JPH0523079B2 - - Google Patents

Info

Publication number
JPH0523079B2
JPH0523079B2 JP60072167A JP7216785A JPH0523079B2 JP H0523079 B2 JPH0523079 B2 JP H0523079B2 JP 60072167 A JP60072167 A JP 60072167A JP 7216785 A JP7216785 A JP 7216785A JP H0523079 B2 JPH0523079 B2 JP H0523079B2
Authority
JP
Japan
Prior art keywords
conductor
substrate
multilayer ceramic
aluminum nitride
titanium nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60072167A
Other languages
Japanese (ja)
Other versions
JPS61230399A (en
Inventor
Juzo Shimada
Yasuhiro Kurokawa
Kazuaki Uchiumi
Hideo Takamizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP60072167A priority Critical patent/JPS61230399A/en
Publication of JPS61230399A publication Critical patent/JPS61230399A/en
Publication of JPH0523079B2 publication Critical patent/JPH0523079B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • H05K3/4676Single layer compositions

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は多層セラミツク基板、特に窒化チタン
を導体として用いる高熱伝導多層セラミツク基板
の製造方法に関するものである。 (従来技術とその問題点) 半導体工業の飛躍的進展によつてIC,LSIが産
業用、民生用と幅広く使用されるようになつてき
ており、電子装置の小型・高密度化および高性能
化が進められている。 特に集積密度の高い、高速作動のLSIの実装用
基板としては、高密度化が必須であり多層セラミ
ツク基板が注目されている。この多層セラミツク
基板は、直接LSIを実装することができ、また多
層に微細な配線を施すことが可能である。 一般にセラミツク基板の材料としては、主にア
ルミナが使用されているが、近年電子装置は一段
と小型化され、回路の高密度化が要求され、基板
の単位面積当りの素子や回路素子の集積度がます
ます高くなつている。一方LSIチツプにおいて
は、高速作動を行なうに従いチツプから発生する
熱が多量になつてくる傾向にある。この結果、基
板の発熱が大幅に増加し、アルミナ基板では熱の
放散が十分行なえず、基板温度が上昇することに
よりLSIチツプおよび実装素子に悪影響をおよぼ
すという問題が生じている。そのため、アルミナ
基板より熱伝導率が大きく熱の放散性に優れた絶
縁基板が必要になつてきた。 そこで開発されたのが炭化ケイ素を主成分とし
たセラミツク基板であり熱放散性に対して優れた
特性をもつている。炭化ケイ素はそれ自体電気的
には半導体に属し、比抵抗が1〜10Ω・cm程度で
電気絶縁性が悪いため、絶縁基板として用いるに
は問題がある。また炭化ケイ素は融点が高く非常
に焼結しにくいので通常焼結に際しては少量の焼
結添加剤を添加し、高圧で加圧するいわゆるホツ
トプレス法により作られている。この焼結添加剤
として酸化ベリリウムや窒化ホウ素を用いると焼
結効果だけでなく電気絶縁性に対しても有効で、
炭化ケイ素主成分の焼結基板の比抵抗が1010Ωcm
以上となる。しかしLSI等の実装基板において、
重要な要因の1つである誘電率におては1MHzの
周波数で40とかなり高く、添加剤を加えた絶縁性
も、電圧が高くなると粒子界面での絶縁性が急激
に低下するため耐電圧に対しても問題がある。 またプロセス的観点からしてホツトプレス法を
適用しなければならず、装置が大がかりになるば
かりでなく、基板の形状も大面積化は困難であ
り、表面平滑性に対しても問題が多い。 一方高密度化に対して期待されている実装基板
として多層セラミツク基板がある。これはセラミ
ツクグリーンシートを用いたもので基板内に層状
に各種導体パターンが形成されており、層間をス
ルーホールを介して電気的に接続されているもの
である。該多層セラミツク基板の材料としては、
アルミナ、ガラスセラミツク等が現在開発されて
いるが、ホツトプレス法を用いる炭化ケイ素系材
料ではプロセス的に極めて困難である。 一般に高密度実装基板として具備すべき主な性
質としては(1)電気特性においては誘電率が低く、
誘電損失が小さく、また電気絶縁性に優れている
こと、(2)機械的強度が十分であること、(3)熱伝導
性が高いこと、(4)熱膨張系数がシリコンチツプの
それに近いこと、および(5)表面平滑性が優れてい
ること、(6)高密度化が容易であること等が必要で
ある。 これらの基板性質全般に対して前述の各種セラ
ミツク基板は、決して十分なものであるとはいえ
ない。 本発明者らは、これらの具備すべき基板性質を
留意しながら、特に高熱伝導性および多層高密度
化に着目して、常圧法により焼結可能な窒化アル
ミニウム系粉末を用い、高温で焼結できる導体と
して窒化チタンを用いた高熱伝導多層セラミツク
配線基板の製造方法の発明に至つた。 (発明の目的) 本発明は、前述した従来の実装基板の欠点を除
去せしめて、熱伝導性の優れた高密度な高熱伝導
多層セラミツク配線基板を得るための製造方法を
提供することにある。 (発明の構成) 本発明によれば窒化アルミニウム粉末と焼結添
加剤とからなる混合粉末と、有機バインダーおよ
び有機溶剤との混合物からなるグリーンシートに
窒化チタンを主成分とするペーストを用いて導体
層およびスルーホール中の導体埋め込みを行なう
工程と、導体形成された各グリーンシートを積層
熱圧着する工程と、非酸化性雰囲気で脱バインダ
ーおよび焼成を行なう工程とを備えたことを特徴
とする高熱伝導多層セラミツク基板の製造方法が
得られる。 (構成の詳細な説明) 本発明は、上述の構成をとることにより従来技
術の問題点を解決した。 まず多層セラミツク基板を構成する絶縁セラミ
ツク材料として、熱伝導性の高い窒化アルミニウ
ムを用い、焼結性を高めるために焼結添加剤を加
えた。この材料は焼成後窒化アルミニウム多結晶
の緻密な構造体を形成する。 有機バインダー等と混合し泥奬化する工程にお
いては、非酸化性雰囲気下で脱バインダーが相当
に起こるように非酸化性雰囲気下で分解しやすい
有機物を適用した。製膜工程では、薄く・厚みの
均質なグリーンシートを形成する。 次に層間導通をもたせるスルーホールの形成工
程では、基本的には機械的な方法により極めて微
細な貫通孔を形成し、導体形成は、電源層、グラ
ンド層および微細な信号線等の多数の導体層を形
成するとともにスルーホールへの導体埋め込みも
行なう。 積層熱圧着工程では、高精度に微細パターンを
積み重ね一体化した生積層基板を得ることが出き
る。該生積層基板を非酸化雰囲気で有機物を適度
に除去したのち高温で焼きかためる。 このようにして製造された高熱伝導多層セラミ
ツク基板においては、窒化アルミニウムで構成さ
れているセラミツク層に、複数の電源層、グラン
ド層および微細な信号線等が形成され、これらの
導体層をセラミツク層中に設けたスルーホールを
介して電気的に接続されている構造をとつてい
る。 したがつて実装基板の配線密度が非常に高めら
れるとともに、LSI等の素子から発生する熱を、
効率的に外部に放散することが可能となる。 (実施例) 以下本発明の実施例について図面を参照して詳
細に説明する。 まず高純度の窒化アルミニウム微粉末と焼結添
加剤の粉末を秤量する。ここで用いる焼結添加剤
としてはCa,Sr,Ba,Na,K,Rb,Cs,Cu,
Ag,Mg,Cd,Hg,Zn,Al,Ce等のアセチリ
ド化合物および酸化物の少なくとも一種以上から
なつており、焼結添加剤の量は0.1wt%〜10wt%
の範囲で秤量した。 この秤量した粉末をボールミルにより有機溶剤
を用い湿式混合した。この十分に混合した粉末
と、ポリメタアクリレート系、ポリアクリレート
系、ポリカプロラクトン系、ポリビニルブチラー
ル系等の有機バインダーと有機溶剤とともに攪拌
機例えばホモミキサー等で混合し泥奬化した。こ
の時の泥奬の粘度は3000〜7000cpの範囲が適当
である。粘度が1000cp以下であれば製膜工程で
有機フイルム上で表面張力によりはじきが生じ、
10000cp以上であれば、泥奬中に含まれる異物等
