JPH05226602A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05226602A
JPH05226602A JP4031001A JP3100192A JPH05226602A JP H05226602 A JPH05226602 A JP H05226602A JP 4031001 A JP4031001 A JP 4031001A JP 3100192 A JP3100192 A JP 3100192A JP H05226602 A JPH05226602 A JP H05226602A
Authority
JP
Japan
Prior art keywords
film
impurity
electrode
containing interlayer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4031001A
Other languages
Japanese (ja)
Inventor
Toru Anezaki
徹 姉崎
Shinichirou Ikemasu
慎一郎 池増
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4031001A priority Critical patent/JPH05226602A/en
Publication of JPH05226602A publication Critical patent/JPH05226602A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To obtain a semiconductor device including a sufficient amount of impurity in an electrode of a fin-type capacitor without changing the film thickness by heat-treating the sample with an impurity containing interlayer film being brought into contact with a semiconductor film and then by diffusing in solid phase an impurity contained in the impurity containing interlayer film. CONSTITUTION:With semiconductor films 11, 13 and 16, which will become an accumulated electrode 18 of a capacitor, being brought into contact with impurity containing interlayer insulating films 10, 12, 14 and 17, the sample is heat-treated and thereby an impurity contained in the impurity containing interlayer insulating films 10, 12, 14 and 17 are diffused in solid phase into the semiconductor films 11, 13 and 16. Therefore, when a resistance of the semiconductor layers 11, 13 and 16, which will become the accumulated electrode 18, is made lower, an impurity does not pass through the semiconductor films 11, 13 and 16 and thereby enough amount of impurity can be doped. Because of this, enough amount of impurity can be doped only with one time heat treatment and therefore the surface of the semiconductor films is not oxidized during diffusion of an impurity and eventually, the accumulated electrode of the desired thickness can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法
に関し、より詳しくは、スタック・キャパシタを備えた
半導体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device having a stack capacitor.

【0002】[0002]

【従来の技術】スタック・キャパシタ型DRAMセル
は、1ビットセル当たりの専有面積が小さくなってもキ
ャパシタの蓄積容量を減少させないために、キャパシタ
の蓄積電極をフィン構造としたものが提案されている。
2. Description of the Related Art A stack capacitor type DRAM cell has been proposed in which the storage electrode of the capacitor has a fin structure so that the storage capacity of the capacitor does not decrease even if the area occupied by one bit cell becomes small.

【0003】フィン型セルは、蓄積電極の下面領域をも
キャパシタとして利用できるので、大きな蓄積容量を得
ることができる。また、フィンの枚数は、層数を重ねる
ことにより増やすことが可能であり、セル面積が小さく
なっても十分な蓄積容量を得ることができる。
Since the fin type cell can utilize the lower surface region of the storage electrode as a capacitor, a large storage capacitance can be obtained. Further, the number of fins can be increased by increasing the number of layers, and a sufficient storage capacity can be obtained even if the cell area becomes small.

【0004】次に、フィン型セルの製造方法の一例を図
5に基づいて説明する。まず、図5(a) に示すように、
シリコンよりなる半導体基板51表面に、選択酸化法に
より素子分離用の厚いSiO2膜52を形成した後に、SiO2
膜52に囲まれる領域にゲート絶縁膜53、ゲート電極
54を形成し、ついで、その両側の半導体基板51に不
純物を導入して例えばn型のソース/ドレイン(S/
D)拡散層55,56を形成し、これにより転送トラン
ジスタTRを形成する。
Next, an example of a method of manufacturing a fin type cell will be described with reference to FIG. First, as shown in Fig. 5 (a),
The semiconductor substrate 51 surface made of silicon, after forming the thick SiO 2 film 52 of element isolation by selective oxidation method, SiO 2
A gate insulating film 53 and a gate electrode 54 are formed in a region surrounded by the film 52, and then impurities are introduced into the semiconductor substrate 51 on both sides thereof to form, for example, an n-type source / drain (S /
D) Diffusion layers 55 and 56 are formed to form the transfer transistor TR.

【0005】なお、ゲート電極54は、同じ膜により形
成されるメモリーセルのワード線WLに接続される。つい
で、同図に見られるように、全体に層間絶縁膜57を成
長し、これをパターニングして第一のS/D拡散層55
の上に窓58を開口し、この窓58を通してそのS/D
拡散層55にビット線BLを接続する。
The gate electrode 54 is connected to the word line WL of the memory cell formed of the same film. Then, as shown in the figure, an interlayer insulating film 57 is grown on the entire surface and is patterned to form a first S / D diffusion layer 55.
A window 58 is opened on the top and the S / D is passed through this window 58.
The bit line BL is connected to the diffusion layer 55.

【0006】さらに、全体に SiN膜59、SiO2膜60を
形成し、その上に、多結晶シリコン膜61及びSiO2膜6
2を少なくとも1層ずつ交互に積層した後に、気相拡散
又はイオン注入により例えばn型の不純物を多結晶シリ
コン膜61内に導入する。
Further, a SiN film 59 and a SiO 2 film 60 are formed on the entire surface, and a polycrystalline silicon film 61 and a SiO 2 film 6 are formed thereon.
After at least one layer of 2 is alternately stacked, for example, an n-type impurity is introduced into the polycrystalline silicon film 61 by vapor phase diffusion or ion implantation.

