concave portion may become abnormally thin due to the influence of the step convex portion, and the wiring may fall inside the contact hole. This phenomenon becomes particularly noticeable as the level difference increases.

【0004】例えば、図2(a) に示すように、シリコン
基板11表面と、この上層に層間絶縁膜12を介して形
成された多結晶シリコン膜からなる電極14との両方に
コンタクトするように層間絶縁膜12にコンタクトホー
ルを形成し、バリアメタル層13としてのTi層および
TiN層と、配線層16としてのAl−Cu−Si層を
スパッタリングによって順次堆積した後、レジストパタ
ーン15を形成すると、段差凹部のレジストパターンは
段差凸部の反射光(逆ヒゲ)の影響により設計寸法より
も細くなる。そしてこの状態でレジストパターン15を
マスクとして配線層16およびバリアメタル層13をエ
ッチングすると図2(b) に示すように、段差凹部の配線
パターンは細くなってコンタクトホール内部に落ち込
み、パターニングの合わせずれを考慮すると、このよう
な不良の発生確率は極めて高くなり、トランジスタの不
良を引き起こす確率が高くなる。
For example, as shown in FIG. 2A, contact is made with both the surface of the silicon substrate 11 and the electrode 14 made of a polycrystalline silicon film formed on the upper surface of the silicon substrate 11 with the interlayer insulating film 12 interposed therebetween. A contact hole is formed in the interlayer insulating film 12, a Ti layer and a TiN layer as the barrier metal layer 13 and an Al—Cu—Si layer as the wiring layer 16 are sequentially deposited by sputtering, and then a resist pattern 15 is formed. The resist pattern of the step concave portion becomes thinner than the design size due to the influence of the reflected light (reverse beard) of the step convex portion. Then, when the wiring layer 16 and the barrier metal layer 13 are etched using the resist pattern 15 as a mask in this state, as shown in FIG. 2B, the wiring pattern in the stepped recess becomes thin and falls inside the contact hole, resulting in misalignment of patterning. In consideration of the above, the probability of occurrence of such a defect is extremely high, and the probability of causing a defect of the transistor is high.

【0005】[0005]

【発明が解決しようとする課題】このように従来の方法
では、段差凹部に形成する配線層が凸部からの反射の影
響で細くなるなど、パターン精度が低下し、信頼性が低
下するという問題があった。
As described above, according to the conventional method, the pattern accuracy is lowered and the reliability is lowered, for example, the wiring layer formed in the stepped recess is thinned by the influence of reflection from the raised part. was there.

【0006】本発明は、前記実情に鑑みてなされたもの
で、凹凸のある表面にもパターン精度の高い配線層を形
成することのできる方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method capable of forming a wiring layer having high pattern accuracy even on a surface having irregularities.

【0007】[0007]

【課題を解決するための手段】そこで本発明では、凹凸
を有する基板上に、露光光に対して光吸収性の材料から
なる第1の導体層を形成し、この第1の導体層上にフォ
トレジスト膜を形成したのち、パターン露光によりレジ
ストパターンを形成し、このレジストパターンをマスク
として前記凹凸を有する基板の凹部にパターンエッジが
くるように前記第1の導体層をエッチングして、レジス
トパターンを除去し、第1の導体層上に第2の導体層を
選択的に成長するようにしている。
In the present invention, therefore, a first conductor layer made of a material that absorbs exposure light is formed on a substrate having irregularities, and the first conductor layer is formed on the first conductor layer. After forming a photoresist film, a resist pattern is formed by pattern exposure, and the first conductor layer is etched using the resist pattern as a mask so that the pattern edges come to the concave portions of the substrate having the concave and convex portions. Is removed, and the second conductor layer is selectively grown on the first conductor layer.

【0008】[0008]

【作用】上記構成によれば、第1の導体層は露光光に対
して光吸収性を有する材料で構成されているため、レジ
ストパターンの形成のための露光工程において、凸部か
らの反射を防止することができ、レジストの細りもなく
なる。また第1の導体層をパターニングし高精度のパタ
ーン形成を行ったのちこの第1の導体層上に選択的に第
2の導体層を成長させるようにしているため、コンタク
トホール内にも十分な配線を埋め込むことができ、配線
の信頼性が向上するのみならず、コンタクト抵抗が均一
となる。
According to the above structure, since the first conductor layer is made of a material having a light absorbing property to the exposure light, it is possible to prevent the reflection from the convex portion in the exposure process for forming the resist pattern. It can be prevented and the resist is not thinned. In addition, since the first conductor layer is patterned to form a highly accurate pattern and then the second conductor layer is selectively grown on the first conductor layer, it is possible to sufficiently form the contact hole in the contact hole. The wiring can be embedded, and not only the reliability of the wiring is improved, but also the contact resistance becomes uniform.

【0009】[0009]

【実施例】以下、本発明の実施例について図面を参照し
つつ詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0010】図1(a) 乃至図1(c) は本発明実施例の半
導体装置の製造工程を示す断面図である。
1 (a) to 1 (c) are sectional views showing manufacturing steps of a semiconductor device according to an embodiment of the present invention.

