JPH0522676B2 - - Google Patents

Info

Publication number
JPH0522676B2
JPH0522676B2 JP59099130A JP9913084A JPH0522676B2 JP H0522676 B2 JPH0522676 B2 JP H0522676B2 JP 59099130 A JP59099130 A JP 59099130A JP 9913084 A JP9913084 A JP 9913084A JP H0522676 B2 JPH0522676 B2 JP H0522676B2
Authority
JP
Japan
Prior art keywords
wood vinegar
charcoal
carbide
bacteria
continuous cropping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59099130A
Other languages
Japanese (ja)
Other versions
JPS60246291A (en
Inventor
Hiroo Tamagawa
Sunao Kishimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NARA TANKA KOGYO KK
Original Assignee
NARA TANKA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NARA TANKA KOGYO KK filed Critical NARA TANKA KOGYO KK
Priority to JP59099130A priority Critical patent/JPS60246291A/en
Publication of JPS60246291A publication Critical patent/JPS60246291A/en
Publication of JPH0522676B2 publication Critical patent/JPH0522676B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は連作障害改良材に係り、その目的は
スイカやナス、トマト、エンドウなどの連作障害
を好適に回避、改善させることができ、しかも、
良好な耐加圧性、耐透水性を有し、耕耘機などに
よる加圧(踏圧)や雨水の流出などに充分耐える
ことができ、作物土壌中に好適に充填することの
できる連作障害改良材の提供にある。 (発明の背景) 一般に連作障害とは、同一の田畑に同一種また
はそれに近縁の作物を毎年続けて栽培する(連
作)することによつて、土壌がそれらの作物に対
する適合性を失い、作物の発育が悪くなることを
いい、そのため収量が減り、栽培が困難となる。 その原因としては、特定の栄養分のみの吸収に
よる養分欠乏や、特定作物に寄生する病害虫の増
加、土壌微生物相の変化、特定植物根からの生活
代謝物質の分泌による有害物質の蓄積、土壌の物
理性の変化、地力の消耗などが挙げられている。 このような連作障害を呈する作物としては、ス
イカ、トマト、ナス、ジヤガイモ、ダリア、チヨ
ウセンニンジン、アマ、エンドウなどがあげられ
る。 (従来技術及びその問題点) この発明者らは、このような連作障害を改良す
る改良材について鋭意研究を続け、土壌改良材と
して木酢液を含む炭化物に着目した。 土壌改良材は、一般に耐圧強度が大でかつ耕耘
機等の加圧(踏圧)に充分耐える強度を要すると
ともに、雨水等の流水によつて流出されないこと
が条件とされる。 燻炭はこの一例で古くから土壌改良のために使
用され、土壌の団粒構造の形成や通気性、透水性
など、土壌の物理性の向上に役立つている。 例えば、特開昭52−50874号公報では、木炭粒
に家畜糞を混入し、これに木酢液を加え、好気的
醗酵して土壌改良剤を得る「土壌改良剤の製法」
が開示されている。 しかしながら、この開示技術は、芝の生育を良
好にすることを目的としており、同一の田畑に同
じ作物を毎年続けて栽培することにより生じる連
作障害に対して有効に作用するものではなかつ
た。 さらに、この開示技術で得られる土壌改良剤の
耐圧強度や透水性については不明瞭であり、土壌
中に充填されて、耕耘機の踏圧や雨水等の流水に
充分耐用しうるかどうか疑問があつた。 しかも、この開示技術では「木酢液」を使用す
る旨が記載されているが、木酢液とは、炭化物を
得る際の揮発物を液化したもので、静置すると赤
茶色の水溶液からなる上層分と木タールからなる
粘調の高い下層部との二層に分離する。 一般に木酢液は植物の成長を促進したり、或い
は逆に阻害したりすることが知られているが、フ
エノール分が多い木酢液には阻害作用が大きいこ
と、また、土壌にタール障害を生じさせやすいこ
とが報告されている。 従つて、木酢液の使用が、作物の育成や土壌に
対して好ましい作用を発揮するか否かは、木酢液
の含有成分に依存されるわけであるが、前記した
技術においてはそのような開示がなく、単に「木
酢液」とあるのみであるから、連作障害を起こし
た土壌に対して好ましい作用を発揮するかどうか
わからないといつた課題が存在した。 そこで、この発明者らは、連作障害を起こしや
すい作物や、連作障害を引き起こした土壌に対し
て良好な効果を発揮する改良材について鋭意研究
を行つたところ、特定の炭化物と精製木酢液とを
混合して自然醗酵させ、炭化物中に放線菌や糸状
菌を、放線菌数が糸状菌数の1/10以上となるよう
付着せしめた改良材が、初めてスイカやナス、ト
マトなどの連作障害に対して極めて良好な改善作
用を呈することを見い出した。 この連作障害改良材は連作障害を起こした土壌
に対して極めて良好な作用を有するものであつた
が、さらに有効な効果を発揮できる連作障害改良
材の創出が望まれていた。 (発明の解決手段) この発明では粒度が6乃至80メツシユに調整さ
れ、且つその嵩比重が0.5以上である炭化物100重
量部と、10倍以上の濃度で希釈された精製木酢液
20重量部とを混合し菌培養液と菌株とを添加した
後、炭化物中の放線菌数が糸状菌数の1/10以上と
なるよう自然醗酵して得られる菌含有炭化物と、
精製木酢液原液中に前記炭化物を浸漬させて得ら
れる木酢液原液含有炭化物とを混合してなること
を特徴とする連作改良材を提供することにより上
記従来の課題を悉く解消する。 (発明の構成) 以下、この発明に係る連作障害改良材の構成に
ついて詳述する。 この発明では粒度が6乃至80メツシユに調整さ
れ、且つその嵩比重が0.5以上である炭化物が使
用されるが、炭化物の種類や炭化温度等は特に限
定はされない。 この発明において、炭化物の粒度を6乃至80メ
ツシユとした理由は、土壌中に充填するため、耐
圧強度が大きくかつ耕耘機等の加圧(踏圧)に充
分耐える強度を要するとともに、雨水等の流水に
よつて流出されない強度を得るためであり、より
望ましくは6乃至20メツシユに調製される。 ところで一般に、炭化物は炭化温度が650℃乃
至700℃の間で物理化学的性質を変える変移点を
持つ。 因に、この変移点で炭化物は不対電子数の変化
や、化学的な変化がある(参考文献:橘田外「木
炭の内部表面官能基と遊離基」木材学会誌第15巻
第三号1969年) この性質特に不対電子量は多い方が、土壌の団
粒化構造を作る上で有効であるが、逆にPH値は下
がる傾向がある。 唯、この発明においては化学的にアルカリ性で
あることが、後記する精製木酢液中で炭化物を自
然醗酵させる際、中和剤を不要とする上で必要で
ある。 従つて、この発明において使用する炭化物とし
ては、前記必須粒度条件とともに、不対電子量が
少なく、而もよりアルカリ度が高く、木酢液を中
和出来るものが望ましい。 又、この発明で、炭化物の嵩比重を特に0.5以
上とした理由は、連作障害改良材として土壌に投
入して使用するため、比重(嵩比重)が0.5以上
の炭化物とした方が、より必要な耐加圧(踏圧)
性、耐透水性が得られるからである。 この発明において、好適に使用できる炭化物の
具体例としては、オガ炭、ペレツト炭等をあげる
ことができる。 尚、ここでオガ炭とは、鋸屑を圧縮成形した棒
状燃料すなわちオガライトの炭化物のことをい
い、又ペレツト炭とは鋸屑、樹皮屑などの木粉を
ペレツト状に成形した成形品の炭化物をいう。 もつとも、この発明において使用される炭化物
としては、必ずしも上記オガ炭、ペレツト炭のみ
に限定されるものではなくその他バーク炭、ヤシ
ガラ炭、白炭、黒炭等が好適に使用できる。 この発明で使用する精製木酢液とは、炭化物を
得る際の揮発物を液化した木酢液(炭化時の副産
物)を精製して得られるものである。 このような精製木酢液を調製する精製法として
は、(1)沈澱法、(2)濾過法、(3)分溜法等を挙げるこ
とができる。 この精製の理由は、タール、浮遊物、塵芥など
の固型浮遊物の除去とポリフエノール成分等の醗
酵阻害物質の除去にある。 沈澱法では、単に静置槽内に木酢液を放置する
と、タール等の沈澱層と軽油質等の浮遊層と水溶
性成分の中間層に分離するから、この中間層を使
用する。 又、濾過法では、ガラスフイルター等の濾過材
で濾過を行えば、タール分や浮遊物、塵芥などが
除かれるから、この濾液を使用する。 分留法ではまず、タール、浮遊物、塵芥などの
固型浮遊物を濾別し、次いで103℃までの分溜物
を得、この分溜物を使用する。 因に、103℃以上の残液中には、3.4−ベンツピ
レン等のポリフエノール成分等のタール物質を含
み、根の発育を阻害する。 このようにして得らた精製木酢液の性状は、炭
化物の種類によつてもことなるが、通常PH値が
3.01乃至2.7、比重が1.019乃至1.010、有機酸が
2.70乃至5.30重量%溶解タールが0.70乃至0.90重
量%で、外観色調は樹種によつても異なるが、通
常は茶褐色〜黄褐色である。 又、全木酢液中精製木酢液は、約70重量%程度
である。 この発明においてはこのような精製木酢液が使
用されるが、この理由は、フエノール類をはじめ
としたタール分を多量に含有する非精製木酢液を
使用すると連作障害を助長し、かえつて植物の成
長を阻害したり、或いは土壌中でタール障害を引
き起こす可能性があるため、好ましくなく、さら
に精製木酢液を前記した特定の炭化物に混合する
と、連作障害を引き起こした土壌や作物に好適に
作用するとの、この発明者の実験的知得に基づく
からである。 この発明では、上述した炭化物と精製木酢液を
用いて、菌含有炭化物と木酢液原液含有炭化物と
を調製する。 まず、菌含有炭化物を得るためには、6乃至80
メツシユの粒度に調整され、且つその嵩比重が
0.5以上とされる炭化物100重量部に対し、少なく
とも10倍以上の濃度に希釈された精製木酢液約20
重量部とを混合する。 炭化物は10重量%程度の水分を含有するため、
木酢液は2/3の濃度となる。 また炭化物中には3重量%程度の灰分が含有さ
れ、この灰分の内60%程度は石灰、カリ等のアル
カリ性成分であるため、木酢液中の有機酸を中和