【0007】次に、図5(b) に示すように、最上のSiO2
膜62から下の層をパターニングして、第二のS/D拡
散層56の上に窓63を形成し、その窓63の内と最上
のSiO2膜62の上に沿って第二の多結晶シリコン膜64
を形成した後に、気相拡散又はイオン注入によりその多
結晶シリコン膜64にn型不純物を入れる。
Next, as shown in FIG. 5 (b), the uppermost SiO 2
A layer below the film 62 is patterned to form a window 63 on the second S / D diffusion layer 56, and a second multi-layer is formed in the window 63 and along the uppermost SiO 2 film 62. Crystalline silicon film 64
After forming, the n-type impurity is added to the polycrystalline silicon film 64 by vapor phase diffusion or ion implantation.

【0008】ついで、図5(c) に示すように、フォトリ
ソグラフィー法により多結晶シリコン膜64,61とこ
れに挟まれるSiO2膜62を1枚のレジストマスク(不図
示)を用いてパターニングし、これらの膜を第二のS/
D拡散層56の上とその周辺領域に残存させる。
Next, as shown in FIG. 5C, the polycrystalline silicon films 64 and 61 and the SiO 2 film 62 sandwiched between them are patterned by photolithography using a resist mask (not shown). , These membranes with a second S /
It is left on the D diffusion layer 56 and its peripheral region.

【0009】つづいて、 SiN膜59の上方にあるSiO2
62を例えば弗酸等のウェットエッチングによって選択
的に除去すれば、図5(d) に示すようなフィン構造の蓄
積電極65が形成される。さらに、キャパシタ誘電体膜
66、対向電極67を順次形成すると、これらによって
キャパシタが完成する。
Subsequently, the SiO 2 film 62 above the SiN film 59 is selectively removed by wet etching with hydrofluoric acid or the like to form a storage electrode 65 having a fin structure as shown in FIG. 5D. To be done. Further, when the capacitor dielectric film 66 and the counter electrode 67 are sequentially formed, the capacitor is completed by these.

【0010】この後に、図示しない層間絶縁膜、配線層
等を形成することによりフィン型キャパシタセルが完成
する。
After that, a fin type capacitor cell is completed by forming an interlayer insulating film, a wiring layer and the like which are not shown.

【0011】[0011]

【発明が解決しようとする課題】ところで、集積度向上
にともない、蓄積電極65となる多結晶シリコン膜6
1,64の薄層化が行われているが、不純物の導入をイ
オン注入法によって行えば薄層化がすすむにつれて不純
物が膜を通り抜け易くなってしまうので、蓄積電極65
中に十分な量のn型不純物を導入するこができず、低抵
抗化が図れないといった不都合がある。
By the way, as the integration degree is improved, the polycrystalline silicon film 6 to be the storage electrode 65 is formed.
Although the layers 1 and 64 have been thinned, if the impurities are introduced by an ion implantation method, the impurities are more likely to pass through the film as the layers are thinned.
There is an inconvenience that a sufficient amount of n-type impurities cannot be introduced into the inside and resistance cannot be reduced.

【0012】これに対して、気相拡散法によれば、気相
拡散の際に含まれる酸素によって多結晶シリコン膜6
1,64の表面が酸化されるため、蓄積電極65の実質
的な膜厚が目減りしたり、その表面の誘電体膜66の膜
厚が増加して蓄積容量が低減するといった問題がある。
On the other hand, according to the vapor phase diffusion method, the polycrystalline silicon film 6 is formed by oxygen contained in the vapor phase diffusion.
Since the surfaces of the electrodes 1 and 64 are oxidized, there is a problem that the substantial film thickness of the storage electrode 65 is reduced or the film thickness of the dielectric film 66 on the surface is increased to reduce the storage capacitance.

【0013】また、蓄積電極65のフィンの枚数を増や
すと、各フィン毎に不純物の気相拡散又はイオン注入を
行う工程が増えることになり、製造工数が増大するとい
ったきらいがある。
Further, when the number of fins of the storage electrode 65 is increased, the number of steps for vapor phase diffusion of impurities or ion implantation is increased for each fin, which tends to increase the number of manufacturing steps.

【0014】本発明はこのような問題に鑑みてなされた
ものであって、膜厚を変化させずにフィン型キャパシタ
の電極に十分な不純物を含有させるとともに、不純物導
入の手間を軽減できる半導体装置の製造方法を提供する
ことを目的とする。
The present invention has been made in view of the above problems, and a semiconductor device in which the electrode of the fin-type capacitor contains a sufficient amount of impurities without changing the film thickness and the labor of introducing the impurities can be reduced. It aims at providing the manufacturing method of.