を濾し分ける際に泥奬がメツシユ綱を通過するの
が非常に困難になることや泥奬中のガスを取り除
くための脱泡工程の際十分にガスが抜け切れなく
なり製膜性が悪くなる。 次に適当な粘度に調整した泥奬をポリエステル
系有機フイルム上にキヤステイング製膜法により
10μm〜200μm程度の均一な厚みになるようにシ
ートを形成する。この薄いグリーンシートを有機
フイルムから剥離し、第1図a,bに示すように
各層間を電気的に接続するためのスルーホール1
を形成する。ここで第1図aは平面図、第1図b
は断面図である。スルーホールの形成は、機械的
方法でポンチおよびダイを用いて行なつたが他に
レーザー加工等の方法によつても開けることが可
能である。機械的方法により形成したスルーホー
ル径は最小で70μm程度が可能であつた。 スルーホールの形成されたグリーンシート上
へ、第2図a,bに示すように導体ペーストをス
クリーン印刷法により所定の位置に所定の導体パ
ターン2を厚膜印刷する。ここで用いる導体とし
ては、セラミツク基板を1500℃以上の高温で焼結
しなければならないため、高融点金属を用いる必
要がある。 本発明においては、焼結後窒化チタンを形成す
る導体材料として窒化チタン粉末を用いた導体ペ
ーストを利用した。窒化チタンは立方晶系の結晶
構造をとり電気抵抗は22×10-6Ω・cmという低い
値を示す。したがつて導体ペーストとして厚膜形
成した場合においても、窒化チタンの本来の電気
抵抗値を示さないまでも、配線導体として十分に
低い抵抗値を示した。この印刷工程においては、
層間の電気接続を行なうためのスルーホール内に
同様の導体ペーストを埋め込む工程を含んでい
る。 こうして導体を印刷および埋め込んだ各パター
ンのグリーンシートを第3図に示すように所望の
枚数積層し、熱圧着を行なつた。第3図には導体
パターン2を形成した絶縁体グリーンシート3が
多数枚重なつている構造をもつ生積層体の断面図
を示す。グリーンシートの積層数は、10〜50層で
構成されている。熱圧着条件は、温度70℃〜110
℃の圧力は200〜300Kg/cm2であつた。該工程は、
配線パターンおよびスルーホールが微細に形成さ
れている各グリーンシートを位置ずれなく高精度
に積層しなければならない。 次に積層され一体化した生基板を窒素雰囲気で
脱バインダーを行ないさらに高温で焼結する。第
4図には、脱バインダーおよび焼成の温度プロフ
アイルの一例を示す。脱バインダー工程が終了す
るまでは昇温スピードを遅くし400〜500℃の範囲
で一定時間保持する。この脱バインダー工程にお
いて有機物の除去を適度にコントロールした。な
ぜならば、残留物が窒化アルミニウム焼結体の焼
結性および特性に大きく影響をおよぼすためであ
る。ひきつづき1500℃〜2000℃まで温度を上げ、
最高温度で2時間保持して焼結を行なつた。第4
図には脱バインダーの保持温度が500℃、焼結温
度が1800℃の場合の例を示した。この一連の工程
中の雰囲気は窒化ガスを用いてコントロールし
た。また焼結は常圧の状態で行なつた。脱バイン
ダーでの昇温スピードをあまり速くしすぎると、
急激な有機物の分解蒸散が起ることによりクラツ
クや層間剥離等の不良が発生する原因になる。 このようにして作成した窒化アルミニウムを主
成分とした高熱伝導多層セラミツク基板の模式的
な斜視断面図を第5図に示す。11は絶縁セラミ
ツク層であり、主成分として窒化アルミニウムの
多結晶体で構成されている。12は信号線および
電源等の導体層であり、窒化チタン導体ペースト
を用いており焼成後窒化チタン多結晶体を形成し
ており、絶縁セラミツク層に形成されているスル
ーホール13を介して各層間を電気的に接続して
いる。このように構成されている多層セラミツク
基板上にはLSIチツプがマウント出来るようにダ
イパツド14およびボンデイングパツド15が形
成され、該実装基板外に信号を取り出したり基板
内へ信号を入れたりするためのI/Oパツド16
が基板裏面に形成されている。基板上にマウント
されているLSIチツプから発生する熱をダイパツ
ド14を介してセラミツク基板内へ拡散させる。 この焼結基板の電気的特性を測定した結果、比
抵抗は1011Ω・cm以上あり、誘電率は8.7(1M
Hz)、誘電損失は10-3以下(1MHz)と小さな値で
あつた。電気的特性においては、従来の基板と比
較して同程度であり実装基板として十分な特性で
あることがわかつた。 第1表には、本発明の製造方法により作成した
多層セラミツク基板の一実施例の基板性状および
諸特性を示す。
(Industrial Application Field) The present invention relates to a method for manufacturing a multilayer ceramic substrate, particularly a highly thermally conductive multilayer ceramic substrate using titanium nitride as a conductor. (Prior art and its problems) With the dramatic progress of the semiconductor industry, ICs and LSIs have come to be widely used for industrial and consumer purposes, and electronic devices are becoming smaller, more dense, and more sophisticated. is in progress. In particular, multilayer ceramic substrates are attracting attention as high-density mounting substrates for high-speed operation LSIs with high integration density are essential. This multilayer ceramic substrate can be used to directly mount LSIs, and it is also possible to perform fine wiring in multiple layers. Generally, alumina is mainly used as the material for ceramic substrates, but in recent years electronic devices have become smaller and higher circuit densities are required, and the degree of integration of elements and circuit elements per unit area of the substrate has increased. It's getting higher and higher. On the other hand, LSI chips tend to generate more heat as they operate at higher speeds. As a result, the heat generated by the board increases significantly, and the alumina board is unable to dissipate heat sufficiently, causing a problem in that the board temperature rises and adversely affects the LSI chip and mounted elements. Therefore, an insulating substrate that has higher thermal conductivity and better heat dissipation than an alumina substrate has become necessary. Therefore, a ceramic substrate containing silicon carbide as its main component was developed, and it has excellent heat dissipation properties. Silicon carbide itself electrically belongs to a semiconductor, has a specific resistance of about 1 to 10 Ω·cm, and has poor electrical insulation properties, so it is problematic to use as an insulating substrate. Furthermore, since silicon carbide has a high melting point and is very difficult to sinter, it is usually produced by the so-called hot press method in which a small amount of sintering additive is added and pressed under high pressure. When beryllium oxide or boron nitride is used as a sintering additive, it is effective not only for the sintering effect but also for electrical insulation.
