JPH052266B2 - - Google Patents

Info

Publication number
JPH052266B2
JPH052266B2 JP18605286A JP18605286A JPH052266B2 JP H052266 B2 JPH052266 B2 JP H052266B2 JP 18605286 A JP18605286 A JP 18605286A JP 18605286 A JP18605286 A JP 18605286A JP H052266 B2 JPH052266 B2 JP H052266B2
Authority
JP
Japan
Prior art keywords
oxide
tin oxide
gas sensor
mol
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18605286A
Other languages
Japanese (ja)
Other versions
JPS6340846A (en
Inventor
Kyoshi Fukui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to JP18605286A priority Critical patent/JPS6340846A/en
Publication of JPS6340846A publication Critical patent/JPS6340846A/en
Publication of JPH052266B2 publication Critical patent/JPH052266B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は各種燃焼器具、溶鉱炉などから発
生、あるいは各種化学工場等で発生する一酸化炭
素ガスを検知するためのガスセンサに関する。 〔従来の技術〕 一酸化炭素(以下COと記す)を検知するべく
開発されているガスセンサとしては(1)湿式の定電
位電解方式のもの、(2)半導体式(主として酸化ス
ズの焼結体)、(3)接触燃焼方式のもの、及び(4)酸
素イオン伝導性固体電解質を利用したもの、があ
る。これらのCO検知原理は、夫々異なり次の如
くである。即ち(1)の方式は反応極でCOがCO2
酸化され対極でO2がH2Oに還元されるときに生
じる電流をキヤツチする。(2)の方式はCOを吸着
したときの半導体の導電性の変化をとえ、(3)の方
式ではCOを触媒で燃焼させるときの温度変化を
白金電極の抵抗値変化としてとえるものである。
又、(4)の方式はジルコニアチツプの一側面にCO
不燃性多孔層を配し他側面にH2、CO燃焼性多孔
層を配してあり、CO燃焼の際に上記一側から他
側へ酸素イオンが伝導することを電気信号として
取出すものである。 しかし、これらの従来公知のセンサにはそれぞ
れ欠点がある。(1)のものは長期間使用中に電解液
の濃度変化(水分蒸発などによる)を生じるから
液の更新などのメンテナンスを必要とし、(2)のも
のでは水素に対す感度よりもCO感度を高め、い
わゆるCO選択性を得るべく動作温度を低く(例
えば100℃以下)するので空気中の水分、油脂分
を自動的に蒸発ないし分解させることできず、従
つて定期的な高温パージ操作を必要とする。(3)の
ものは間接的な検知方式のゆえに高感度を実現で
きず、(4)のものでは構造が複雑で大型であるから
動作温度維持のための消費電力が大となるほか、
量産には適していない。 〔発明が解決しようとする問題点〕 本発明は上記(1)〜(4)のタイプのうち、(2)のタイ
プ即ち酸化スズの焼結体を用いた半導体式のCO
ガスセンサを改良しようとするものであり、具体
的には前述の100℃よりも遥かに高温の約300〜
350℃以上、場合によつては約450℃前後で動作さ
せることで前述の欠点を解消しつつ、しかも優れ
たCO選択性を発揮するCOガスセンサを提供しよ
うとするものである。 〔問題点を解決するための手段〕 本発明者は、この技術課題を解決するべく種々
研究の結果、酸化スズ半導体にアルカリ金属の酸
化物を添加すれば高温動作時のCO選択性が顕著
に改良されるという知見を得た。本発明はこの知
見に基づいて完成されたものである。即ち、本発
明によれば、酸化スズ半導体に、ナトリウム、カ
リウム、ルビジウム及びセシウムの中から選ばれ
た少なくとも1種のアルカリ金属の酸化物が、約
0.5mol%以上添加されていることを特徴とする
一酸化炭素ガスセンサが提供される。 さらに望ましくは、前記酸化物が酸化ナトリウ
ムの場合には酸化スズに対し約1.5〜5.0mol%添
加され、酸化カリウム、酸化ルビジウム又は酸化
セシウムの場合には酸化スズに対し約0.5〜
10mol%添加された組成とされる。 リチウムは他の同族元素とやや挙動を異にし、
CO選択性向上の効果がが比較的小であるから好
適実施例から除外され、又、フランシウムは放射
性元素の壊変系列の過程においてのみ存在する希
産元素であり実用的でないから除外される。 酸化スズ(SnO2)に対するアルカリ金属酸化
物添加量が0.5mol%以下では上記効果が不十分
となるので好ましくないと共に、一方、逆に過
剰、たとえば酸化ナトリウムの場合5mol%以上、
酸化カリウム、酸化ルビジウム又は酸化セシウム
の場合10mol%以上ではその強アルカリ性のゆえ
に比較的低温側(例えば約300℃前後)での使用
の場合に酸化スズ自体とその微粒焼結構造とに対
し悪影響を及ぼすからやはり好ましくない。 上記において「添加」のための方法としては下
記の含浸法、混合法等の中から適宜選択すればよ
い。ここに含浸法とは酸化スズの焼結体を上記ア
ルカリ金属の可溶性化合物の溶液の中へ浸漬し、
含浸された該化合物を分解して酸化物とする方法
を意味し、混合法とはスズ及びアルカリ金属の水
酸化物をよく混合したのちに焼結する方法を意味
する。 〔作用〕 アルカリ金属酸化物が酸化スズ半導体のCO選
択性を向上させるメカニズムの詳細は不明である
が、共存ガスとしてのH2は例えばNa2O,K2Oと
反応して金属水酸化物を形成する傾向にあるか
ら、少なくともこれら金属酸化物に捕捉され、従
つて酸化スズの伝導度に影響を与え難くなるので
はないかと推測される。 〔発明の効果〕 この発明のCOガスセンサは既述の如く冒記の
(2)のタイプに属することから構造が簡単で小型で
あり、消費電力が少なく量産に適し、メンテナン
スフリーである等の長所を備えていることに加
え、本発明による独得の効果は高温動作において
優れたCO選択性を示す点と、従来低温動作時に
必要であつた周期的な高温パージ操作が不要化さ
れた点である。 〔実施例〕 A ガスセンサの作成 前述の含浸法の場合につい本発明のガスセンサ
の製法を先ず説明すると、出発物質としては市販
の四塩化スズ(SnCl4)を用い一定濃度の水溶液
を調製する。この水溶液にアンモニア水を滴下し
て得た水酸化スズの沈殿を乾燥後電気炉で焼成し
て半導体の酸化スズを得る。これを粉砕して微粉
末とし水で練つてペースト状とし、このペースト
を第1図の如くガスセンサの検出電極としての貴
金属コイル1へ約0.5mmの直径の球体2となるよ
う付着させる(この球体が後記の半導体部6とな
るものである)。乾燥後、貴金属コイル1へ所定
の電流を通して加熱し、所定の温度、例えば約
800℃で酸化スズの粉末を焼結させる。焼結によ
り外観形状は変わることなく第1図のままである
が、微視的には多孔状となつている。 一方、アルカリ金属の水溶性の塩、例えば硝酸
塩、酢酸塩の水溶液を準備してあるので、この溶
液の中へ多孔性の酸化スズ焼結体を浸し、乾燥後
に再度通電することで約600℃とし上記硝酸塩又