し、結果炭化物と木酢液の混合物は中性となる。 この状態で菌培養液と菌株とを添加し、少なく
とも炭化物中の放線菌数が糸状菌数の1/10以上と
なるまで自然醗酵させて、この発明において使用
される菌含有炭化物とする。 ここで少なくとも放線菌数が糸状菌数の1/10以
上となるまで自然醗酵させるのは、放線菌数が糸
状菌数の1/10以下程度の醗酵では、この発明の目
的とする連作障害改良の効果が充分得られないか
ら好ましくないからである。 菌培養液としては、特に限定はされず、通常用
いられる公知のものが好適に使用できる。 また菌株としても特に限定はされず、根瘤菌等
の有効菌の市販の菌株が好適に使用できる。 このようにして得られた、菌含有炭化物は、炭
化物中にペニシリウム、アスペルギルス、クラド
スポリウム、ビスポロミセス等の糸状菌及び放線
菌、等が付着したもので、場合によつては他の菌
例えば根粒菌等の菌株を添加しても良い。 又、必要に応じ窒素、燐、カリ肥料を添加して
もよい。 一方、木酢液原液含有炭化物を得るためには、
精製木酢液或いは非精製木酢液原液中に前記同様
6乃至80メツシユの粒度に調整され、且つその嵩
比重が0.5以上とされる炭化物を浸漬して調製す
る。 このようにして得られた菌含有炭化物と木酢液
原液含有炭化物とを使用前、或いは使用時に混合
してこの発明に係る連作障害改良材とする。 このような構成からなる連作障害改良材は、特
に、マメ科、イネ科、ナス科、セリ科植物など連
作障害を呈しやすい植物に対して菌根形成を促進
して連作障害を回避する。 以下、この発明の実施例及び試験例を記載する
ことにより、より一層この発明の効果を明確にす
る。 (実施例) 木粉を圧縮成形した、オガライト3tonを200〜
800℃で炭化し、6〜80メツシユに粉砕して、
1tonの粉末炭化物を得た。 比重は0.52であつた。 このオガライト炭化時に得られたPH3.5、比重
1.035、有機酸含量5.08重量%、褐色の粗木酢液
1tonを得た。 また、この粗木酢液を濾別した後、100乃至103
℃の分溜物700を、精製水で10倍に希釈して精
製木酢液を得た。 前記オガライト炭化物1tonに2001の精製木酢液
を添加し、よく攪拌した後、菌培養液と菌株とを
添加し、平均29℃に維持し、20日間放置した。 菌培養液としては、大豆の絞り粕の水溶液を使
用した。 また、菌株は市販の菌株を使用した。 放置後のオガライト炭には、一般細菌が6.0×
1000/g、糸状菌が2.0×1000/g、放線菌が1.0
×1000/g生育していた。 これに1%濃度のN、P、K、肥料水溶液を10
%加え、菌含有炭化物とした。 次に、前記精製木酢液原液中に前記同様のオガ
ライト炭を浸漬して、木酢液原液含有炭化物を得
た。 これら菌含有炭化物と木酢液含有炭化物とを混
合して連作障害改良材とした。 (試験例1乃至3) 前記実施例で得た連作障害改良材をスイカ(試
験例1)、トマト(試験例2)エンンドウ(試験
例3)に施用した。 試験例1乃至3は、それぞれ二年同一作物を連
作した奈良県吉野地方の耕地3aを用いた。 連作障害改良材の施用料は500Kg/a用いた。 尚、対照区として、比較例1乃至3を同一条件
の土地に、この発明に係る連作障害改良材を用い
ずに、作物を栽培した。 さらに、比較例11乃至31として以下のような連
作改良材を前記と同一条件の土地に施用した。 (比較例 11) 木粉を圧縮成形した、オガライト3tonを200〜
800℃で炭化し、6〜80メツシユに粉砕して、
1tonの粉末炭化物を得た。 比重は0.52であつた。 このオガライト炭化時に得られたPH3.5、比重
1.035、有機酸含量5.08重量%、褐色の粗木酢液
1tonを得た。 前記オガライト炭化物1tonに2001の粗木酢液を
添加し、よく攪拌した後、菌培養液と菌株とを添
加し、平均29℃に維持し、20日間放置した。 菌培養液としては、大豆の絞り粕の水溶液を使
用した。 また、菌株は市販の菌株を使用した。 放置後のオガライト炭には、一般細菌が6.0×
1000/g、糸状菌が2.0×1000/g、放線菌が1.0
×1000/g生育していた。 これに1%濃度のN、P、K、肥料水溶液を10
%加え、菌含有炭化物とした。 次に、前記精製木酢液原液中に前記同様のオガ
ライト炭を浸漬して、木酢液原液含有炭化物を得
た。 これら菌含有炭化物と木酢液含有炭化物とを混
合して比較例11の連作障害改良材とした。 (比較例 21) 木粉を圧縮成形した、オガライト3tonを200〜
800℃で炭化し、6〜80メツシユに粉砕して、
1tonの粉末炭化物を得た。 比重は0.52であつた。 このオガライト炭化時に得られたPH3.5、比重
1.035、有機酸含量5.08重量%、褐色の粗木酢液
1tonを得た。 また、この粗木酢液を濾別した後、100乃至103
℃の分溜物700を、精製水で10倍に希釈して精
製木酢液を得た。 前記オガライト炭化物1tonに2001の精製木酢液
を添加し、よく攪拌した後、菌培養液と菌株とを
添加し、平均10℃に維持し、10日間放置した。 菌培養液としては、大豆の絞り粕の水溶液を使
用した。 また、菌株は市販の菌株を使用した。 放置後のオガライト炭には、一般細菌が2.0×
1000/g、糸状菌が1.0×1000/g、放線菌が
0.05×1000/g生育していた。 これに1%濃度のN、P、K、肥料水溶液を10
%加え、菌含有炭化物とした。 次に、前記精製木酢液原液中に前記同様のオガ
ライト炭を浸漬して、木酢液原液含有炭化物を得
た。 これら菌含有炭化物と木酢液含有炭化物とを混
合して比較例21の連作障害改良材とした。 (比較例 31) 木粉を圧縮成形した、オガライト3tonを200〜
800℃で炭化し、6〜80メツシユに粉砕して、
1tonの粉末炭化物を得た。 比重は0.52であつた。 このオガライト炭化時に得られたPH3.5、比重
1.035、有機酸含量5.08重量%、褐色の粗木酢液
1tonを得た。 前記オガライト炭化物1tonに2001の粗木酢液を
添加し、よく攪拌した後、菌培養液と菌株とを添
加し、平均10℃に維持し、10日間放置した。 菌培養液としては、大豆の絞り粕の水溶液を使
用した。 また、菌株は市販の菌株を使用した。 放置後のオガライト炭には、一般細菌が2.0×
1000/g、糸状菌が1.0×1000/g、放線菌が
0.05×1000/g生育していた。 これに1%濃度のN、P、K、肥料水溶液を10
%加え、菌含有炭化物とした。 次に、前記精製木酢液原液中に前記同様のオガ
ライト炭を浸漬して、木酢液原液含有炭化物を得
た。 これら菌含有炭化物と木酢液含有炭化物とを混
合して比較例31の連作障害改良材とした。 これら試験例の収穫量については前記実施例で
調製された菌含有炭化物のみを同一条件の土地に
施用した際の収穫量を100%とした際の収穫量を
表示した。 この結果を第1表乃至第3表に示す。
(Industrial Application Field) The present invention relates to a material for improving continuous cropping problems, and the purpose thereof is to suitably avoid and improve continuous cropping problems in watermelons, eggplants, tomatoes, peas, etc.
A continuous cropping disorder improvement material that has good pressure resistance and water permeability, can withstand pressure (tread pressure) from tillers, rainwater runoff, etc., and can be suitably filled into crop soil. It's on offer. (Background of the Invention) In general, continuous cropping disorder is caused by cultivating the same type or closely related crops in the same field year after year (continuous cropping), causing the soil to lose its suitability for those crops. The term refers to poor growth of the fruit, which reduces yield and makes cultivation difficult. The causes include nutrient deficiency due to the absorption of only specific nutrients, an increase in pests and diseases that parasitize specific crops, changes in soil microflora, accumulation of harmful substances due to the secretion of metabolic substances from specific plant roots, and soil physics. Changes in gender, depletion of soil fertility, etc. are cited. Crops that exhibit such continuous cropping problems include watermelons, tomatoes, eggplants, potatoes, dahlias, ginseng, flax, and peas. (Prior Art and its Problems) The present inventors have continued to conduct intensive research on improvement materials that improve such continuous cropping problems, and have focused on charcoal containing pyroligneous vinegar as a soil improvement material. Soil improvement materials generally need to have high pressure resistance and strength enough to withstand pressure (tread pressure) from a tiller, etc., and must not be washed away by running water such as rainwater. Smoky charcoal, an example of this, has been used for a long time for soil improvement, helping to form soil aggregate structures and improve soil physical properties such as air permeability and water permeability. For example, in JP-A No. 52-50874, ``a method for producing a soil conditioner'' involves mixing charcoal grains with livestock manure, adding pyroligneous vinegar to the mixture, and aerobically fermenting the mixture to obtain a soil conditioner.