The specific resistance of the sintered substrate mainly composed of silicon carbide is 10 10 Ωcm.
That's all. However, in mounting boards such as LSI,
The dielectric constant, which is one of the important factors, is quite high at 40 at a frequency of 1 MHz, and even with the addition of additives, the dielectric constant at the particle interface rapidly decreases as the voltage increases, so the withstand voltage is low. There are also problems with. Further, from a process standpoint, a hot press method must be applied, which not only increases the size of the apparatus, but also makes it difficult to increase the shape of the substrate, and there are many problems with surface smoothness. On the other hand, a multilayer ceramic substrate is a mounting substrate that is expected to be used for higher density. This uses ceramic green sheets, and has various conductor patterns formed in layers within the substrate, and the layers are electrically connected via through holes. The material of the multilayer ceramic substrate is as follows:
Alumina, glass ceramics, etc. are currently being developed, but silicon carbide materials using hot pressing are extremely difficult to process. In general, the main properties that a high-density mounting board should have are (1) low dielectric constant in terms of electrical properties;
Low dielectric loss and excellent electrical insulation, (2) sufficient mechanical strength, (3) high thermal conductivity, and (4) thermal expansion coefficient close to that of silicon chips. , (5) excellent surface smoothness, and (6) easy densification. The various ceramic substrates described above are by no means sufficient in terms of these substrate properties in general. The inventors of the present invention focused on high thermal conductivity and high multi-layer density while keeping these substrate properties in mind, using aluminum nitride-based powder that can be sintered by normal pressure method, and sintering at high temperature. This led to the invention of a method for manufacturing a highly thermally conductive multilayer ceramic wiring board using titanium nitride as a conductor. (Object of the Invention) An object of the present invention is to provide a manufacturing method for obtaining a high-density, high-thermal conductive multilayer ceramic wiring board with excellent thermal conductivity by eliminating the drawbacks of the conventional mounting board described above. (Structure of the Invention) According to the present invention, a conductor is formed by using a paste mainly composed of titanium nitride on a green sheet made of a mixed powder made of aluminum nitride powder and a sintering additive, and a mixture of an organic binder and an organic solvent. A high-temperature method characterized by comprising a step of embedding conductors in layers and through-holes, a step of laminating and thermocompression bonding each green sheet on which a conductor has been formed, and a step of debinding and firing in a non-oxidizing atmosphere. A method for manufacturing a conductive multilayer ceramic substrate is obtained. (Detailed Description of Configuration) The present invention solves the problems of the prior art by adopting the above-described configuration. First, aluminum nitride, which has high thermal conductivity, was used as the insulating ceramic material constituting the multilayer ceramic substrate, and a sintering additive was added to improve sinterability. After firing, this material forms a dense structure of polycrystalline aluminum nitride. In the process of mixing with an