は酢酸塩を熱分解する。これにより硝酸基、酢酸
基は分解揮散してアルカリ金属は酸化物となり、
その微粒3は第2図の如く酸化スズの粒4の表面
に担持された状態の、ガスセンサ5の半導体部6
となる。尚、第2図は第1図の円Aで囲まれた部
分を拡大したものである。 B CO/H2感度比の測定結果 上記のようにして作成したガスセンサ5は通常
第3図のようなホイーストストンブリツジ回路に
組込まれて用いられる。番号7はガスセンサのた
めの負荷抵抗としてこれに直列に接続された抵抗
であり、番号8,9はこの回路の基準電位を定め
るべく互いに直列に接続された抵抗である。ガス
センサ5と抵抗7は他の抵抗8,9に対し電源1
0に関し並列であり、各々の中間の点11,12
のあいだの不平衡電位差が出力電圧(mV)とし
てボルトメータ13により検知される。 清浄空気中での出力電圧(Va)を、ガス存在
下での出力電圧Vgから差引いた値が、以下感度
(ΔV)として表示される。 ΔV=Vg−Va そしてΔV(CO)を一酸化炭素検知感度とし、
ΔV(H2)を水素ガス検知感度と定義すると、
CO/H2感度比は ΔV(CO)/ΔV(H2) で表される。以下の試験ではCOガスは100ppmと
し、水素ガスはその10倍の1000ppmとしてあるか
ら、上記感度比が1であつてもCOガス感度はH2
感度の10倍であることを意味する。 CO選択性として実用上十分であると認められ
るレベルは上記感度比が約0.5以上、つまりCO感
度がH2感度の約5倍以上のときである。 下記第1表は酸化カリウム(K2O)、酸化ルビ
ジウム(Rb2O)及び酸化セシウム(Cs2O)の添
加量を変えた数種のサンプルについて、動作温度
390℃で測定した感度比を示す。
[Industrial Application Field] The present invention relates to a gas sensor for detecting carbon monoxide gas generated from various combustion appliances, blast furnaces, etc., or generated at various chemical factories. [Prior art] Gas sensors that have been developed to detect carbon monoxide (hereinafter referred to as CO) include (1) wet type constant-potential electrolysis type sensors, and (2) semiconductor type sensors (mainly sintered bodies of tin oxide). ), (3) those using a catalytic combustion method, and (4) those using an oxygen ion conductive solid electrolyte. These CO detection principles are different and are as follows. That is, method (1) catches the current generated when CO is oxidized to CO 2 at the reaction electrode and O 2 is reduced to H 2 O at the counter electrode. Method (2) measures the change in the conductivity of a semiconductor when CO is adsorbed, and method (3) measures the temperature change when CO is combusted by a catalyst as a change in the resistance value of the platinum electrode. be.
In addition, method (4) uses CO on one side of the zirconia chip.
A non-combustible porous layer is arranged on one side, and a H 2 and CO combustible porous layer is arranged on the other side, and the conduction of oxygen ions from one side to the other side during CO combustion is extracted as an electrical signal. . However, each of these previously known sensors has drawbacks. Type (1) requires maintenance such as updating the electrolyte because the concentration of the electrolyte changes (due to water evaporation, etc.) during long-term use, and type (2) has less sensitivity to hydrogen than sensitivity to CO. Since the operating temperature is kept low (for example, below 100℃) in order to obtain high CO selectivity, moisture and oil in the air cannot be automatically evaporated or decomposed, and therefore regular high-temperature purge operations are required. shall be. The method (3) cannot achieve high sensitivity because it uses an indirect detection method, and the method (4) has a complicated structure and is large, so it consumes a lot of power to maintain the operating temperature.
Not suitable for mass production. [Problems to be Solved by the Invention] Of the types (1) to (4) above, the present invention is directed to type (2), that is, a semiconductor type CO using a sintered body of tin oxide.
This is an attempt to improve gas sensors, specifically at temperatures of about 300°C, which is much higher than the 100°C mentioned above.