is disclosed. However, this disclosed technology aims to improve the growth of grass, and has not been effective against continuous cropping problems caused by cultivating the same crop in the same field year after year. Furthermore, the compressive strength and water permeability of the soil conditioner obtained by this disclosed technology are unclear, and there are doubts as to whether it can be filled into the soil and sufficiently withstand the pressure of a power tiller and running water such as rainwater. . Furthermore, although this disclosed technique describes the use of "wood vinegar," wood vinegar is a liquefied product of the volatile matter used to obtain charcoal. It separates into two layers: a lower layer with a higher viscosity and a lower layer consisting of wood tar. It is generally known that pyroligneous acid promotes or inhibits plant growth, but pyroligneous acid with a high phenol content has a strong inhibitory effect, and it also causes tar damage to the soil. It has been reported that it is easy. Therefore, whether or not the use of pyroligneous vinegar exerts a favorable effect on crop growth and soil depends on the components contained in the pyroligneous vinegar, but in the above-mentioned technology, such disclosure is not possible. There was a problem in that it was unclear whether or not it would have a positive effect on soils that have suffered from repeated cropping problems, since the product only says ``wood vinegar'' and does not have a ``wood vinegar solution.'' Therefore, the inventors conducted intensive research on improving materials that would be effective for crops that are prone to continuous cropping problems and for soil that has caused continuous cropping problems, and found that a specific charcoal compound and purified wood vinegar were used. An improved material made by mixing and naturally fermenting and adhering actinomycetes and filamentous bacteria to charcoal so that the number of actinomycetes is 1/10 or more of the number of filamentous bacteria has been developed for the first time to prevent continuous cropping problems in watermelons, eggplants, tomatoes, etc. It has been found that it exhibits an extremely good improvement effect on. Although this continuous cropping damage improvement material had an extremely good effect on the soil that had caused continuous cropping damage, there was a desire to create a continuous cropping damage improvement material that could exhibit even more effective effects. (Means for solving the invention) In this invention, 100 parts by weight of carbide whose particle size is adjusted to 6 to 80 mesh and whose bulk specific gravity is 0.5 or more, and purified wood vinegar diluted to a concentration of 10 times or more are used.
A bacteria-containing charcoal obtained by mixing 20 parts by weight and adding a bacterial culture solution and a bacterial strain, followed by natural fermentation so that the number of actinomycetes in the charcoal is 1/10 or more of the number of filamentous bacteria,
All of the above-mentioned conventional problems are solved by providing a continuous cropping improvement material characterized by being mixed with a carbide containing a wood vinegar stock solution obtained by immersing the carbide in a purified wood vinegar stock solution. (Structure of the Invention) Hereinafter, the structure of the continuous cropping disorder improving material according to the present invention will be described in detail. In this invention, a carbide whose particle size is adjusted to 6 to 80 mesh and whose bulk specific gravity is 0.5 or more is used, but the type of carbide, carbonization temperature, etc. are not particularly limited. In this invention, the reason why the grain size of the carbide is set to 6 to 80 mesh is because it is filled into the soil, so it needs to have high pressure resistance and strong enough to withstand the pressure (tread pressure) of a tiller, etc. The purpose of this is to obtain strength that will not be washed away by water, and more preferably the mesh is adjusted to 6 to 20 meshes. Generally, carbides have a transition point at which their physicochemical properties change at a carbonization temperature of 650°C to 700°C. Incidentally, at this transition point, the carbide undergoes a change in the number of unpaired electrons