JPH05226191A - Manufacture of solid-state electrolytic capacitor - Google Patents

Manufacture of solid-state electrolytic capacitor

Info

Publication number
JPH05226191A
JPH05226191A JP5691392A JP5691392A JPH05226191A JP H05226191 A JPH05226191 A JP H05226191A JP 5691392 A JP5691392 A JP 5691392A JP 5691392 A JP5691392 A JP 5691392A JP H05226191 A JPH05226191 A JP H05226191A
Authority
JP
Japan
Prior art keywords
polymer film
conductive polymer
water
absorbent resin
dielectric oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5691392A
Other languages
Japanese (ja)
Other versions
JP3195819B2 (en
Inventor
Kiyoshi Sakamoto
清志 坂本
Kazuyoshi Endo
和芳 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP05691392A priority Critical patent/JP3195819B2/en
Publication of JPH05226191A publication Critical patent/JPH05226191A/en
Application granted granted Critical
Publication of JP3195819B2 publication Critical patent/JP3195819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To prevent dielectric oxide films from being damaged by the contact of feeder electrodes during an electrolytic oxidation polymerization process and to prevent various characteristics from deteriorating. CONSTITUTION:A part of dielectric oxide film 3 in the vicinity of the drawing- out part of an anode wire 1 including the vicinity of the drawing-out part of the anode wire 1 is coated with a heat-resisting insulating substance 4, and a water absorptive resin substance 5 is formed on the surface of this heat resisting insulating substance 4. Subsequently, a chemical polymerization film 6 is formed on the surface of the remaining part of the dielectric oxide film including the surface of this water absorptive resin substance 5. Then a feeder electrode is brought into contact with a part of the chemical polymerization film 6 formed on the surface of the water absorptive resin substance 5, and an electrolytic polymerization film 7 is formed by electrolytic oxidation polymerization.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導電性高分子膜を固体
電解質として用いた固体電解コンデンサの製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor using a conductive polymer film as a solid electrolyte.

【0002】[0002]

【従来の技術】近年、小型高性能化の要請に応えた導電
性高分子膜を固体電解質として用いた固体電解コンデン
サに関する特許が種々提案され注目をあつめている。
2. Description of the Related Art In recent years, various patents relating to a solid electrolytic capacitor using a conductive polymer film as a solid electrolyte have been proposed to meet the demand for miniaturization and high performance, and have been attracting attention.

【0003】この固体電解コンデンサ技術は、表面を粗
面化した弁作用金属を化成し酸化皮膜を形成して得た陽
極体の表面に、順次、化学酸化重合によって薄い導電性
高分子膜を形成し、この薄い導電性高分子膜を電極とし
て電解酸化重合手段を講じて厚い導電性高分子膜を形成
し、この上にカーボン層及び導電性塗膜を形成したもの
である。
In this solid electrolytic capacitor technology, a thin conductive polymer film is sequentially formed by chemical oxidative polymerization on the surface of an anode body obtained by forming an oxide film by forming a valve metal having a roughened surface. The thin conductive polymer film is used as an electrode to form an electrolytic oxidation polymerization means to form a thick conductive polymer film, on which a carbon layer and a conductive coating film are formed.

【0004】しかして、このような構成になる固体電解
コンデンサは、従来の固体電解コンデンサと比較して、
温度特性及び周波数特性が良いなどの特徴を有している
が、電解酸化重合工程での給電電極を誘電体酸化皮膜上
に形成した化学酸化重合による薄い導電性高分子膜に接
触させるため、誘電体酸化皮膜に傷が付き易く、漏れ電
流を損ねる要因を抱える結果となっており、また極端な
場合は短絡不良に至る致命的な欠点をもつものであっ
た。
However, the solid electrolytic capacitor having such a structure is, in comparison with the conventional solid electrolytic capacitor,
It has characteristics such as good temperature characteristics and frequency characteristics, but since the feeding electrode in the electrolytic oxidation polymerization process is brought into contact with the thin conductive polymer film formed by chemical oxidation polymerization on the dielectric oxide film, As a result, the body oxide film is easily scratched, resulting in a factor of impairing the leakage current, and in an extreme case, it has a fatal defect that leads to a short circuit failure.