The present invention aims to provide a CO gas sensor that can be operated at temperatures above 350°C, and in some cases around 450°C, thereby eliminating the above-mentioned drawbacks and exhibiting excellent CO selectivity. [Means for solving the problem] As a result of various studies to solve this technical problem, the present inventor found that by adding an alkali metal oxide to a tin oxide semiconductor, CO selectivity during high-temperature operation can be significantly improved. We learned that it can be improved. The present invention was completed based on this knowledge. That is, according to the present invention, an oxide of at least one alkali metal selected from sodium, potassium, rubidium, and cesium is added to the tin oxide semiconductor in an amount of about
Provided is a carbon monoxide gas sensor characterized in that carbon monoxide is added in an amount of 0.5 mol% or more. More preferably, when the oxide is sodium oxide, it is added in an amount of about 1.5 to 5.0 mol% based on tin oxide, and when the oxide is potassium oxide, rubidium oxide, or cesium oxide, it is added in an amount of about 0.5 to 5.0 mol% based on tin oxide.
The composition is said to be 10 mol% added. Lithium behaves slightly differently from other homologous elements,
Francium is excluded from the preferred embodiment because the effect of improving CO selectivity is relatively small, and francium is excluded because it is a rare element that exists only in the decay series of radioactive elements and is not practical. If the amount of alkali metal oxide added to tin oxide (SnO 2 ) is less than 0.5 mol %, the above effects will be insufficient, so it is not preferable.
In the case of potassium oxide, rubidium oxide, or cesium oxide, if it is used at a relatively low temperature (e.g. around 300°C), it will have an adverse effect on the tin oxide itself and its fine sintered structure due to its strong alkalinity if it exceeds 10 mol%. This is still not desirable because it affects the environment. In the above, the method for "adding" may be appropriately selected from among the following impregnation methods, mixing methods, etc. The impregnation method here refers to immersing a sintered body of tin oxide in a solution of the above-mentioned soluble alkali metal compound.
This refers to a method in which the impregnated compound is decomposed into an oxide, and the mixing method refers to a method in which tin and alkali metal hydroxides are thoroughly mixed and then sintered. [Effect] The details of the mechanism by which alkali metal oxides improve the CO selectivity of tin oxide semiconductors are unknown, but H 2 as a coexisting gas reacts with, for example, Na 2 O and K 2 O to form metal hydroxides. It is presumed that since tin oxide tends to form, it is at least captured by these metal oxides and therefore becomes less likely to affect the conductivity of tin oxide. [Effects of the Invention] As mentioned above, the CO gas sensor of this invention has the above-mentioned advantages.
