JPH0522950A - Inverter device - Google Patents

Inverter device

Info

Publication number
JPH0522950A
JPH0522950A JP3167931A JP16793191A JPH0522950A JP H0522950 A JPH0522950 A JP H0522950A JP 3167931 A JP3167931 A JP 3167931A JP 16793191 A JP16793191 A JP 16793191A JP H0522950 A JPH0522950 A JP H0522950A
Authority
JP
Japan
Prior art keywords
frequency
output
carrier
control
asynchronous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3167931A
Other languages
Japanese (ja)
Inventor
Kazuharu Ohashi
和治 大橋
Hiromichi Nishimura
博道 西村
Akiyoshi Murakami
明美 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3167931A priority Critical patent/JPH0522950A/en
Publication of JPH0522950A publication Critical patent/JPH0522950A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To prevent a frequency jump at the time of an output, and to inhibit an output voltage jump by changing over control from synchronous type control to asynchronous type control once, continuously changing carrier frequency in asynchronous type control and changing over asynchronous type control to synchronous control again when output frequency is changed. CONSTITUTION:Command frequency f' is input to a frequency controller 8 from the outside. An output (f) from the output frequency control section 9 of the frequency controller 8 and an output V from an output-voltage control section 10 are input to an output wave-form reference generator 6, and an output waveform reference as a modulated wave is generated. On the other hand, carrier frequency fc and a synchronous/asynchronous changeover signal are transmitted over a carrier generator 7 from a carrier control section 11. The carrier generator 7 can change over synchronous/asynchronous carriers, and the frequency controller 8 can change over carriers to specified carrier frequency fc on asynchronous control. An output wave-form reference from the output waveform reference 6 and carriers from the generator 7 are compared by a PWM signal generator 5, and a PWM signal is transmitted over an inverter 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

[発明の目的] [Object of the Invention]

【0001】[0001]

【産業上の利用分野】本発明は、PWM制御方式のイン
バータ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a PWM control type inverter device.

【0002】[0002]

【従来の技術】インバータ装置の1種類である電圧形イ
ンバータ装置で交流電力を得る方式は、誘導電動機の駆
動を中心に多くの分野で応用されている。ところで、こ
のようなインバータ装置において、出力電圧の基本成分
である変調波信号と、三角波等の搬送波の比較でパルス
信号に変換するいわゆるPWM制御方式が一般的であ
る。
2. Description of the Related Art A method of obtaining AC power from a voltage type inverter device, which is one type of inverter device, is applied in many fields, mainly for driving an induction motor. By the way, in such an inverter device, a so-called PWM control method is generally used in which a modulated wave signal which is a basic component of an output voltage and a carrier wave such as a triangular wave are compared to convert into a pulse signal.

【0003】PWM制御方式を大別すると、同期式と非
同期式に分かれる。同期式PWM制御は、出力周波数と
搬送波の周波数が整数比である運転モードで、出力の位
相に対応して搬送波の位相が決まっており、誘導電動機
を安定に運転することができる。
The PWM control system is roughly classified into a synchronous system and an asynchronous system. The synchronous PWM control is an operation mode in which the output frequency and the frequency of the carrier wave are integer ratios, and the phase of the carrier wave is determined corresponding to the phase of the output, and the induction motor can be operated stably.

【0004】一方、非同期式PWM制御は、出力周波数
と搬送波の周波数が整数比でないために出力位相と搬送
波位相が異なり、場合によっては電流やトルクにビート
が生じる場合がある。
On the other hand, in the asynchronous PWM control, the output phase and the carrier wave phase are different because the output frequency and the carrier wave frequency are not an integer ratio, and in some cases, a beat may occur in current or torque.

【0005】[0005]

【発明が解決しようとする課題】上述したように、安定
した同期式PWM制御によれば、出力周波数とともに搬
送波周波数が比例して上昇するが、インバータ装置のス
イッチング素子のスイッチング周波数の制限があるか
ら、搬送波を切換えてスイッチング周波数がある範囲内
にあるようにする必要がある。例えば、図6に示すよう
に、出力周波数f1からf2 まで加速する場合、搬送波
はX1 −Y1 間,X2 −Y2 間,X3 −Y3間で切換え
られ、この切換えポイントで搬送波周波数がジャンプ
し、出力電圧のジャンプやトルクリップルによる負荷振
動が起こる場合がある。
As described above, according to the stable synchronous PWM control, the carrier frequency increases proportionally with the output frequency, but the switching frequency of the switching element of the inverter device is limited. , It is necessary to switch the carrier wave so that the switching frequency is within a certain range. For example, as shown in FIG. 6, when accelerating from the output frequency f 1 to f 2 , the carrier wave is switched between X 1 -Y 1 , X 2 -Y 2 and X 3 -Y 3 , and the switching points At this point, the carrier frequency jumps, which may cause output voltage jump or load vibration due to torque ripple.