and a chemical change. ) This property, especially the higher the amount of unpaired electrons, is more effective in creating agglomerated soil structure, but on the other hand, the PH value tends to decrease. However, in this invention, it is necessary to be chemically alkaline in order to eliminate the need for a neutralizing agent when naturally fermenting the charcoal in purified wood vinegar, which will be described later. Therefore, as for the carbide used in this invention, it is desirable to meet the above-mentioned essential particle size requirements, have a small amount of unpaired electrons, have a higher alkalinity, and be able to neutralize wood vinegar. In addition, in this invention, the reason why the bulk specific gravity of the carbide is set to be 0.5 or more is because it is used by being added to the soil as a continuous cropping disorder improvement material, so it is more necessary to use a carbide with a specific gravity (bulk specific gravity) of 0.5 or more. Pressure resistance (tread pressure)
This is because it provides good water resistance and water permeability. In this invention, specific examples of carbides that can be suitably used include sawdust charcoal, pellet charcoal, and the like. Note that "saw charcoal" here refers to the carbide of rod-shaped fuel, ie, ogalite, which is made by compression molding sawdust, and "pellet charcoal" refers to the carbide of molded products made by molding wood powder such as sawdust and bark chips into pellets. . However, the carbide used in the present invention is not necessarily limited to the above-mentioned sawdust charcoal and pellet charcoal, and other suitable materials include bark charcoal, coconut shell charcoal, white charcoal, black charcoal, and the like. The purified wood vinegar used in the present invention is obtained by refining wood vinegar (a by-product during carbonization) obtained by liquefying the volatile matter from which char is obtained. Examples of the purification method for preparing such purified wood vinegar solution include (1) precipitation method, (2) filtration method, and (3) fractional distillation method. The reason for this purification is to remove solid suspended substances such as tar, suspended matter, and dust, and to remove fermentation inhibiting substances such as polyphenol components. In the precipitation method, if the wood vinegar solution is simply left in a standing tank, it will separate into a precipitated layer of tar, a floating layer of light oil, and an intermediate layer of water-soluble components, so this intermediate layer is used. In addition, in the filtration method, if filtration is performed with a filter material such as a glass filter, tar, suspended matter, dust, etc. are removed, so this filtrate is used. In the fractional distillation method, solid suspended matter such as tar, suspended solids, and dust are first filtered out, and then a fractionated product at a temperature of up to 103°C is obtained, and this fractionated product is used. Incidentally, residual liquid at 103°C or higher contains tar substances such as polyphenol components such as 3.4-benzpyrene, which inhibits root growth. The properties of the purified wood vinegar obtained in this way vary depending on the type of carbide, but the PH value is usually
3.01 to 2.7, specific gravity 1.019 to 1.010, organic acid
2.70 to 5.30% by weight Dissolved tar is 0.70 to 0.90% by weight, and the external color tone varies depending on the tree species, but is usually brown to yellowish brown. Further, the amount of purified wood vinegar in the whole wood vinegar is about 70% by weight. In this invention, such purified wood vinegar is used, but the reason for this is that if unrefined wood vinegar contains a large amount of tar such as phenols, it will promote continuous cropping failure and may even damage the plants. It is undesirable because it may inhibit growth or cause tar damage in the soil, and furthermore, if purified wood vinegar is mixed with the above-mentioned specific charcoal, it will work favorably on soil and crops that have caused continuous cropping damage. This is because this is based on the inventor's experimental knowledge. In this invention, a bacteria-containing charcoal and a charcoal containing a stock solution of pyroligneous vinegar are prepared using the above-mentioned charcoal and purified pyroligneous vinegar. First, in order to obtain a carbonized material containing bacteria, 6 to 80
The particle size is adjusted to that of mesh, and its bulk specific gravity is
Approximately 20 parts of purified wood vinegar diluted to a concentration of at least 10 times more than 100 parts by weight of carbide with a concentration of 0.5 or more
parts by weight. Since carbide contains about 10% water by weight,