Since it belongs to type (2), it has advantages such as simple and compact structure, low power consumption, suitable for mass production, and maintenance-free.In addition, the unique effect of the present invention is that it is suitable for high-temperature operation. It exhibits excellent CO selectivity and eliminates the need for periodic high-temperature purge operations that were conventionally required during low-temperature operation. [Example] A. Production of gas sensor First, the production method of the gas sensor of the present invention will be explained using the above-mentioned impregnation method. Commercially available tin tetrachloride (SnCl 4 ) is used as a starting material, and an aqueous solution of a certain concentration is prepared. The tin hydroxide precipitate obtained by dropping ammonia water into this aqueous solution is dried and then fired in an electric furnace to obtain semiconductor tin oxide. This is crushed into a fine powder, kneaded with water to form a paste, and this paste is applied to a noble metal coil 1 as a detection electrode of a gas sensor as shown in Fig. 1 to form a sphere 2 with a diameter of approximately 0.5 mm. (which will become the semiconductor section 6 described later). After drying, a predetermined current is passed through the precious metal coil 1 to heat it to a predetermined temperature, e.g.
Sintering tin oxide powder at 800℃. Although the external shape remains unchanged as shown in Fig. 1 due to sintering, microscopically it has become porous. On the other hand, since an aqueous solution of water-soluble salts of alkali metals, such as nitrates and acetates, is prepared, a porous tin oxide sintered body is immersed in this solution, dried, and then energized again. and thermally decompose the nitrate or acetate. As a result, the nitrate and acetate groups decompose and volatilize, and the alkali metal becomes an oxide.
The fine particles 3 are supported on the surface of the tin oxide particles 4 as shown in FIG.
becomes. Note that FIG. 2 is an enlarged view of the area surrounded by circle A in FIG. 1. B Measurement Results of CO/H 2 Sensitivity Ratio The gas sensor 5 produced as described above is usually used by being incorporated into a wheast stone bridge circuit as shown in FIG. The number 7 is a resistor connected in series thereto as a load resistance for the gas sensor, and the numbers 8 and 9 are resistors connected in series with each other to determine the reference potential of this circuit. Gas sensor 5 and resistor 7 are connected to power supply 1 for other resistors 8 and 9.
parallel with respect to 0, each intermediate point 11, 12
The unbalanced potential difference between them is detected by the voltmeter 13 as an output voltage (mV). The value obtained by subtracting the output voltage (Va) in clean air from the output voltage Vg in the presence of gas is displayed as sensitivity (ΔV) below. ΔV=Vg−Va and ΔV(CO) is carbon monoxide detection sensitivity,
If ΔV(H 2 ) is defined as hydrogen gas detection sensitivity, then
The CO/H 2 sensitivity ratio is expressed as ΔV(CO)/ΔV(H 2 ). In the following tests, CO gas is set at 100 ppm, and hydrogen gas is set at 1000 ppm, which is 10 times that value, so even if the sensitivity ratio above is 1, the CO gas sensitivity is H 2
This means it is 10 times more sensitive. The level of CO selectivity that is recognized as practically sufficient is when the sensitivity ratio is about 0.5 or more, that is, when the CO sensitivity is about 5 times or more than the H 2 sensitivity. Table 1 below shows the operating temperature of several samples with varying amounts of potassium oxide (K 2 O), rubidium oxide (Rb 2 O), and cesium oxide (Cs 2 O).
The sensitivity ratio measured at 390°C is shown.