【0006】図7に搬送波切換えの電流波形及びトルク
のシュミレーション結果を示す。この図7に示したシュ
ミレーション結果からトルクが搬送波切換点で振動する
ことは明らかである。
FIG. 7 shows a current waveform and a torque simulation result for switching the carrier wave. From the simulation result shown in FIG. 7, it is clear that the torque oscillates at the carrier switching point.

【0007】このような搬送波切換は、周波数を変更し
た場合に生じるものであるが、電圧やトルクにこのよう
な特異点がある場合、例えば次の様な問題が生じる。染
色等にインバータ装置を使用する場合色ムラが発生し、
糸巻機に使用する場合糸切れが生じる。
Such carrier switching occurs when the frequency is changed, but when the voltage or torque has such a singular point, the following problems occur, for example. When using an inverter device for dyeing etc., color unevenness will occur,
Thread breakage occurs when used in a bobbin winder.

【0008】一方、非同期式PWM制御の場合、周波数
変更中は搬送波周波数のジャンプする特異点が存在しな
いため出力電圧のジャンプやトルクリップルによる負荷
振動は生じないが、定速運転中には先に述べたように、
電流やトルクにビートが生じ不安定な運転となり、やは
り問題となる場合が多い。
On the other hand, in the case of asynchronous PWM control, since there is no singular point where the carrier frequency jumps during frequency change, output voltage jump and load vibration due to torque ripple do not occur, but during constant speed operation first. As mentioned,
Beating occurs in current and torque, resulting in unstable operation, which often causes problems.

【0009】そこで、本発明は、以上の点を考慮し、同
期式PWM制御での出力周波数変更時や非同期式PWM
制御での定速運転時において、出力電圧ジャンプや負荷
振動等を発生しない搬送波切換を実現するインバータ装
置を提供することを目的とする。 [発明の構成]
In view of the above points, the present invention considers the above when changing the output frequency in the synchronous PWM control or when using the asynchronous PWM control.
It is an object of the present invention to provide an inverter device that realizes carrier wave switching that does not generate output voltage jumps or load vibrations during constant speed operation under control. [Constitution of Invention]

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、パルス幅変調の搬送波を出力周波数の整
数倍とする同期式制御と、出力周波数には無関係の非同
期式制御とを任意に切換るインバータ装置において、前
記出力周波数を変更する際には一旦同期式制御から非同
期式制御に切換え出力周波数を変更する変更手段と、搬
送波周波数が連続となるように再び非同期式制御から同
期式制御に切換える切換手段とを有するインバータ装置
を提供する。
In order to achieve the above object, the present invention provides a synchronous control in which a carrier of pulse width modulation is an integral multiple of an output frequency and an asynchronous control unrelated to the output frequency. In an inverter device that switches arbitrarily, when changing the output frequency, change means for temporarily changing the output frequency from synchronous control to asynchronous control and changing means for changing the output frequency from the asynchronous control again so that the carrier frequency becomes continuous. Provided is an inverter device having a switching means for switching to a type control.

【0011】[0011]

【作用】このように構成された本発明のインバータ装置
においては、出力周波数を変更する際には、一旦同期式
制御から非同期式制御に切換えてから出力周波数を変更
し、非同期式制御では搬送波周波数を連続的に変化さ
せ、再び同期式制御に切換えるので、出力周波数波変更
時に搬送波周波数ジャンプを防止でき、これに起因する
負荷振動や出力電圧ジャンプを抑制できる。
In the inverter device of the present invention thus constructed, when changing the output frequency, the output frequency is changed after switching from the synchronous control to the asynchronous control, and the carrier frequency is changed in the asynchronous control. Is continuously changed and the control is switched to the synchronous control again, so that the carrier frequency jump can be prevented when the output frequency wave is changed, and the load vibration and the output voltage jump resulting from this can be suppressed.

【0012】[0012]

【実施例】以下、本発明の一実施例を図面を用いて説明
する。図1は、本発明の第1の実施例を示す構成図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【0013】図中、1は直流電流、2は直流フィルタコ
ンデンサ、3はインバータ、4は負荷、5はPWM信号
発生器、6は出力波形基準生成器、7は搬送波発生器、
8は周波数制御器である。また、周波数制御器8の内部
は出力周波数制御部9、出力電圧制御部10、搬送波制
御部11から構成されている。
In the figure, 1 is a DC current, 2 is a DC filter capacitor, 3 is an inverter, 4 is a load, 5 is a PWM signal generator, 6 is an output waveform reference generator, 7 is a carrier wave generator,
Reference numeral 8 is a frequency controller. The inside of the frequency controller 8 is composed of an output frequency controller 9, an output voltage controller 10, and a carrier wave controller 11.