【0015】[0015]

【課題を解決するための手段】上記した課題は、図2
(g) 、図3に例示するように、電極形成用半導体膜を不
純物含有層間膜に接触さて基板の上に形成する工程と、
加熱処理により、前記不純物含有層間膜に含まれる不純
物を前記電極形成用半導体膜に固相拡散させて前記電極
形成用半導体膜を低抵抗化する工程と、前記電極形成用
半導体膜に接触する前記不純物含有層間膜の全てを除去
して、残存した前記電極形成用半導体膜を第一の電極と
する工程と、前記不純物含有層間膜の除去により表出し
た前記電極形成用半導体膜の表面に沿ってキャパシタ用
誘電体膜を形成する工程と、前記キャパシタ用誘電体膜
の表出面に接触させて第二の導電膜を形成する工程とを
有することを特徴とする半導体装置の製造方法により達
成する。
[Means for Solving the Problems]
(g), as illustrated in FIG. 3, a step of forming an electrode-forming semiconductor film on the substrate in contact with the impurity-containing interlayer film,
A step of solid-phase diffusing impurities contained in the impurity-containing interlayer film into the electrode-forming semiconductor film by heat treatment to reduce the resistance of the electrode-forming semiconductor film; A step of removing all of the impurity-containing interlayer film and using the remaining electrode-forming semiconductor film as a first electrode, and a step of removing the impurity-containing interlayer film along the surface of the electrode-forming semiconductor film exposed by the removal of the impurity-containing interlayer film. And a step of forming a dielectric film for a capacitor with the step of forming a second conductive film in contact with an exposed surface of the dielectric film for a capacitor. ..

【0016】または、図1〜3に例示するように、一導
電型半導体層1の上層部に形成された反対導電型の導電
層6の上に、絶縁膜3,7,9を形成し、該絶縁膜3,
7,9の上に直接又は第一の不純物含有層間膜10を介し
て第一の電極形成用半導体膜11, 13と第二の不純物含有
層間膜12, 14を順に各々1層又は交互に複数層形成する
工程と、前記第二の不純物含有層間膜12, 14から前記絶
縁膜3,7,9までをパターニングして、前記反対導電
型の導電層6を露出する開口部15を形成する工程と、前
記第二の不純物含有層間膜12, 14上面と前記開口部15内
に、第二の電極形成用半導体膜16を積層する工程と、加
熱することにより、全ての前記不純物含有層間膜10, 1
2, 14の中の不純物を前記第一及び第二の電極形成用半
導体膜11,13, 16に固相拡散して、前記第一及び第二の
電極形成用半導体膜11, 13, 16を低抵抗化する工程と、
少なくとも前記一の電極形成用半導体膜11までをパター
ニングして前記開口部15を含むセル領域内に残存させ、
残存したフィン状の前記第一及び第二の電極形成用半導
体膜11, 13, 16を第一の電極18とする工程と、前記絶縁
膜3,7,9の上方にある全ての前記不純物含有層間膜
10, 12, 14を除去する工程と、前記不純物含有層間膜1
0, 12, 14の除去により表出した前記第一及び第二の電
極形成用半導体膜11, 13, 16の表面に沿ってキャパシタ
用誘電体膜19を形成する工程と、前記キャパシタ用誘電
体膜19の表面に接触する第二の電極20を形成する工程と
を有することを特徴とする半導体装置の製造方法により
達成する。
Alternatively, as illustrated in FIGS. 1 to 3, insulating films 3, 7 and 9 are formed on the conductive layer 6 of the opposite conductivity type formed in the upper layer portion of the one conductivity type semiconductor layer 1. The insulating film 3,
7 or 9 directly or through the first impurity-containing interlayer film 10, the first electrode-forming semiconductor films 11 and 13 and the second impurity-containing interlayer films 12 and 14 in order of one layer each or alternately. A step of forming a layer and a step of patterning the second impurity-containing interlayer films 12, 14 to the insulating films 3, 7, 9 to form an opening 15 exposing the conductive layer 6 of the opposite conductivity type. And a step of stacking the second electrode-forming semiconductor film 16 on the upper surfaces of the second impurity-containing interlayer films 12 and 14 and the opening 15, and by heating all the impurity-containing interlayer films 10 and 10. , 1
Impurities in 2, 14 are solid-phase diffused into the first and second electrode forming semiconductor films 11, 13, 16 to form the first and second electrode forming semiconductor films 11, 13, 16. A step of reducing the resistance,
At least the one electrode forming semiconductor film 11 is patterned and left in the cell region including the opening 15,
A step of using the remaining fin-shaped first and second semiconductor films for electrode formation 11, 13, 16 as the first electrode 18, and containing all the impurities above the insulating films 3, 7, 9 Interlayer film
Step of removing 10, 12 and 14, and the impurity-containing interlayer film 1
A step of forming a dielectric film for a capacitor 19 along the surfaces of the first and second semiconductor films for electrode formation 11, 13, 16 exposed by removing 0, 12, 14; and the dielectric for a capacitor. And a step of forming a second electrode 20 in contact with the surface of the film 19 to achieve the semiconductor device manufacturing method.

【0017】または、前記不純物含有層間膜10, 12, 14
が、燐ガラス、砒素ガラス、アンチモンガラスであるこ
とを特徴とする半導体装置の製造方法により達成する。
Alternatively, the impurity-containing interlayer films 10, 12, 14
Are phosphorous glass, arsenic glass, and antimony glass.