【0011】まず、比抵抗4〜6Ω/cmの(100)n
型シリコン基板1表面に所望の素子領域を形成した後、
CVD法により膜厚300nmの酸化シリコン膜2aを形
成する。ついで膜厚400nmのn+ 多結晶シリコン層か
らなる電極層3を形成し、さらにこの上層に膜厚500
nmのBPSG膜2bを形成する。
First, (100) n having a specific resistance of 4 to 6 Ω / cm.
After forming a desired element region on the surface of the pattern silicon substrate 1,
A silicon oxide film 2a having a film thickness of 300 nm is formed by the CVD method. Then, an electrode layer 3 made of an n + polycrystalline silicon layer having a film thickness of 400 nm is formed, and a film thickness of 500 is further formed on the electrode layer 3.
A BPSG film 2b of nm is formed.

【0012】次に、写真蝕刻工程で形成したレジストパ
ターンをマスクとして反応性イオンエッチングによりコ
ンタクトホールHを形成する。
Next, a contact hole H is formed by reactive ion etching using the resist pattern formed in the photolithography process as a mask.

【0013】そして、膜厚20nmのTi層3aと膜厚4
0nmのTiN層3bとの2層構造膜3をスパッタリング
法により堆積し、窒素雰囲気中で600℃60分の熱処
理を行いシリサイド化を行ったのち、レジストを塗布し
写真蝕刻工程により配線となる領域にレジストパターン
5を残置させる(図1(a) )。このときTiN層3bは
茶褐色で光吸収率が高いため、段差凹部のレジストパタ
ーンが段差凸部からの反射を受けることはなく、局所的
に細くなることもなく、高精度のマスクパターンを形成
することができる。
Then, a Ti layer 3a having a thickness of 20 nm and a thickness of 4 are formed.
A 2-layer structure film 3 with a 0 nm TiN layer 3b is deposited by a sputtering method, subjected to a heat treatment at 600 ° C. for 60 minutes in a nitrogen atmosphere for silicidation, and then coated with a resist to form a wiring by a photo-etching process The resist pattern 5 is left on (FIG. 1 (a)). At this time, the TiN layer 3b is dark brown and has a high light absorptivity, so that the resist pattern of the step concave portion does not receive reflection from the step convex portion and is not locally thinned to form a highly accurate mask pattern. be able to.

【0014】そしてこのレジストパターン5をマスクと
してRIEにより前記2層構造膜3をエッチングし、図
1(b) に示すように2層構造膜3のパターンを形成す
る。ここでTi層は低抵抗でコンタクト抵抗を小さくす
ることができ、またTiN層はバリアメタル層として作
用する。また、2層構造膜は薄いため、パターンの切れ
もよく良好なパターニングが可能である。
The two-layer structure film 3 is etched by RIE using the resist pattern 5 as a mask to form a pattern of the two-layer structure film 3 as shown in FIG. 1 (b). Here, the Ti layer has low resistance and can reduce contact resistance, and the TiN layer functions as a barrier metal layer. Further, since the two-layer structure film is thin, the pattern is well cut and good patterning is possible.

【0015】この後、WF6 を反応性ガスとして用いた
選択CVD法により、配線層として膜厚800nmのタン
グステン膜6を2層構造膜3のパターン上にのみ選択的
に成長させる。
After that, a tungsten film 6 having a film thickness of 800 nm is selectively grown as a wiring layer only on the pattern of the two-layer structure film 3 by the selective CVD method using WF 6 as a reactive gas.

【0016】これにより、コンタクトホールHの内部に
も均一にタグステン膜を成長させるようにすることがで
き、コンタクトホールHの開口部近傍の傾斜部にパター
ンエッジがくるような配線層パターンである場合にも良
好に高精度のパターンを得ることができる。
Thus, the tag-stain film can be grown uniformly inside the contact hole H, and the wiring layer pattern has a pattern edge on the inclined portion near the opening of the contact hole H. Moreover, a highly accurate pattern can be obtained satisfactorily.

【0017】また、ここではTiN層は光吸収性の層と
して用いたが、バリアメタル層として本来必要な層であ
り、わずかな工程の変更のみで、高精度の配線パターン
を形成することができ、極めて有効な方法である。
Although the TiN layer is used as a light-absorbing layer here, it is an essentially necessary layer as a barrier metal layer, and a highly accurate wiring pattern can be formed with a slight change in the steps. , Is a very effective method.

【0018】なお、前記実施例では、光吸収性の層とし
てTiNを用いたが、TiNに代えて、TiCu,Ti
NCu,Tiカーバイド,Cuカーバイド,CuNなど
を用いることができる。
Although TiN is used as the light absorbing layer in the above-mentioned embodiment, TiCu, Ti may be used instead of TiN.
NCu, Ti carbide, Cu carbide, CuN or the like can be used.

【0019】また、配線層としてはタングステンに限定
されることなく、モリブデンシリサイドやアルミニウム
層、あるいはアルミニウム−銅−シリコンの3層膜とす
るなど選択成長によって形成可能なものであればよい。
The wiring layer is not limited to tungsten and may be any layer that can be formed by selective growth, such as a molybdenum silicide or aluminum layer or a three-layer film of aluminum-copper-silicon.