【0014】外部より指令周波数f* が周波数制御器8
に入力される。周波数制御器8の出力周波数制御部9の
出力f、出力電圧制御部10の出力Vは、出力波形基準
生成器6に入力され、被変調波である出力波形基準が生
成される。一方、搬送波制御部11から搬送波周波数f
cと同期/非同期切換信号が搬送波発生器7に伝達され
る。搬送波発生器7は同期/非同期の搬送波切換がで
き、非同期の場合、周波数制御器8指定される搬送波周
波数fcに切換可能である。出力波形基準6からの出力
波形基準と、搬送波発生器7からの搬送波をPWM信号
発生器5で比較し、PWM信号をインバータ3に伝達す
る。周波数制御器8の搬送波制御部11の動作をソフト
ウェアで実行した場合のフローチャートを図2に、その
ときの搬送波切換概念図を図3に示す。
External command frequency f * Is the frequency controller 8
Entered in. The output f of the output frequency control unit 9 of the frequency controller 8 and the output V of the output voltage control unit 10 are input to the output waveform reference generator 6 and an output waveform reference which is a modulated wave is generated. On the other hand, the carrier frequency f from the carrier control unit 11
c and the synchronous / asynchronous switching signal are transmitted to the carrier wave generator 7. The carrier wave generator 7 is capable of synchronous / asynchronous carrier wave switching, and in the case of non-synchronization, can be switched to the carrier wave frequency fc designated by the frequency controller 8. The PWM signal generator 5 compares the output waveform reference from the output waveform reference 6 with the carrier wave from the carrier wave generator 7, and transmits the PWM signal to the inverter 3. FIG. 2 shows a flowchart when the operation of the carrier wave control unit 11 of the frequency controller 8 is executed by software, and FIG. 3 shows a conceptual diagram of carrier wave switching at that time.

【0015】図2のP1 において、出力周波数が加速中
かを判断し、P2 では減速中かを判断する。加速中でも
減速中でも無く、同期運転している場合はP3 で判断し
てP4 へ進む。P4 では同期式PWMの搬送波周波数f
cを次式の様に計算する。 fc=nf …………… (1) ここで、nは整数、fは出力周波数である。P5 で同期
指令を出力し、搬送波発生器7に伝達される。
At P 1 in FIG. 2, it is determined whether the output frequency is accelerating, and at P 2 it is determined whether the output frequency is decelerating. Nor in deceleration even during acceleration, when the synchronized operation proceeds to P 4 as judged by P 3. At P 4 , the carrier frequency f of the synchronous PWM is
Calculate c as follows. fc = nf (1) Here, n is an integer and f is an output frequency. A synchronization command is output at P 5 and is transmitted to the carrier wave generator 7.

【0016】一方、加速または減速中あるいは非同期運
転中の場合、P6 で指令周波数f* における同期搬送波
周波数fc* を計算する。図3中A点からC点まで加速
する場合、fc2 がfc* に相当する。
On the other hand, during acceleration or deceleration or asynchronous operation
In case of transfer, P6Command frequency f* Sync carrier at
Frequency fc* To calculate. Acceleration from point A to point C in Figure 3
If you do, fc2Is fc* Equivalent to.

【0017】次に、P7 において、現在の非同期搬送波
周波数fcと目標搬送波周波数fc* を比較し、等しく
ない場合は、その大小に応じてP9 、P10でfcを変更
する。fc=fc* の場合、P8 で出力周波数fが指令
周波数f* に達したかを判断し、達した場合は同期指令
に、達しない場合は非同期指令P11に進む。図3中A点
からC点まで加速する場合、A点からB点までは図2中
10を通り、B点からC点までP8 を通る非同期指令と
なる。
Next, at P 7 , the current asynchronous carrier frequency fc and the target carrier frequency fc * Are compared, and if they are not equal, fc is changed at P 9 and P 10 according to the magnitude. fc = fc * , The output frequency f is the command frequency f * at P 8 . It is determined whether or not has reached, and if it has reached, the process proceeds to the synchronous command, and if not, to the asynchronous command P 11 . In the case of accelerating from point A to point C in FIG. 3, P 10 in FIG. 2 is passed from point A to point B, and P 8 is passed from point B to point C as an asynchronous command.