The wood vinegar solution will be 2/3 the concentration. In addition, charcoal contains about 3% by weight of ash, and about 60% of this ash is alkaline components such as lime and potash, so the organic acids in wood vinegar are neutralized, resulting in charcoal and wood vinegar. The mixture becomes neutral. In this state, a bacterial culture solution and a bacterial strain are added, and natural fermentation is carried out until the number of actinomycetes in the charred material becomes at least 1/10 or more of the number of filamentous bacteria to obtain a charred material containing bacteria used in the present invention. Here, natural fermentation is carried out until the number of actinomycetes becomes at least 1/10 or more of the number of filamentous bacteria.In fermentation where the number of actinomycetes is about 1/10 or less of the number of filamentous bacteria, the aim of this invention is to improve continuous cropping problems. This is because it is not preferable because the effect cannot be obtained sufficiently. The bacterial culture solution is not particularly limited, and commonly used and known ones can be suitably used. Furthermore, the bacterial strain is not particularly limited, and commercially available strains of effective bacteria such as root-knot bacteria can be suitably used. The bacteria-containing carbonized material obtained in this way is one in which filamentous fungi and actinomycetes such as Penicillium, Aspergillus, Cladosporium, and Bisporomyces are attached to the carbonized material, and in some cases, other bacteria such as root nodules are attached. Bacterial strains such as bacteria may be added. Additionally, nitrogen, phosphorus, and potassium fertilizers may be added as necessary. On the other hand, in order to obtain carbide containing wood vinegar stock solution,
It is prepared by immersing a charred material whose particle size is adjusted to 6 to 80 mesh as described above and whose bulk specific gravity is 0.5 or more in purified wood vinegar solution or unrefined wood vinegar stock solution. The thus obtained bacteria-containing carbonized material and the wood vinegar undiluted solution-containing carbonized material are mixed before or at the time of use to obtain the continuous cropping disorder improving material according to the present invention. The continuous cropping disorder improvement material having such a structure promotes mycorrhizal formation and avoids continuous cropping disorders, particularly for plants that are likely to exhibit continuous cropping disorders, such as leguminous, gramineous, solanaceous, and umbelliferous plants. Hereinafter, the effects of this invention will be made clearer by describing Examples and Test Examples of this invention. (Example) 200 ~ 3 tons of Ogalite made by compression molding of wood flour
Carbonized at 800℃, crushed into 6 to 80 mesh pieces,
1 ton of powdered carbide was obtained. The specific gravity was 0.52. PH3.5 and specific gravity obtained during carbonization of this ogalite
1.035, organic acid content 5.08% by weight, brown crude wood vinegar
Got 1ton. In addition, after filtering this crude wood vinegar solution, 100 to 103
The distillate at 700 °C was diluted 10 times with purified water to obtain purified wood vinegar solution. 2001 purified wood vinegar solution was added to 1 ton of the above-mentioned ogalite carbide, and after stirring well, a bacterial culture solution and a bacterial strain were added, and the mixture was maintained at an average temperature of 29°C for 20 days. As the bacterial culture solution, an aqueous solution of soybean lees was used. In addition, a commercially available bacterial strain was used. Ogalite charcoal after being left out contains 6.0x general bacteria.
1000/g, filamentous fungi 2.0×1000/g, actinomycetes 1.0
It was growing at ×1000/g. Add 1% N, P, K, fertilizer aqueous solution to this.
% was added to obtain a bacteria-containing carbonized material. Next, ogalite charcoal similar to the above was immersed in the purified wood vinegar stock solution to obtain a charcoal containing the wood vinegar stock solution. These bacteria-containing charcoal and pyroligneous acid-containing charcoal were mixed to make a continuous cropping disorder improvement material. (Test Examples 1 to 3) The continuous cropping damage improving materials obtained in the above examples were applied to watermelon (Test Example 1), tomato (Test Example 2), and pea (Test Example 3). Test Examples 1 to 3 each used cultivated land 3a in the Yoshino region of Nara Prefecture, where the same crop was continuously cultivated for two years. The application rate for the continuous cropping disorder improvement material was 500 kg/a. As a control plot, crops were grown in Comparative Examples 1 to 3 on land under the same conditions without using the continuous cropping disorder improvement material according to the present invention. Furthermore, as Comparative Examples 11 to 31, the following continuous cropping improvement materials were applied to land under the same conditions as above. (Comparative Example 11) 3 tons of Ogalite made from compression molded wood powder for 200~