organic binder and making a slurry, an organic substance that is easily decomposed in a non-oxidizing atmosphere was used so that binder removal could occur considerably in a non-oxidizing atmosphere. In the film forming process, a thin, uniformly thick green sheet is formed. Next, in the process of forming through-holes that provide interlayer conduction, extremely fine through-holes are basically formed using a mechanical method, and conductor formation is performed using a large number of conductors such as power supply layers, ground layers, and fine signal lines. At the same time as forming the layers, conductors are also filled into the through holes. In the lamination thermocompression bonding process, it is possible to obtain a raw laminated substrate in which fine patterns are stacked and integrated with high precision. After appropriately removing organic matter from the green laminated substrate in a non-oxidizing atmosphere, it is baked at a high temperature. In the highly thermally conductive multilayer ceramic substrate manufactured in this way, a plurality of power layers, ground layers, fine signal lines, etc. are formed on the ceramic layer made of aluminum nitride, and these conductor layers are connected to the ceramic layer. It has a structure in which it is electrically connected via a through hole provided inside. Therefore, the wiring density of the mounting board is greatly increased, and the heat generated from elements such as LSI is reduced.
It becomes possible to efficiently dissipate to the outside. (Example) Examples of the present invention will be described in detail below with reference to the drawings. First, high-purity aluminum nitride fine powder and sintering additive powder are weighed. Sintering additives used here include Ca, Sr, Ba, Na, K, Rb, Cs, Cu,
It consists of at least one kind of acetylide compound and oxide such as Ag, Mg, Cd, Hg, Zn, Al, Ce, etc., and the amount of sintering additive is 0.1wt% to 10wt%.
Weighed within the range of The weighed powders were wet mixed using an organic solvent in a ball mill. This thoroughly mixed powder was mixed with an organic binder such as polymethacrylate, polyacrylate, polycaprolactone, or polyvinyl butyral and an organic solvent using a stirrer such as a homomixer to form a slurry. The appropriate viscosity of the slurry at this time is in the range of 3000 to 7000 cp. If the viscosity is less than 1000 cp, repellency will occur due to surface tension on the organic film during the film forming process.
If it is more than 10,000 cp, it will be very difficult for the mud to pass through the mesh when filtering out foreign substances contained in the mud, and it will be difficult to pass through the mesh during the defoaming process to remove gas from the mud. Gas cannot escape sufficiently, resulting in poor film-forming properties. Next, the slurry adjusted to an appropriate viscosity is coated on a polyester organic film using a casting method.
A sheet is formed to have a uniform thickness of about 10 μm to 200 μm. This thin green sheet is peeled off from the organic film, and as shown in Figure 1a and b, through holes 1 are made to electrically connect each layer.
form. Here, Figure 1 a is a plan view, Figure 1 b
is a sectional view. The through holes were formed mechanically using a punch and die, but they can also be formed by other methods such as laser processing. Through-holes formed by mechanical methods could have a minimum diameter of about 70 μm. As shown in FIGS. 2a and 2b, a predetermined conductor pattern 2 is thick-film printed onto the green sheet in which through-holes have been formed at predetermined positions using a screen printing method using conductor paste. As the conductor used here, it is necessary to use a high melting point metal because the ceramic substrate must be sintered at a high temperature of 1500°C or higher. In the present invention, a conductor paste using titanium nitride powder was used as a conductor material to form titanium nitride after sintering. Titanium nitride has a cubic crystal structure and exhibits a low electrical resistance of 22×10 -6 Ω·cm. Therefore, even when a thick film was formed as a conductor paste, it exhibited a sufficiently low resistance value as a wiring conductor, even if it did not exhibit the original electrical resistance value of titanium nitride. In this printing process,