【0018】[0018]

【作 用】本発明によれば、キャパシタの蓄積電極(第
1の電極)18となる半導体膜11,13,16に不純物含有層間
膜10,12,13を接触させた状態で、加熱処理により、その
不純物含有層間膜10,12,13内の不純物を半導体膜11,13,
16に固相拡散している。このため、蓄積電極18となる半
導体層11,13,16を低抵抗化する際に不純物が半導体膜1
1,13,16を通り抜けることはなく、十分な量の不純物が
導入される。また不純物拡散の際に半導体膜11,13,16の
表面が酸化することもなく、所望の膜厚の蓄積電極18が
形成される。
[Operation] According to the present invention, the semiconductor film 11, 13, 16 which becomes the storage electrode (first electrode) 18 of the capacitor is heated by heat treatment while the impurity-containing interlayer films 10, 12, 13 are in contact with each other. , The impurities in the impurity-containing interlayer film 10, 12, 13 to the semiconductor film 11, 13,
Solid phase diffusion to 16. Therefore, when reducing the resistance of the semiconductor layers 11, 13 and 16 which will be the storage electrodes 18, impurities are removed from the semiconductor film 1.
It does not pass through 1,13,16 and introduces a sufficient amount of impurities. Further, the surface of the semiconductor films 11, 13, 16 is not oxidized during the impurity diffusion, and the storage electrode 18 having a desired film thickness is formed.

【0019】また、不純物の導入は1回の熱処理で済む
ために、不純物導入の際の手間が軽減される。なお、キ
ャパシタの蓄積電極18となる半導体膜11,13,16は、フィ
ン型、筒型或いは箱型等であっても適用できる。また、
不純物含有層間膜10,12,13としては、燐ガラス、砒素ガ
ラス、アンチモンガラス等がある。
Further, since the introduction of impurities is performed only once, the labor for introducing impurities can be reduced. The semiconductor films 11, 13, 16 that will be the storage electrodes 18 of the capacitors may be fin type, cylindrical type, box type, or the like. Also,
Examples of the impurity-containing interlayer films 10, 12, 13 include phosphorus glass, arsenic glass, antimony glass and the like.

【0020】[0020]

【実施例】そこで、以下に本発明の実施例を図面に基づ
いて説明する。 (a)本発明の第1実施例の説明 図1〜3は、本発明の第1実施例の工程を示す断面図、
図4は、第1実施例の各要素の配置を示す平面図で、図
1〜3は、図4のA−A線断面図である。
Embodiments of the present invention will be described below with reference to the drawings. (A) Description of the first embodiment of the present invention FIGS. 1 to 3 are sectional views showing the steps of the first embodiment of the present invention,
FIG. 4 is a plan view showing the arrangement of each element of the first embodiment, and FIGS. 1 to 3 are sectional views taken along the line AA of FIG.

【0021】図1(a) 、図4において符号1は、シリコ
ンよりなるp型半導体基板で、その表面には素子分離用
のSiO2膜2が選択酸化法により形成され、また、そのSi
O2膜2に囲まれた活性領域(トランジスタ形成領域)X
には、選択トランジスタTが形成されている。
In FIGS. 1A and 4, reference numeral 1 is a p-type semiconductor substrate made of silicon, on the surface of which a SiO 2 film 2 for element isolation is formed by a selective oxidation method.
Active region (transistor formation region) X surrounded by O 2 film 2
A select transistor T is formed in the.

【0022】この選択トランジスタは、図1(a) に示す
ように、半導体基板1の上に膜厚200Å以下の絶縁膜
3を介して形成されたゲート電極4と、その両側の半導
体基板1に燐、砒素等のn型不純物を導入して形成され
たソース/ドレイン(S/D)層5,6から構成されて
いる。なお、ゲート電極4は、メモリセルのワード線WL
と一体的に形成されている。
As shown in FIG. 1 (a), this selection transistor has a gate electrode 4 formed on a semiconductor substrate 1 with an insulating film 3 having a film thickness of 200 Å or less and the semiconductor substrate 1 on both sides thereof. The source / drain (S / D) layers 5 and 6 are formed by introducing n-type impurities such as phosphorus and arsenic. The gate electrode 4 is the word line WL of the memory cell.
It is formed integrally with.

【0023】このような状態で、まず図1(b) に示すよ
うに、CVD法によりSiO2、PSG等よりなる層間絶縁
膜7を全体に形成した後に、この層間絶縁膜7及び絶縁
膜3をフォトリソグラフィー法によりパターニングして
第一のS/D層5の上に開口部8を形成する。
In such a state, as shown in FIG. 1B, first, as shown in FIG. 1B, an interlayer insulating film 7 made of SiO 2 , PSG or the like is formed on the entire surface, and then the interlayer insulating film 7 and the insulating film 3 are formed. Is patterned by photolithography to form an opening 8 on the first S / D layer 5.