【0005】そのため、耐熱性絶縁体で金属焼結体素子
から引出した陽極線の一部を被覆し、前記耐熱性絶縁体
表面を含む誘電体酸化皮膜上に化学酸化重合により導電
性高分子膜を形成し、前記耐熱性絶縁体の表面に形成さ
れた導電性高分子膜上に給電電極を接触させて電解酸化
重合により導電性高分子膜を形成することによって、誘
電体酸化皮膜の損傷を防止する技術が試みられている。
Therefore, a part of the anode wire drawn out from the sintered metal element is covered with a heat resistant insulator, and a conductive polymer film is formed on the dielectric oxide film including the surface of the heat resistant insulator by chemical oxidative polymerization. To form a conductive polymer film by electrolytic oxidation polymerization by contacting the feeding electrode on the conductive polymer film formed on the surface of the heat resistant insulator, thereby preventing damage to the dielectric oxide film. Preventive techniques are being tried.

【0006】しかしながら、耐熱性絶縁体表面は平滑で
あるため、化学酸化重合工程での耐熱性絶縁体表面への
酸化剤溶液の保持量が少なく、その結果耐熱性絶縁体表
面に所望の導電性高分子膜が形成されず、容量出現率及
びtanδ特性が共に悪く、更には寿命での諸特性を劣
化させる問題を抱えていた。
However, since the surface of the heat-resistant insulator is smooth, the amount of the oxidant solution retained on the surface of the heat-resistant insulator in the chemical oxidative polymerization process is small, and as a result, the desired conductivity of the surface of the heat-resistant insulator is obtained. There was a problem that a polymer film was not formed, the capacity appearance rate and tan δ characteristics were both poor, and further, various characteristics over the life were deteriorated.

【0007】[0007]

【発明が解決しようとする課題】以上のように、導電性
高分子膜を固体電解質として用いる固体電解コンデンサ
は、小型高性能化の要請に応えたものとして注目に値す
るが、電解酸化重合手段として、酸化皮膜上に形成した
化学酸化重合による導電性高分子膜に給電する構成では
誘電体酸化皮膜に傷が付き易く短絡不良の誘発と言う致
命的な欠点を抱え、また、陽極リード線の一部に被覆し
た耐熱性絶縁体の表面に形成した化学酸化重合による導
電性高分子膜に給電する構成では耐熱性絶縁体表面に酸
化剤溶液の保持が不十分で所望の導電性高分子膜の形成
が困難で、いづれにしてもこの種固体電解コンデンサと
して解決すべき課題をもつものであった。
As described above, a solid electrolytic capacitor using a conductive polymer film as a solid electrolyte is notable as one that meets the demand for miniaturization and high performance, but as an electrolytic oxidation polymerization means. However, in the structure that feeds electricity to the conductive polymer film formed by chemical oxidative polymerization formed on the oxide film, the dielectric oxide film is liable to be scratched and has a fatal drawback of inducing a short circuit defect. In the structure that feeds power to the conductive polymer film formed by chemical oxidative polymerization formed on the surface of the heat-resistant insulator coated on the part, the oxidant solution is not sufficiently retained on the surface of the heat-resistant insulator and It was difficult to form, and in any case there was a problem to be solved as this kind of solid electrolytic capacitor.

【0008】本発明は、上記のような従来技術の課題を
解決するために提案されたものであり、その目的は、誘
電体酸化皮膜の損傷をなくし、所望の導電性高分子膜構
成を有する固体電解コンデンサの製造方法を提供するこ
とである。
The present invention has been proposed in order to solve the problems of the prior art as described above, and an object thereof is to eliminate damage to a dielectric oxide film and to have a desired conductive polymer film structure. A method for manufacturing a solid electrolytic capacitor is provided.