It includes the step of embedding a similar conductive paste into through holes for making electrical connections between layers. As shown in FIG. 3, a desired number of green sheets having each pattern printed and embedded with conductors were laminated and thermocompression bonded. FIG. 3 shows a sectional view of a green laminate having a structure in which a large number of insulating green sheets 3 on which conductive patterns 2 are formed are stacked. The number of stacked green sheets is 10 to 50. Thermocompression bonding conditions are temperature 70℃~110℃
The pressure in °C was 200-300 Kg/ cm2 . The process is
Each green sheet, on which wiring patterns and through holes are minutely formed, must be laminated with high precision without misalignment. Next, the stacked and integrated raw substrates are debindered in a nitrogen atmosphere, and then sintered at a high temperature. FIG. 4 shows an example of the temperature profile of binder removal and firing. Until the binder removal process is completed, the temperature increase speed is slowed down and the temperature is maintained in the range of 400 to 500°C for a certain period of time. In this debinding step, the removal of organic matter was appropriately controlled. This is because the residue greatly affects the sinterability and properties of the aluminum nitride sintered body. Continue to raise the temperature to 1500℃~2000℃,
Sintering was carried out by holding at the maximum temperature for 2 hours. Fourth
The figure shows an example where the holding temperature for binder removal is 500°C and the sintering temperature is 1800°C. The atmosphere during this series of steps was controlled using nitriding gas. Further, sintering was performed under normal pressure. If the temperature increase speed during binder removal is too fast,
The rapid decomposition and transpiration of organic matter causes defects such as cracks and delamination. FIG. 5 shows a schematic perspective cross-sectional view of a highly thermally conductive multilayer ceramic substrate made of aluminum nitride as a main component, prepared in this way. Reference numeral 11 denotes an insulating ceramic layer, which is mainly composed of polycrystalline aluminum nitride. Reference numeral 12 denotes a conductor layer for signal lines, power supplies, etc., which uses titanium nitride conductor paste to form a titanium nitride polycrystalline body after firing, and connects each layer through through holes 13 formed in the insulating ceramic layer. are electrically connected. A die pad 14 and a bonding pad 15 are formed on the multilayer ceramic substrate constructed in this way so that an LSI chip can be mounted, and a die pad 14 and a bonding pad 15 are formed to take out a signal from the mounting board or input a signal into the board. I/O pad 16
is formed on the back side of the board. Heat generated from the LSI chip mounted on the substrate is diffused into the ceramic substrate via the die pad 14. As a result of measuring the electrical properties of this sintered substrate, the specific resistance was 10 11 Ω・cm or more, and the dielectric constant was 8.7 (1M
Hz), and the dielectric loss was small, less than 10 -3 (1MHz). It was found that the electrical characteristics were comparable to those of conventional boards, and were sufficient to be used as a mounting board. Table 1 shows substrate properties and various characteristics of an example of a multilayer ceramic substrate produced by the manufacturing method of the present invention.