【0018】また、図3A点からC´点まで加速する場
合、A点からB´点までは図2中P2 、P9 を通り、B
´点からC´点まではP3 、P9 を通る非同期指令とな
る。以上述べたように、第1の実施例によれば、周波数
変更時に搬送波周波数のジャンプや搬送波周波数の急激
な変化がなくなり、出力電圧のジャンプや負荷振動を回
避できる。また、定速運転時には同期式PWM制御を使
用するため、安定した運転が可能である。更に、第2の
実施例として先の実施例では、周波数変更時は全て非同
期式PWMで行なったが、一部あるいは全部を同期式P
WMを使うこともできる。図4は、2の実施例の搬送波
切換方法の概念図である。図4において、出力周波数を
A点から加速する場合、搬送波切換には次の3通りあ
る。
Further, when accelerating from point A to point C'in FIG. 3, point A to point B'passes through P 2 and P 9 in FIG.
From 'point to the C'point is asynchronous command through the P 3, P 9. As described above, according to the first embodiment, when the frequency is changed, the carrier frequency jump and the carrier frequency abrupt change are eliminated, and the output voltage jump and the load vibration can be avoided. Further, since the synchronous PWM control is used during constant speed operation, stable operation is possible. Further, as the second embodiment, in the previous embodiment, when the frequency is changed, all are performed by the asynchronous PWM, but a part or all is performed by the synchronous P.
You can also use WM. FIG. 4 is a conceptual diagram of the carrier switching method of the second embodiment. In FIG. 4, when the output frequency is accelerated from point A, there are the following three ways to switch the carrier wave.

【0019】[0019]

【表1】 また、出力周波数をC点から減速する場合、搬送波切換
には次の3通りある。
[Table 1] When the output frequency is decelerated from point C, there are the following three ways to switch the carrier wave.

【0020】[0020]

【表2】 また、更に第3の実施例の搬送波切換方法の概念図を図
5に示す。
[Table 2] Further, FIG. 5 shows a conceptual diagram of the carrier wave switching method of the third embodiment.

【0021】図5は、点AからC点まで搬送波周波数を
直線的に切換えた場合である。なお上記第1乃至第3の
実施例では、搬送波周波数を直線的に変化させたが、曲
線的に変化させてもよい。また、第2及び第3の実施例
でも搬送波周波数のジャンプなしで出力周波数の変更が
できる。また、周波数制御器8は、ソフトウェアにて実
現したが、ハードウェアにて構成しても同様の効果が得
られる。
FIG. 5 shows the case where the carrier frequency is linearly switched from point A to point C. Although the carrier frequency is linearly changed in the first to third embodiments, it may be curved. Also in the second and third embodiments, the output frequency can be changed without jumping the carrier frequency. Further, although the frequency controller 8 is realized by software, the same effect can be obtained by configuring it by hardware.

【0022】[0022]

【発明の効果】以上述べてきたように、本発明によれ
ば、インバータ装置の定速運転時には同期式制御を使用
して安定した運転ができ、出力周波数変更時に搬送波周
波数ジャンプをなくすことができ、搬送波周波数がジャ
ンプしたときに発生する負荷振動や出力電圧のジャンプ
をなくすことができる。
As described above, according to the present invention, stable operation can be performed by using synchronous control during constant speed operation of the inverter device, and carrier frequency jump can be eliminated when the output frequency is changed. The load vibration and output voltage jump that occur when the carrier frequency jumps can be eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す概要構成図。FIG. 1 is a schematic configuration diagram showing a first embodiment of the present invention.

【図2】本発明の第1の実施例における搬送波周波数切
換を示すフローチャート。
FIG. 2 is a flowchart showing carrier frequency switching in the first embodiment of the present invention.

【図3】本発明の第1の実施例の搬送波切換を示す概念
図。
FIG. 3 is a conceptual diagram showing carrier switching according to the first embodiment of the present invention.

【図4】本発明の第2の実施例における搬送波周波数切
換を示す概念図。
FIG. 4 is a conceptual diagram showing carrier frequency switching in the second embodiment of the present invention.

【図5】本発明の第3の実施例における搬送波周波数切
換を示す概念図。
FIG. 5 is a conceptual diagram showing carrier frequency switching in the third embodiment of the present invention.

【図6】従来のインバータ装置における搬送波周波数切
換を示す概念図。
FIG. 6 is a conceptual diagram showing carrier frequency switching in a conventional inverter device.