【0024】ついで、図1(c) に示すように、ワード線
WLと直交する方向であって開口部8内を通るビット線BL
を層間絶縁膜7の上に形成する。この後に、図1(d) に
示すように、層間絶縁膜7とビット線BLの上に、膜厚5
00Åのシリコン窒化膜(SiN膜)9をCVD法により積
層し、ついで、第一のPSG(燐ガラス)膜10、第一
の多結晶シリコン膜11、第二のPSG膜12、第二の
多結晶シリコン膜13及び第三のPSG膜14をCVD
法によりそれぞれ500Å程度の厚さに形成する。な
お、各PSG膜10,12,14の燐の含有量は、3〜
8wt%程度とする。
Then, as shown in FIG. 1 (c), the word line
Bit line BL passing through the opening 8 in a direction orthogonal to WL
Are formed on the interlayer insulating film 7. After this, as shown in FIG. 1D, a film thickness of 5 is formed on the interlayer insulating film 7 and the bit line BL.
A silicon nitride film (SiN film) 9 of 00Å is laminated by a CVD method, and then a first PSG (phosphorus glass) film 10, a first polycrystalline silicon film 11, a second PSG film 12, and a second polycrystalline silicon film 12. CVD of the crystalline silicon film 13 and the third PSG film 14
Each is formed to a thickness of about 500Å by the method. The content of phosphorus in each PSG film 10, 12, 14 is 3 to.
It is about 8 wt%.

【0025】次に、フォトレジストを塗布してこれを露
光、現像し、第二のS/D層6の上に窓を有するレジス
トマスクMを形成し、その窓から露出するPSG膜14
を反応性イオンエッチング法(RIE法)等によりエッ
チングし、これに続いてその下の多結晶シリコン膜13
からその下の各層を順次エッチング除去して、第二のS
/D層6の一部を表出させるための開口部15を形成す
る(図2(e))。この場合のエッチングガスとして塩素系
ガスやフッ素系ガスを使用する。
Next, a photoresist is applied, and this is exposed and developed to form a resist mask M having a window on the second S / D layer 6, and the PSG film 14 exposed from the window.
Is etched by a reactive ion etching method (RIE method) or the like, and subsequently, the polycrystalline silicon film 13 thereunder is etched.
To remove each layer underneath from the second S
The opening 15 for exposing a part of the / D layer 6 is formed (FIG. 2E). In this case, chlorine-based gas or fluorine-based gas is used as the etching gas.

【0026】そしてレジストマスクMを除去してから、
開口部15の内部を含む全体の領域に、第三の多結晶シ
リコン膜16と第四のPSG膜17をそれぞれ500Å
ずつ成長した後に(図2(f))、700℃以上の温度で加
熱してPSG膜10,12,14,17に含まれる燐を
多結晶シリコン膜11,13,16内に固相拡散し、こ
れにより多結晶シリコン膜11,13,16を低抵抗化
する。
After removing the resist mask M,
A third polycrystalline silicon film 16 and a fourth PSG film 17 are formed in the entire area including the inside of the opening 15 by 500 Å, respectively.
(FIG. 2 (f)), the phosphorus contained in the PSG films 10, 12, 14, 17 is solid-phase diffused into the polycrystalline silicon films 11, 13, 16 after heating (FIG. 2 (f)). As a result, the resistance of the polycrystalline silicon films 11, 13, 16 is reduced.

【0027】この後に、図示しないレジストマスクを用
いてRIE法等により、少なくとも上から6層のPSG
膜12,14,17及び多結晶シリコン膜11,13,
16を順次パターニングして、第二のS/D層6の上と
その周辺の領域、即ち図4に示す蓄積電極形成領域Yだ
けにそれらの膜を残存させる(図2(g))。なお、この直
後に上記した固相拡散を行ってもよい。
Thereafter, at least six layers of PSG from the top are formed by RIE or the like using a resist mask (not shown).
Films 12, 14, 17 and polycrystalline silicon films 11, 13,
16 is sequentially patterned to leave these films only on the second S / D layer 6 and its peripheral region, that is, the storage electrode forming region Y shown in FIG. 4 (FIG. 2 (g)). Immediately after this, the solid phase diffusion described above may be performed.

【0028】そしてレジストマスクを除去した後に、 S
iN膜9の上方にある全てのPSG膜10,12,14,
17を弗酸によって除去すると、 SiN膜9からそれぞれ
間隔をおいて配置された第一〜第三の多結晶シリコン膜
11,13,16の上下側面が表出し、また、第三の多
結晶シリコン膜17のうち開口部15ににおいて垂直に
形成される部分により第一、第二の多結晶シリコン膜1
1,13が支持され、これらによりスタック・キャパシ
タの蓄積電極18が構成される(図4(h))。
After removing the resist mask, S
All PSG films 10, 12, 14, above the iN film 9,
When 17 is removed by hydrofluoric acid, the upper and lower side surfaces of the first to third polycrystalline silicon films 11, 13 and 16 respectively spaced apart from the SiN film 9 are exposed, and the third polycrystalline silicon film is also exposed. The first and second polycrystalline silicon films 1 are formed by the portion of the film 17 formed vertically in the opening 15.
1 and 13 are supported, and these form the storage electrode 18 of the stack capacitor (FIG. 4 (h)).

【0029】この後に、図3(i) に示すように、蓄積電
極18の表面に沿ってシリコン窒化膜をCVD法により
一様に形成し、その表面を僅かに熱酸化してこの膜をキ
ャパシタの誘電体膜19とする。さらに、蓄積電極18
の表面とその間に不純物含有多結晶シリコンをCVD法
により形成し、これをパターニングしてキャパシタの対
向電極20とする。
Thereafter, as shown in FIG. 3 (i), a silicon nitride film is uniformly formed along the surface of the storage electrode 18 by the CVD method, and the surface is slightly thermally oxidized to form this film as a capacitor. Of the dielectric film 19. Furthermore, the storage electrode 18
Impurity-containing polycrystalline silicon is formed by the CVD method between the surface of the capacitor and the surface thereof, and this is patterned to form the counter electrode 20 of the capacitor.