【表】 本実施例は焼結添加剤としてCaC2を用い窒化
アルミニウム重量を100としたときの添加量とし
て表に示してある。表からわかるように微細な配
線パターンおよびスルーホールを形成されてお
り、抗折強度も極めて高く、熱伝導率も非常に高
い基板が得られた。さらに熱膨張係数においても
シリコンに近い値であり、LSI等の実装に極めて
都合がよい。 一方焼結添加剤としてCaC2以外のSr,Ba,
Na,K,Rb,Cs,Cu,Ag,Mg,Cd,Hg,
Zn,Al,Ceのアセチリド化合物およびCaを含め
たこれらの酸化物を添加した窒化アルミニウムの
実装多層セラミツク基板を作成した。焼成温度と
しては1500℃〜2000℃の範囲で同様の製造方法で
行なつた。その結果、作成基板の熱伝導率は、添
加量が0.5wt%〜2.0wt%までは100W/mk以上を
実現することが出来、さらに0.3wt%〜8.0wt%ま
でが80W/mk以上の値が得られ、アルミナ基板
に比較して熱放散性にすぐれていた。 (発明の効果) 実施例からも明らかなように、本発明の製造方
法を採用することにより容易に高密度な回路を形
成することが出来、セラミツク基板の熱伝導率が
高いことにより熱放散性に対しても非常に有効な
高熱伝導多層セラミツク配線基板が得られる。 従来用いられているアルミナ基板の熱伝導率は
約17W/mk程度であり、本発明方法の基板の熱
伝導率が非常に高いレベルであることがわかる。
また熱膨張係数においては、アルミナ基板が65×
10-7/℃程度であるのに対して本発明方法による
基板は小さな値をもち、よりシリコンチツプの熱
膨張係数に近い値になつており、この点において
も有利である。 一方、本発明で用いた導体ペーストの窒化チタ
ンにおいては焼結後の導体抵抗が実装基板に対し
て十分な特性を示していた。
[Table] In this example, CaC 2 was used as the sintering additive, and the amount added is shown in the table when the weight of aluminum nitride is taken as 100. As can be seen from the table, a substrate was obtained in which fine wiring patterns and through holes were formed, extremely high bending strength, and extremely high thermal conductivity. Furthermore, its coefficient of thermal expansion is close to that of silicon, making it extremely convenient for mounting LSIs and the like. On the other hand, as sintering additives other than CaC2, Sr, Ba,
Na, K, Rb, Cs, Cu, Ag, Mg, Cd, Hg,
A multilayer ceramic substrate made of aluminum nitride doped with acetylide compounds of Zn, Al, and Ce and their oxides including Ca was fabricated. The same manufacturing method was used with the firing temperature ranging from 1500°C to 2000°C. As a result, the thermal conductivity of the created substrate can achieve a value of 100W/mk or more when the additive amount is from 0.5wt% to 2.0wt%, and a value of 80W/mk or more from 0.3wt% to 8.0wt%. was obtained, and had superior heat dissipation properties compared to alumina substrates. (Effects of the Invention) As is clear from the examples, high-density circuits can be easily formed by employing the manufacturing method of the present invention, and the high thermal conductivity of the ceramic substrate improves heat dissipation. A highly thermally conductive multilayer ceramic wiring board is obtained which is also very effective for. The thermal conductivity of conventionally used alumina substrates is about 17 W/mk, and it can be seen that the thermal conductivity of the substrate according to the method of the present invention is at a very high level.
Also, in terms of thermal expansion coefficient, the alumina substrate has a coefficient of 65×
10 -7 /°C, whereas the substrate produced by the method of the present invention has a smaller coefficient of thermal expansion, which is closer to that of a silicon chip, and is advantageous in this respect as well. On the other hand, in the titanium nitride conductor paste used in the present invention, the conductor resistance after sintering showed sufficient characteristics for the mounting board.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は、本発明の実施例による高熱
伝導多層セラミツク基板の各製造工程を示す図、
第4図は実施例の焼成工程における焼成プロフア
イルを示す図、第5図は完成基板の模式的斜視
図。 1……スルーホール、2……導体、3……絶縁
体グリーンシート、11……絶縁セラミツク層、
12……導体層、13……スルーホール、14…
…ダイパツド、15……ボンデイングパツド、1
6……I/Oパツド。
1 to 3 are diagrams showing each manufacturing process of a highly thermally conductive multilayer ceramic substrate according to an embodiment of the present invention,
FIG. 4 is a diagram showing a firing profile in the firing process of the example, and FIG. 5 is a schematic perspective view of a completed substrate. 1...Through hole, 2...Conductor, 3...Insulator green sheet, 11...Insulating ceramic layer,
12... Conductor layer, 13... Through hole, 14...
...Die pad, 15...Bonding pad, 1
6...I/O pad.