【図7】従来のインバータ装置における搬送波周波数切
換を示す特性図。
FIG. 7 is a characteristic diagram showing carrier frequency switching in a conventional inverter device.

【符号の説明】[Explanation of symbols]

1…直流電源 2…直流フィルタコンデンサ 3…
インバータ 4…負荷 5…PWM信号発生器 6…
出力波形基準生成器 7…搬送波発生器 8…周波数制御器
1 ... DC power supply 2 ... DC filter capacitor 3 ...
Inverter 4 ... Load 5 ... PWM signal generator 6 ...
Output waveform reference generator 7 ... Carrier wave generator 8 ... Frequency controller

Claims (1)

【特許請求の範囲】 【請求項1】 パルス幅変調の搬送波を出力周波数の整
数倍とする同期式制御と、前記出力周波数には無関係の
非同期式制御とを任意に切換えるインバータ装置におい
て、前記出力周波数を変更するとき、一旦同期式制御か
ら非同期式制御に切換え、前記出力周波数を変更する変
更手段と、搬送波周波数が連続となるように再び非同期
式制御から同期式制御に切換える切換手段とを具備する
ことを特徴とするインバータ装置。
Claim: What is claimed is: 1. An inverter device for arbitrarily switching between synchronous control in which a carrier of pulse width modulation is an integer multiple of an output frequency and asynchronous control irrelevant to the output frequency. When changing the frequency, it is provided with changing means for changing the control from the synchronous control to the asynchronous control and changing the output frequency, and a changing means for changing the asynchronous control to the synchronous control again so that the carrier frequency becomes continuous. An inverter device characterized by:
JP3167931A 1991-07-09 1991-07-09 Inverter device Pending JPH0522950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3167931A JPH0522950A (en) 1991-07-09 1991-07-09 Inverter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3167931A JPH0522950A (en) 1991-07-09 1991-07-09 Inverter device

Publications (1)

Publication Number Publication Date
JPH0522950A true JPH0522950A (en) 1993-01-29

Family

ID=15858716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3167931A Pending JPH0522950A (en) 1991-07-09 1991-07-09 Inverter device

Country Status (1)

Country Link
JP (1) JPH0522950A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102684539A (en) * 2011-03-15 2012-09-19 株式会社丰田自动织机 Inverter device of rotating electrical machine, and driving method for rotating electrical machine
JP2021112010A (en) * 2020-01-08 2021-08-02 日立Astemo株式会社 Motor control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102684539A (en) * 2011-03-15 2012-09-19 株式会社丰田自动织机 Inverter device of rotating electrical machine, and driving method for rotating electrical machine
JP2012196008A (en) * 2011-03-15 2012-10-11 Toyota Industries Corp Inverter device for rotary electric machine and driving method for rotary electric machine
US8853990B2 (en) 2011-03-15 2014-10-07 Kabushiki Kaisha Toyota Jidoshokki Inverter device of rotating electrical machine, and driving method for rotating electrical machine
JP2021112010A (en) * 2020-01-08 2021-08-02 日立Astemo株式会社 Motor control device

Similar Documents

Publication Publication Date Title
US5706186A (en) Hybrid pulse width modulation method and apparatus
US6617821B2 (en) Method and apparatus for compensating for device dynamics by adjusting inverter carrier frequency
KR101004627B1 (en) System and method of reducing harmonic effects on a power delivery system
US4364109A (en) Control device of inverters
US5255175A (en) Power generation system having induction generator and controlled bridge rectifier
GB2312572A (en) Method of controlling vectors in motor and vector controlling inverter device
US5483435A (en) Power generation system having induction generator and controlled bridge rectifier
JPS6331476A (en) Method and apparatus for controlling pwm inverter
JPS6110970A (en) Electronic inverter and operating method therefor
JPH09149660A (en) Controller for pwm control inverter
JPH0522950A (en) Inverter device
US6903523B2 (en) Methods and apparatus for dynamically reconfiguring a pulse width modulation approach
JP2001128462A (en) Inverter device control method
US4259630A (en) AC Motor controller
JPH07163189A (en) Pwm controller for motor
JP2002101684A (en) Inverter control system
EP0398222A2 (en) Power generation system
JP2002010675A (en) Dc brushless-motor unit
JPH11233298A (en) Power supply device and particle accelerator
EP0105497B1 (en) Electric car control system
JP3699975B2 (en) PWM inverter device
JPH02168895A (en) Method of decreasing peak current value of voltage-type pulse width modulation control inverter
JP2522407B2 (en) Pulse generator for pulse width modulation
JPS6126316B2 (en)
JP2001275390A (en) Inverter control method