Carbonized at 800℃, crushed into 6 to 80 mesh pieces,
1 ton of powdered carbide was obtained. The specific gravity was 0.52. PH3.5 and specific gravity obtained during carbonization of this ogalite
1.035, organic acid content 5.08% by weight, brown crude wood vinegar
Got 1ton. After adding 2001 crude wood vinegar solution to 1 ton of the ogalite carbide and stirring well, the bacterial culture solution and bacterial strain were added, maintained at an average temperature of 29°C, and left for 20 days. As the bacterial culture solution, an aqueous solution of soybean lees was used. In addition, a commercially available bacterial strain was used. Ogalite charcoal after being left out contains 6.0x general bacteria.
1000/g, filamentous fungi 2.0×1000/g, actinomycetes 1.0
It was growing at ×1000/g. Add 1% N, P, K, fertilizer aqueous solution to this.
% was added to obtain a bacteria-containing carbonized material. Next, ogalite charcoal similar to the above was immersed in the purified wood vinegar stock solution to obtain a charcoal containing the wood vinegar stock solution. These bacteria-containing charcoal and pyroligneous acid-containing charcoal were mixed to obtain a continuous cropping disorder improvement material of Comparative Example 11. (Comparative Example 21) 3 tons of Ogalite, made by compression molding of wood powder, for 200~
Carbonized at 800℃, crushed into 6 to 80 mesh pieces,
1 ton of powdered carbide was obtained. The specific gravity was 0.52. PH3.5 and specific gravity obtained during carbonization of this ogalite
1.035, organic acid content 5.08% by weight, brown crude wood vinegar
Got 1ton. In addition, after filtering this crude wood vinegar solution, 100 to 103
The distillate at 700 °C was diluted 10 times with purified water to obtain purified wood vinegar solution. 2001 purified wood vinegar solution was added to 1 ton of the above-mentioned ogalite carbide, and after stirring well, the bacterial culture solution and bacterial strain were added, maintained at an average temperature of 10°C, and left for 10 days. As the bacterial culture solution, an aqueous solution of soybean lees was used. In addition, a commercially available bacterial strain was used. Ogarite charcoal after being left out contains 2.0x general bacteria.
1000/g, filamentous fungi 1.0×1000/g, actinomycetes
It was growing at 0.05×1000/g. Add 1% N, P, K, fertilizer aqueous solution to this.
% was added to obtain a bacteria-containing carbonized material. Next, ogalite charcoal similar to the above was immersed in the purified wood vinegar stock solution to obtain a charcoal containing the wood vinegar stock solution. These bacteria-containing charcoal and pyroligneous acid-containing charcoal were mixed to obtain a continuous cropping disorder improvement material of Comparative Example 21. (Comparative Example 31) 3 tons of Ogalite made by compression molding of wood powder for 200~
Carbonized at 800℃, crushed into 6 to 80 mesh pieces,
1 ton of powdered carbide was obtained. The specific gravity was 0.52. PH3.5 and specific gravity obtained during carbonization of this ogalite
1.035, organic acid content 5.08% by weight, brown crude wood vinegar
Got 1ton. 2001 crude wood vinegar solution was added to 1 ton of the above-mentioned ogalite carbide, and after stirring well, a bacterial culture solution and a bacterial strain were added, and the mixture was maintained at an average temperature of 10°C for 10 days. As the bacterial culture solution, an aqueous solution of soybean lees was used. In addition, a commercially available bacterial strain was used. Ogalite charcoal after being left alone contains 2.0x general bacteria.
1000/g, filamentous fungi 1.0×1000/g, actinomycetes
It was growing at 0.05×1000/g. Add 1% N, P, K, fertilizer aqueous solution to this for 10 minutes.
% was added to obtain a bacteria-containing carbonized material. Next, ogalite charcoal similar to the above was immersed in the purified wood vinegar stock solution to obtain a charcoal containing the wood vinegar stock solution. These bacteria-containing charcoal and pyroligneous acid-containing charcoal were mixed to obtain a continuous cropping disorder improvement material of Comparative Example 31. The yields of these test examples are expressed as 100% of the yield when only the bacteria-containing carbonized material prepared in the above example was applied to land under the same conditions. The results are shown in Tables 1 to 3.