【0030】これによりキャパシタが完成するが、さら
にその上に層間絶縁膜、配線層等を形成して、DRAM
セルを完成することになる。以上のように、蓄積電極1
8を構成する多結晶シリコン膜11,13,16の上面
又は下面にPSG膜10,12,14,17を形成し、
そのPSG膜10,12,14,17に含まれたn型不
純物である燐を多結晶シリコン膜11,13,16に固
相拡散したので、多結晶シリコン膜11,13,16の
膜厚が薄くなってもその中に不純物が確実に導入される
ことになる。しかも、不純物導入の際に多結晶シリコン
膜11,13,16は酸化される雰囲気に置かれないた
めに、その表面が酸化してその実効的な膜厚が減少する
ことはない。
As a result, the capacitor is completed. An interlayer insulating film, a wiring layer, etc. are further formed on the capacitor, and the DRAM is formed.
The cell will be completed. As described above, the storage electrode 1
Forming the PSG films 10, 12, 14, 17 on the upper surface or the lower surface of the polycrystalline silicon films 11, 13, 16 constituting
Since phosphorus, which is an n-type impurity contained in the PSG films 10, 12, 14 and 17, was solid-phase diffused into the polycrystalline silicon films 11, 13 and 16, the film thickness of the polycrystalline silicon films 11, 13 and 16 was reduced. Even if it becomes thinner, impurities will be surely introduced into it. Moreover, since the polycrystalline silicon films 11, 13 and 16 are not placed in an oxidizing atmosphere when introducing impurities, their surfaces are not oxidized and their effective film thickness is not reduced.

【0031】なお、蓄積電極となる多結晶シリコン膜の
上下面のいずれかに成長する層間膜としては、PSGの
他に、砒素ガラス、アンチモンガラス、その他の不純物
含有材を使用してもよい。
As the interlayer film grown on either the upper or lower surface of the polycrystalline silicon film to be the storage electrode, arsenic glass, antimony glass, or other impurity-containing material may be used in addition to PSG.

【0032】また、キャパシタの蓄積電極を構成する膜
としては、不純物含有ガラスを除去する際に残存する材
料であれば、多結晶シリコンの他の半導体により構成し
てもよい。さらに、上述した実施例では、最上の多結晶
シリコン膜16の上にPSG膜17を形成したが、その
下のPGS膜14等により不純物導入が十分であれば省
いてもよい。
The film forming the storage electrode of the capacitor may be made of another semiconductor of polycrystalline silicon as long as it is a material that remains when the impurity-containing glass is removed. Furthermore, in the above-described embodiment, the PSG film 17 is formed on the uppermost polycrystalline silicon film 16, but it may be omitted if the introduction of impurities is sufficient by the PGS film 14 and the like under the PSG film 17.

【0033】(b)本発明のその他の実施例の説明 上記した実施例では、3枚のフィンを有する蓄積電極に
ついて説明したが、これが1枚、2枚又は4枚以上のも
のであっても同様に適用でき、蓄積電極となる半導体膜
のうちの少なくとも一面側に不純物含有層間膜を形成
し、その不純物を固相拡散させるようにしてもよい。
(B) Description of Other Embodiments of the Present Invention In the above-mentioned embodiments, the storage electrode having three fins has been described, but this may be one, two or four or more. It is applicable in the same manner, and an impurity-containing interlayer film may be formed on at least one surface side of the semiconductor film to be the storage electrode, and the impurities may be solid-phase diffused.

【0034】また、複数膜のフィンを有する蓄積電極の
最下層のフィンは、上記したようにSiN膜から浮き上が
った状態となってもよいし、 SiN膜に接して上面側に誘
電体膜、対向電極を形成するようにしていもよい。
Further, the fins of the lowermost layer of the storage electrode having a plurality of fins may be in a state of being lifted from the SiN film as described above, or may be in contact with the SiN film and the dielectric film on the upper surface side, facing the SiN film. The electrodes may be formed.

【0035】さらに、上記した実施例では、フィン型ス
タック・キャパシタについて説明したが、円筒型、箱
型、トンネル型、その他のスタック・キャパシタについ
て半導体層を導電化して蓄積電極を形成する場合にも同
様に適用できる。
Further, although the fin type stack capacitor has been described in the above-mentioned embodiments, it is also possible to form the storage electrode by making the semiconductor layer conductive in cylindrical type, box type, tunnel type and other stack capacitors. The same applies.