Claims (1)

【特許請求の範囲】[Claims] 1 セラミツク層が窒化アルミニウムを主成分と
する多結晶体であり導体が窒化チタンを主成分と
して構成されている多層セラミツク基板の製造方
法において、窒化アルミニウム粉末と焼結添加剤
とから成る混合粉末と、有機バインダーおよび有
機溶剤との混合物からなるグリーンシートに窒化
チタンを主成分とする導体ペーストを用いて導体
層形成およびスルーホール中の導体埋め込みを行
なう工程と、導体形成された各グリーンシートを
積層熱圧着する工程と、非酸化性雰囲気でこれら
の脱バインダーおよび焼成を行なう工程を備えた
ことを特徴とする高熱伝導多層セラミツク配線基
板の製造方法。
1. In a method for manufacturing a multilayer ceramic substrate in which the ceramic layer is a polycrystalline body mainly composed of aluminum nitride and the conductor is composed mainly of titanium nitride, a mixed powder consisting of aluminum nitride powder and a sintering additive is used. , a process of forming a conductor layer on a green sheet made of a mixture of an organic binder and an organic solvent using a conductor paste mainly composed of titanium nitride and embedding the conductor in the through holes, and laminating the green sheets with conductors formed thereon. A method for producing a highly thermally conductive multilayer ceramic wiring board, comprising the steps of thermocompression bonding, and removing the binder and firing in a non-oxidizing atmosphere.
JP60072167A 1985-04-05 1985-04-05 Manufacture of high heat conductivity multilayer ceramic wiring substrate Granted JPS61230399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60072167A JPS61230399A (en) 1985-04-05 1985-04-05 Manufacture of high heat conductivity multilayer ceramic wiring substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60072167A JPS61230399A (en) 1985-04-05 1985-04-05 Manufacture of high heat conductivity multilayer ceramic wiring substrate