【表】【table】

【表】 第2表は添加量を4mol%とし、390℃で動作さ
せた結果である。 次にCOガス濃度を100ppmと200ppmの2水準
にとり、前記ホイートストンブリツジへの印加電
圧(つまり電源10の電圧)を変えることで
Rb2O4mol%添加のガスセンサの動作温度を370
℃から430℃の範囲で変更した場合のグラフを第
4図に示す。但し、縦軸には感度比ではなくΔV
(CO)又はΔV(H2)をmV単位でとつてある。 以上第1〜第2表と第4図から明らかな如く、
アルカリ金属酸化物の添加は酸化スズに対し
0.5mol%以上でCO選択性が良好、1.5〜5mol%で
さらに一層良好であり、CO濃度の変化に対しか
なりの定量性があること、及び最適動作温度が
370〜430℃の範囲内にあり、特に390〜410℃で最
良のCO感度を示し、又CO選択性について見れば
370〜390℃の方が望ましい、等々の事実が確認さ
れた。
[Table] Table 2 shows the results when the amount added was 4 mol% and the operation was performed at 390°C. Next, by setting the CO gas concentration to two levels, 100 ppm and 200 ppm, and changing the voltage applied to the Wheatstone bridge (that is, the voltage of the power supply 10).
The operating temperature of the gas sensor with Rb2O4mol % addition is 370
Figure 4 shows a graph when changing the temperature in the range from ℃ to 430℃. However, the vertical axis shows ΔV instead of the sensitivity ratio.
(CO) or ΔV(H 2 ) is taken in mV. As is clear from Tables 1 to 2 and Figure 4 above,
Addition of alkali metal oxide to tin oxide
The CO selectivity is good at 0.5 mol% or more, and even better at 1.5 to 5 mol%, and there is considerable quantification with respect to changes in CO concentration, and the optimum operating temperature is
It is in the range of 370 to 430℃, and shows the best CO sensitivity especially at 390 to 410℃, and in terms of CO selectivity,
It was confirmed that 370 to 390°C is more desirable.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例を示し、第1図はガスセン
サの正面図、第2図はその一部分についての拡大
断面図、第3図はガスセンサを組込んだ回路を示
し、第4図は性能を示したグラフである。 1……貴金属コイル、2,6…半導体部、3…
…アルカリ金属酸化物の微粒、4……酸化スズの
粒、5……ガスセンサ。
The figures show an embodiment of the present invention; Fig. 1 is a front view of a gas sensor, Fig. 2 is an enlarged cross-sectional view of a portion thereof, Fig. 3 shows a circuit incorporating the gas sensor, and Fig. 4 shows performance. This is the graph shown. 1...Precious metal coil, 2, 6...Semiconductor part, 3...
...fine particles of alkali metal oxide, 4... particles of tin oxide, 5... gas sensor.