【0036】[0036]

【発明の効果】以上述べたように 本発明によれば、キ
ャパシタの蓄積電極(第1の電極)となる半導体膜に不
純物含有層間膜を接触させた状態で、加熱処理により、
その不純物含有層間膜内の不純物を半導体膜に固相拡散
しているので、蓄積電極となる半導体層を低抵抗化する
際に不純物がその半導体膜を通り抜けることはなく、十
分な量の不純物を導入できる。
As described above, according to the present invention, heat treatment is performed while the impurity-containing interlayer film is in contact with the semiconductor film to be the storage electrode (first electrode) of the capacitor.
Since the impurities in the impurity-containing interlayer film are solid-phase-diffused into the semiconductor film, the impurities do not pass through the semiconductor film when the resistance of the semiconductor layer to be the storage electrode is reduced, and a sufficient amount of impurities are Can be introduced.

【0037】しかも、不純物拡散の際に半導体膜の表面
が酸化することもなく、所望の膜厚の蓄積電極を形成で
きる。また、不純物の導入は1回の熱処理で済むため
に、不純物導入の際の手間を軽減できる。
Moreover, the surface of the semiconductor film is not oxidized during the impurity diffusion, and the storage electrode having a desired film thickness can be formed. Further, since the introduction of impurities is performed only once, it is possible to reduce the time and effort required for introducing the impurities.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の工程を示す断面図(その
1)である。
FIG. 1 is a sectional view (1) showing a process of an embodiment of the present invention.

【図2】本発明の一実施例の工程を示す断面図(その
2)である。
FIG. 2 is a sectional view (No. 2) showing a step of the embodiment of the present invention.

【図3】本発明の一実施例の工程を示す断面図(その
3)である。
FIG. 3 is a sectional view (3) showing a process of an example of the present invention.

【図4】本発明の一実施例により形成された装置の一例
を示す平面図である。
FIG. 4 is a plan view showing an example of an apparatus formed according to an embodiment of the present invention.

【図5】従来の製造工程の一例を示す断面図である。FIG. 5 is a cross-sectional view showing an example of a conventional manufacturing process.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 SiO2膜 3 ゲート絶縁膜 4 ゲート電極 5、6 S/D層 7 層間絶縁膜 8 開口部 9 SiN膜 10、12、14、17 PSG膜(不純物含有層間
膜) 11、13、16 シリコン膜(半導体膜) 15 開口部 18 蓄積電極 19 誘電体膜 20 対向電極 T 転送トランジスタ BL ビット線 WL ワード線
1 semiconductor substrate 2 SiO 2 film 3 gate insulating film 4 gate electrode 5, 6 S / D layer 7 interlayer insulating film 8 opening 9 SiN film 10, 12, 14, 17 PSG film (impurity-containing interlayer film) 11, 13, 16 Silicon Film (Semiconductor Film) 15 Opening 18 Storage Electrode 19 Dielectric Film 20 Counter Electrode T Transfer Transistor BL Bit Line WL Word Line