【表】 尚、スイカの品種は新大和2
号を使用した。
[Table] The watermelon variety is Shin Yamato 2.
No. was used.

【表】 尚、トマトの品種は清洲2号
をもちいた。
[Table] The tomato variety used was Kiyosu No. 2.

【表】 尚、品種はシロエンドウをも
ちいた。
(発明の効果) 以上詳述した如く、この発明は粒度が6乃至80
メツシユに調整され、且つその嵩比重が0.5以上
である炭化物100重量部と、10倍以上の濃度で希
釈された精製木酢液20重量部とを混合し菌培養液
と菌株とを添加した後、炭化物中の放線菌数が糸
状菌数の1/10以上となるよう自然醗酵して得られ
る菌含有炭化物と、非精製又は精製木酢液原液中
に前記炭化物を浸漬させて得られる木酢液原液含
有炭化物とを混合してなることを特徴とする連作
改良材であるから、前記試験例の結果からも明ら
かな如く、この発明者らの知得に基づく特定炭化
物と精製木酢液との使用、及び特定菌体の付着な
どの相乗的効果により、従来では着目されていな
かつたスイカやナス、トマト、エンドウなどの連
作障害作物に対して極めて良好な作用を発揮し、
連作による障害を回避、改善することができると
ともに、極めて良好な耐加圧性、耐透水性を有す
るため、土壌中に充填されていても、耕耘機など
による加圧(踏圧)や雨水の流出などに充分に耐
用できるという優れた効果を奏する。
[Table] The variety used was white pea.
(Effect of the invention) As detailed above, this invention has a particle size of 6 to 80
After mixing 100 parts by weight of a carbide adjusted to mesh and having a bulk specific gravity of 0.5 or more and 20 parts by weight of purified wood vinegar diluted to a concentration of 10 times or more, and adding a bacterial culture solution and a bacterial strain, Bacteria-containing charred material obtained by natural fermentation so that the number of actinomycetes in the charred material is 1/10 or more of the number of filamentous bacteria, and a pyroligneous solution undiluted solution obtained by immersing the charred material in an unrefined or purified wood vinegar undiluted solution. Since it is a continuous crop improvement material characterized by being made by mixing carbide, as is clear from the results of the above test examples, the use of specific carbide and purified wood vinegar based on the knowledge of the inventors, and Due to synergistic effects such as adhesion of specific bacterial cells, it exhibits extremely good effects on crops with continuous cropping problems such as watermelons, eggplants, tomatoes, and peas, which have not received attention in the past.
In addition to being able to avoid and improve problems caused by continuous cropping, it also has extremely good pressure resistance and water permeability resistance, so even if it is filled in the soil, it will not be affected by pressure (treading pressure) from tillers, etc., or rainwater runoff. It has an excellent effect of being able to withstand a long time.