【0020】[0020]

【発明の効果】以上説明してきたように、本発明によれ
ば、凹凸のある表面、特に、コンタクトホールの開口部
近傍の急峻な傾斜部にパターンエッジがくるような場合
にも、膜厚が均一でパターン精度の高い配線を埋め込む
ことができ、配線の信頼性が向上する。
As described above, according to the present invention, even when the pattern edge comes to the uneven surface, especially the steep slope near the opening of the contact hole, the film thickness is reduced. A uniform and highly accurate wiring can be embedded, and the reliability of the wiring is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の半導体装置の製造工程図。FIG. 1 is a manufacturing process diagram of a semiconductor device according to an embodiment of the present invention.

【図2】従来の半導体装置の製造工程図。FIG. 2 is a manufacturing process diagram of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2a 酸化シリコン膜 2b BPSG膜 3a Ti層 3b TiN層 4 ゲート電極 5 レジストパターン 6 タングステン層 11 シリコン基板 12 層間絶縁膜 13 バリアメタル層(Ti−TiN) 14 電極 15 レジストパターン 16 アルミニウム層 DESCRIPTION OF SYMBOLS 1 Silicon substrate 2a Silicon oxide film 2b BPSG film 3a Ti layer 3b TiN layer 4 Gate electrode 5 Resist pattern 6 Tungsten layer 11 Silicon substrate 12 Interlayer insulating film 13 Barrier metal layer (Ti-TiN) 14 Electrode 15 Resist pattern 16 Aluminum layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 凹凸を有する基板上に、露光光に対して
光吸収性の材料からなる第1の導体層を形成する第1の
導体層形成工程と、この第1の導体層上にフォトレジス
ト膜を形成するフォトレジスト塗布工程と、パターン露
光によりレジストパターンを形成するレジストパターン
形成工程と、このレジストパターンをマスクとして前記
凹凸を有する基板の凹部にパターンエッジがくるように
前記第1の導体層をエッチングするエッチング工程と、
前記レジストパターンを除去し、前記第1の導体層上に
第2の導体層を選択的に成長する選択成長工程とを含む
ことを特徴とする半導体装置の製造方法。
1. A first conductor layer forming step of forming a first conductor layer made of a light-absorbing material on exposure light on a substrate having unevenness, and a photoconductor on the first conductor layer. A photoresist coating step of forming a resist film, a resist pattern forming step of forming a resist pattern by pattern exposure, and the first conductor so that the pattern edge comes to the concave portion of the substrate having the unevenness using the resist pattern as a mask An etching step of etching the layer,
A selective growth step of removing the resist pattern and selectively growing a second conductor layer on the first conductor layer.
JP3363592A 1992-02-20 1992-02-20 Manufacturing method of semiconductor device Pending JPH05235174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3363592A JPH05235174A (en) 1992-02-20 1992-02-20 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3363592A JPH05235174A (en) 1992-02-20 1992-02-20 Manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05235174A true JPH05235174A (en) 1993-09-10

Family

ID=12391915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3363592A Pending JPH05235174A (en) 1992-02-20 1992-02-20 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05235174A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260920A (en) * 1997-12-22 1999-09-24 Lg Semicon Co Ltd Method for forming wiring of semiconductor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260920A (en) * 1997-12-22 1999-09-24 Lg Semicon Co Ltd Method for forming wiring of semiconductor element

Similar Documents

Publication Publication Date Title
US5068711A (en) Semiconductor device having a planarized surface
JPH07307385A (en) Formation of multilayer metal wiring of semiconductor element
US5338702A (en) Method for fabricating tungsten local interconnections in high density CMOS
JPH10326830A (en) Manufacture of semiconductor device
JPH05235174A (en) Manufacturing method of semiconductor device
EP0120918B1 (en) An aluminum-metal silicide interconnect structure for integrated circuits and method of manufacture thereof
US5136361A (en) Stratified interconnect structure for integrated circuits
US5882992A (en) Method for fabricating Tungsten local interconnections in high density CMOS circuits
JPS61187369A (en) Manufacture of thin film transistor
JPH0352254A (en) Mos type semiconductor device and manufacture thereof
KR100191710B1 (en) Metal wiring method of semiconductor device
JPH05226333A (en) Manufacture of semiconductor device
US6313535B1 (en) Wiring layer of a semiconductor integrated circuit
JP3166912B2 (en) Method for manufacturing semiconductor device
KR920003876B1 (en) Manufacturing method of semiconductor device
JPH05283533A (en) Fabrication of semiconductor device
JP2991388B2 (en) Method for manufacturing semiconductor device
JP3329148B2 (en) Wiring formation method
JP3048919B2 (en) How to form wiring patterns
KR960006694B1 (en) Metal wire forming method
JPH05167063A (en) Ohmic electrode, its formation method and semiconductor device
KR950011554B1 (en) Multi-layer metalizing method of semiconductor device
JP3031689B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPH07221177A (en) Semiconductor device and manufacturing method thereof
JPH04188832A (en) Manufacture of semiconductor device