Claims (1)

【特許請求の範囲】 1 酸化スズ半導体に、ナトリウム、カリウム、
ルビジウム及びセシウムの中から選ばれた少なく
とも1種のアルカリ金属の酸化物が、約0.5mol
%以上添加されていることを特徴とする一酸化炭
素ガスセンサ。 2 前記酸化物が酸化ナトリウムであり、これが
酸化スズに対し約1.5〜5.0mol%添加されている
特許請求の範囲第1項に記載の一酸化炭素ガスセ
ンサ。 3 前記酸化物がカリウム、ルビジウム及びセシ
ウムの中から選ばれたアルカリ金属の酸化物であ
り、これが酸化スズに対し約0.5〜10mol%添加
されている特許請求の範囲第1項に記載の一酸化
炭素ガスセンサ。
[Claims] 1. A tin oxide semiconductor containing sodium, potassium,
Approximately 0.5 mol of at least one alkali metal oxide selected from rubidium and cesium
% or more of carbon monoxide gas sensor. 2. The carbon monoxide gas sensor according to claim 1, wherein the oxide is sodium oxide, and this is added in an amount of about 1.5 to 5.0 mol% relative to tin oxide. 3. The monoxide according to claim 1, wherein the oxide is an oxide of an alkali metal selected from potassium, rubidium, and cesium, and is added in an amount of about 0.5 to 10 mol% based on tin oxide. Carbon gas sensor.
JP18605286A 1986-08-06 1986-08-06 Carbon monoxide gas sensor Granted JPS6340846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18605286A JPS6340846A (en) 1986-08-06 1986-08-06 Carbon monoxide gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18605286A JPS6340846A (en) 1986-08-06 1986-08-06 Carbon monoxide gas sensor

Publications (2)

Publication Number Publication Date
JPS6340846A JPS6340846A (en) 1988-02-22
JPH052266B2 true JPH052266B2 (en) 1993-01-12

Family

ID=16181553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18605286A Granted JPS6340846A (en) 1986-08-06 1986-08-06 Carbon monoxide gas sensor

Country Status (1)

Country Link
JP (1) JPS6340846A (en)

Also Published As

Publication number Publication date
JPS6340846A (en) 1988-02-22

Similar Documents

Publication Publication Date Title
US3951603A (en) Gas-sensor element and method for detecting reducing gas or oxygen gas
JP2009511859A (en) Multi-cell ammonia sensor and method of use thereof
JP3046353B2 (en) Tin oxide gas sensor
Morimitsu et al. Effects of surface modification with platinum and ruthenium on temperature and humidity dependence of SnO2-based CO gas sensors
JPS60500382A (en) Oxygen sensor-electrode
JP3053865B2 (en) Sensor for detecting carbon monoxide
Ihokura et al. Use of tin dioxide sensor to control a domestic gas heater
CN111157601A (en) Based on K2Fe4O7Room-temperature high-humidity hydrogen sulfide gas sensor of electrolyte, preparation method and application thereof
JPH052266B2 (en)
JPS62500955A (en) Detector and method for the measurement of oxygen partial pressure in hot gases
Hübner et al. The influence of Pt doping on the sensing and conduction mechanism of SnO2 based thick film sensors
JP3171734B2 (en) Carbon monoxide gas sensing element
JPS6345552A (en) Gaseous carbon monoxide sensor
JPH022534B2 (en)
JP3455279B2 (en) Incomplete combustion detection element for exhaust gas
JP2881947B2 (en) Zirconia sensor
JP3933500B2 (en) Semiconductor gas detector
Akbar Ceramic sensors for the glass industry
JPS59120946A (en) Gaseous freon detecting element
Srivastava et al. Development and characterisation of palladium doped tin oxide thick film paste for gas sensors
JPH06186199A (en) Carbon dioxide sensor element of solid-electrolyte type
RU2029946C1 (en) Method to produce electrode
JPH1123518A (en) Carbon monoxide gas detecting element
KR940009954B1 (en) Manufacturing method of sensing element for gas sensor
JPS6133466B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term