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電極形成用半導体膜に不純物含有層間膜
を接触させて基板の上に形成する工程と、 加熱処理により、前記不純物含有層間膜に含まれる不純
物を前記電極形成用半導体膜に固相拡散させて前記電極
形成用半導体膜を低抵抗化する工程と、 前記電極形成用半導体膜に接触する前記不純物含有層間
膜の全てを除去して、残存した前記電極形成用半導体膜
を第一の電極とする工程と、 前記不純物含有層間膜の除去により表出した前記電極形
成用半導体膜の表面に沿ってキャパシタ用誘電体膜を形
成する工程と、 前記キャパシタ用誘電体膜の表出面に接触させて第二の
導電膜を形成する工程とを有することを特徴とする半導
体装置の製造方法。
1. A step of bringing an impurity-containing interlayer film into contact with an electrode-forming semiconductor film to form it on a substrate, and a heat treatment to fix impurities contained in the impurity-containing interlayer film to the electrode-forming semiconductor film. A step of phase-diffusing to reduce the resistance of the electrode-forming semiconductor film, and removing all of the impurity-containing interlayer film in contact with the electrode-forming semiconductor film to leave the remaining electrode-forming semiconductor film as a first layer. And a step of forming a capacitor dielectric film along the surface of the electrode-forming semiconductor film exposed by removing the impurity-containing interlayer film, and on the exposed surface of the capacitor dielectric film. And a step of forming a second conductive film by bringing them into contact with each other.
【請求項2】 一導電型半導体層(1)の上層部に形成
された反対導電型の導電層(6)の上に、絶縁膜(3,
7,9)を形成し、該絶縁膜(3,7,9)の上に直接
又は第一の不純物含有層間膜(10)を介して第一の電極
形成用半導体膜(11, 13)と第二の不純物含有層間膜
(12, 14)を順に各々1層又は交互に複数層形成する工
程と、 前記第二の不純物含有層間膜(12, 14)から前記絶縁膜
(3,7,9)までをパターニングして、前記反対導電
型の導電層(6)を露出する開口部(15)を形成する工
程と、 前記第二の不純物含有層間膜(12, 14)上面と前記開口
部(15)内に、第二の電極形成用半導体膜(16)を積層
する工程と、 加熱することにより、全ての前記不純物含有層間膜(1
0, 12, 14)の中の不純物を前記第一及び第二の電極形
成用半導体膜(11, 13, 16)に固相拡散して前記第一及
び第二の電極形成用半導体膜(11, 13, 16)を低抵抗化
する工程と、 少なくとも前記一の電極形成用半導体膜(11)までをパ
ターニングして前記開口部(15)を含むセル領域内に残
存させ、残存したフィン状の前記第一及び第二の電極形
成用半導体膜(11, 13, 16)を第一の電極(18)とする
工程と、 前記絶縁膜(3,7,9)の上方にある全ての前記不純
物含有層間膜(10, 12, 14)を除去する工程と、 前記不純物含有層間膜(10, 12, 14)の除去により表出
した前記第一及び第二の電極形成用半導体膜(11, 13,
16)の表面に沿ってキャパシタ用誘電体膜(19)を形成
する工程と、 前記キャパシタ用誘電体膜(19)の表面に接触する第二
の電極(20)を形成する工程とを有することを特徴とす
る半導体装置の製造方法。
2. An insulating film (3, 3) is formed on a conductive layer (6) of opposite conductivity type formed on an upper layer portion of the one conductivity type semiconductor layer (1).
7, 9) are formed, and a first electrode forming semiconductor film (11, 13) is formed on the insulating film (3, 7, 9) directly or via the first impurity-containing interlayer film (10). Forming a second impurity-containing interlayer film (12, 14) one layer at a time or alternately forming a plurality of layers, and from the second impurity-containing interlayer film (12, 14) to the insulating film (3, 7, 9). ) To form an opening (15) exposing the conductive layer (6) of the opposite conductivity type, the upper surface of the second impurity-containing interlayer film (12, 14) and the opening (15). 15) in which a second electrode forming semiconductor film (16) is laminated, and by heating, all the impurity-containing interlayer films (1
Impurities in the first, second, and second electrode forming semiconductor films (11, 13, 16) are solid-phase diffused to the first and second electrode forming semiconductor films (11, 13, 16). , 13, 16) to reduce the resistance, and at least up to the one electrode forming semiconductor film (11) is patterned to remain in the cell region including the opening (15), and the remaining fin-shaped A step of using the first and second electrode forming semiconductor films (11, 13, 16) as a first electrode (18), and all the impurities above the insulating film (3, 7, 9) A step of removing the containing interlayer film (10, 12, 14), and the first and second electrode forming semiconductor films (11, 13) exposed by removing the impurity containing interlayer film (10, 12, 14). ,
16) a step of forming a capacitor dielectric film (19) along the surface of the capacitor, and a step of forming a second electrode (20) in contact with the surface of the capacitor dielectric film (19). A method for manufacturing a semiconductor device, comprising:
【請求項3】 前記不純物含有層間膜(10, 12, 14)
が、燐ガラス、砒素ガラス、アンチモンガラスであるこ
とを特徴とする請求項1又は2記載の半導体装置の製造
方法。
3. The impurity-containing interlayer film (10, 12, 14)
3. The method for manufacturing a semiconductor device according to claim 1, wherein is a phosphorous glass, an arsenic glass, or an antimony glass.
JP4031001A 1992-02-18 1992-02-18 Manufacture of semiconductor device Withdrawn JPH05226602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4031001A JPH05226602A (en) 1992-02-18 1992-02-18 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4031001A JPH05226602A (en) 1992-02-18 1992-02-18 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05226602A true JPH05226602A (en) 1993-09-03

Family

ID=12319341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4031001A Withdrawn JPH05226602A (en) 1992-02-18 1992-02-18 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05226602A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6300186B1 (en) * 1995-04-27 2001-10-09 Nec Corporation Method of measuring semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6300186B1 (en) * 1995-04-27 2001-10-09 Nec Corporation Method of measuring semiconductor device

Similar Documents

Publication Publication Date Title
US5164337A (en) Method of fabricating a semiconductor device having a capacitor in a stacked memory cell
US5075745A (en) Capacitor cell for use in a semiconductor memory integrated circuit device
JPS63291462A (en) Manufacture of polycide semiconductor device and semiconductor device
JPH06232365A (en) Manufacture of capacitor for semiconductor storage device
JPS62145765A (en) Memory cell
JP2642364B2 (en) Semiconductor memory device and method of manufacturing the same
JPH05226602A (en) Manufacture of semiconductor device
JPS63133565A (en) Semiconductor storage device
JP2772375B2 (en) Semiconductor storage device
JPH0828427B2 (en) Semiconductor device and manufacturing method thereof
JP4398829B2 (en) Semiconductor device
JPH01265556A (en) Semiconductor memory and manufacture thereof
JPH01149452A (en) Semiconductor storage device and manufacture thereof
JP2503661B2 (en) Semiconductor memory device and manufacturing method thereof
JP3817615B2 (en) Semiconductor memory device and manufacturing method thereof
JPH05251655A (en) Manufacture of semiconductor device
JP2739983B2 (en) Semiconductor memory device and method of manufacturing the same
JPH04286152A (en) Manufacture of semiconductor memory
JP3082691B2 (en) Semiconductor device and manufacturing method thereof
JPH01189949A (en) Manufacture of semiconductor memory device
JPH10154799A (en) Manufacturing method of semiconductor device
JPH05251667A (en) Semiconductor device and manufacture thereof
JP2740544B2 (en) Method for manufacturing semiconductor memory device
JPH1174480A (en) Semiconductor memory and its manufacture
JPH05267610A (en) Manufacture of semiconductor memory

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518