Publications (2)

Publication Number Publication Date
JPS61230399A JPS61230399A (en) 1986-10-14
JPH0523079B2 true JPH0523079B2 (en) 1993-03-31

Family

ID=13481407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60072167A Granted JPS61230399A (en) 1985-04-05 1985-04-05 Manufacture of high heat conductivity multilayer ceramic wiring substrate

Country Status (1)

Country Link
JP (1) JPS61230399A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11993843B2 (en) 2017-08-31 2024-05-28 Asm Ip Holding B.V. Substrate processing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11993843B2 (en) 2017-08-31 2024-05-28 Asm Ip Holding B.V. Substrate processing apparatus

Also Published As

Publication number Publication date
JPS61230399A (en) 1986-10-14

Similar Documents

Publication Publication Date Title
JPH0452000B2 (en)
JP4610114B2 (en) Manufacturing method of ceramic wiring board
JPH0544840B2 (en)
JPH0636473B2 (en) Multilayer ceramic board
JPH0523079B2 (en)
JPH0523078B2 (en)
JPH0523076B2 (en)
JPS6310594A (en) High heat conductivity multilayer ceramic interconnection board
JPH11251700A (en) Copper-metallized composition and glass ceramic wiring board using the composition
JPH0523077B2 (en)
JP3171695B2 (en) Manufacturing method of aluminum nitride circuit board
JPH0443440B2 (en)
JPH0636474B2 (en) Method for manufacturing multilayer ceramic wiring board
JPH0320915B2 (en)
JPH0445997B2 (en)
JPS63292693A (en) Multilayered ceramic wiring substrate characterized by high heat conductivity
JPH0415638B2 (en)
JPS6276592A (en) Multilayer ceramic circuit substrate
JPH0413879B2 (en)
JPH0415637B2 (en)
JPS6284594A (en) Multilayer ceramic wiring substrate
JPH088415B2 (en) Method for manufacturing aluminum nitride multilayer wiring board
JPH0415639B2 (en)
JPS6276594A (en) Multilayer ceramic circuit substrate
JPS63122195A (en) Conductor paste for mullite system ceramic multilayer interconnection board

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term