Claims (1)

【特許請求の範囲】[Claims] 1 粒度が6乃至80メツシユに調整され、且つそ
の嵩比重が0.5以上である炭化物100重量部と、10
倍以上の濃度で希釈された精製木酢液20重量部と
を混合し菌培養液と菌株を添加した後、この混合
物を炭化物中の放線菌数が糸状菌数の1/10以上と
なるよう自然醗酵して得られる菌含有炭化物と、
精製木酢液原液中に前記炭化物を浸漬させて得ら
れる木酢液原液含有炭化物とを混合してなること
を特徴とする連作改良材。
1. 100 parts by weight of carbide whose particle size is adjusted to 6 to 80 mesh and whose bulk specific gravity is 0.5 or more;
After mixing with 20 parts by weight of purified wood vinegar diluted to more than twice the concentration and adding the bacterial culture solution and bacterial strain, the mixture was naturally mixed so that the number of actinomycetes in the char was at least 1/10 of the number of filamentous bacteria. Bacteria-containing carbonized material obtained by fermentation,
1. A continuous cropping improvement material, characterized in that it is made by mixing a carbide containing a wood vinegar stock solution obtained by immersing the carbide in a refined wood vinegar stock solution.
JP59099130A 1984-05-17 1984-05-17 Repeated cultivation trouble improver Granted JPS60246291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59099130A JPS60246291A (en) 1984-05-17 1984-05-17 Repeated cultivation trouble improver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59099130A JPS60246291A (en) 1984-05-17 1984-05-17 Repeated cultivation trouble improver

Publications (2)

Publication Number Publication Date
JPS60246291A JPS60246291A (en) 1985-12-05
JPH0522676B2 true JPH0522676B2 (en) 1993-03-30

Family

ID=14239163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59099130A Granted JPS60246291A (en) 1984-05-17 1984-05-17 Repeated cultivation trouble improver

Country Status (1)

Country Link
JP (1) JPS60246291A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104163734A (en) * 2014-08-30 2014-11-26 河南益禾利科农业科技有限公司 Chinese herbal medicine-containing ecological carbon fertilizer for crops and preparation method of ecological carbon fertilizer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461380A (en) * 1987-09-01 1989-03-08 Toyo Nenki Kk Granular organic fertilizer composition
JP4761444B2 (en) * 2005-08-24 2011-08-31 国立大学法人東京農工大学 Control method of nitrous oxide generation from soil
CN107805101A (en) * 2017-11-23 2018-03-16 陈凯 A kind of special organic green manure of watermelon

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250874A (en) * 1975-10-21 1977-04-23 Seiko Funakoshi Process for producing soil conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250874A (en) * 1975-10-21 1977-04-23 Seiko Funakoshi Process for producing soil conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104163734A (en) * 2014-08-30 2014-11-26 河南益禾利科农业科技有限公司 Chinese herbal medicine-containing ecological carbon fertilizer for crops and preparation method of ecological carbon fertilizer

Also Published As

Publication number Publication date
JPS60246291A (en) 1985-12-05

Similar Documents

Publication Publication Date Title
Christensen et al. Soil organic matter and soil quality—lessons learned from long-term experiments at Askov and Rothamsted
Ponnamperuma Straw as a source of nutrients for wetland rice
Haldar et al. Effect of phosphorus and zinc on the growth and phosphorus, zinc, copper, iron and manganese nutrition of rice
AU2014100226A4 (en) Humic acid-rich biologic soil conditioner made from alcohol waste liquid and sludge from sugar mill
KR102066698B1 (en) The Environment-Friendly Vegetative Soil Composition and Method of Slope Afforestation using Thereof
KR20060001989A (en) Development for agricultural bed soil using the seaweeds by-product
EP1739067B1 (en) Process for manufacturing a soil conditioner
CN102204436A (en) Soil treatment method for inhibiting Cd/Pb absorption of rice in contaminated farm land
CN113861991A (en) Building residue soil modifier prepared from kitchen waste, preparation method and application of modified building residue soil
CN109076860A (en) A kind of implantation methods of mango cultivation
KUMAR et al. INTEGRATED NUTRIENT MANAGEMENT.
JPH0522675B2 (en)
CN109369241A (en) A kind of salinized soil modifying agent method of preparation and use based on xylophyta refining
Mann et al. The role of Prosopis cineraria in an agropastoral system in Western Rajasthan
Antonious et al. Chitin, biochar, and animal manures impact on eggplant and green pepper yield and quality.
JPH0522676B2 (en)
KR101518442B1 (en) Method for producing organic fertilizer using cultural filtrate of wild ginseng and mushroom spent medium
Nandi et al. Utility of some nitrogen-fixing microorganisms in the phyllosphere of crop plants
KR100934936B1 (en) Artificial soil for slope afforestation and method of slope afforestation using it
JPS6024075B2 (en) Method for manufacturing organic fertilizer ripening agent
EP0479402A2 (en) Fertiliser
Jiang et al. Straw Return with Biochar Increased Soil Macro-Aggregates and Improved Flue-Cured Tobacco (Nicotiana tabacum L.) Yield and Quality
CN106929027B (en) Soil improvement method
CN111670779A (en) Banana tissue culture seedling improvement matrix and preparation method and application thereof
CN112174749A (en) Liquid soil conditioner and preparation method thereof