【0009】[0009]

【課題を解決するための手段】本発明の固体電解コンデ
ンサの製造方法は、陽極線を植立した弁作用金属からな
る陽極体の表面に誘電体酸化皮膜を形成し、前記陽極線
導出部を含む陽極線近傍に位置する誘電体酸化皮膜の一
部を耐熱性絶縁体で被覆し、この耐熱性絶縁体の表面を
吸水性樹脂体で被覆した後、この吸水性樹脂体表面を含
む誘電体酸化皮膜上に化学酸化重合による導電性高分子
膜を形成し、しかる後吸水性樹脂体の表面に形成した化
学酸化重合による導電性高分子膜の一部に陽極としての
導電体を接触させて外部陰極との間で電解酸化重合し、
前記化学酸化重合による導電性高分子膜上に電解酸化重
合による導電性高分子膜を形成することを特徴とする。
According to the method of manufacturing a solid electrolytic capacitor of the present invention, a dielectric oxide film is formed on the surface of an anode body made of a valve metal having an anode wire erected, and the anode wire lead-out portion is provided. Including a part of the dielectric oxide film located near the anode wire with a heat-resistant insulator, the surface of this heat-resistant insulator is covered with a water-absorbent resin body, and then a dielectric body containing this water-absorbent resin body surface. A conductive polymer film formed by chemical oxidative polymerization is formed on the oxide film, and then a part of the conductive polymer film formed by chemical oxidative polymerization formed on the surface of the water-absorbent resin body is brought into contact with a conductor as an anode. Electrolytically oxidatively polymerizes with the external cathode,
A conductive polymer film formed by electrolytic oxidation polymerization is formed on the conductive polymer film formed by the chemical oxidative polymerization.

【0010】また、吸水性樹脂体が、ポリアクリル酸
塩,イソブチレン無水マレイン酸共重合体,デンプンア
クリル酸グラフト共重合体,アクリル酸ビニールアルコ
ール共重合体,ポリアクリル酸塩アクリル繊維重合体,
ポリビニルアルコール,ポリアクリル酸ポリアクリル酸
エステル,ポリアクリルアミドポリエチレンオキサイド
からなることを特徴とする。
Further, the water-absorbent resin is a polyacrylic acid salt, isobutylene maleic anhydride copolymer, starch acrylic acid graft copolymer, vinyl acrylate acrylate copolymer, polyacrylate acrylic fiber polymer,
It is characterized by being composed of polyvinyl alcohol, polyacrylic acid polyacrylic acid ester, and polyacrylamide polyethylene oxide.

【0011】[0011]

【作用】以上のような構成を有する本発明の固体電解コ
ンデンサの製造方法によれば、電解酸化重合工程での給
電電極の接触箇所となる化学酸化重合による導電性高分
子膜が、耐熱性絶縁体表面を被覆した吸水性樹脂体表面
部分となるため、誘電体酸化皮膜損傷がなく、誘電体酸
化皮膜損傷に起因する特性劣化要因は解消される。
According to the method of manufacturing a solid electrolytic capacitor of the present invention having the above-described structure, the conductive polymer film formed by chemical oxidative polymerization, which is the contact point of the power feeding electrode in the electrolytic oxidative polymerization step, is heat resistant Since it is the surface portion of the water-absorbent resin body that covers the body surface, there is no damage to the dielectric oxide film, and the factor of characteristic deterioration due to damage to the dielectric oxide film is eliminated.

【0012】また、吸水性樹脂体は自重の数百倍から数
千倍の水を吸収することができるため、化学酸化重合で
の酸化剤溶液を十分に保持することが可能で、所望厚さ
の電解酸化重合による導電性高分子膜形成に必要な化学
酸化重合による導電性高分子膜を均一に形成することが
でき、寿命特性改善に大きく貢献できる優れた作用を有
する。
Further, since the water-absorbent resin body can absorb hundreds to thousands of times its own weight of water, it is possible to sufficiently hold the oxidant solution in the chemical oxidative polymerization and to obtain a desired thickness. The conductive polymer film can be uniformly formed by the chemical oxidative polymerization required for the formation of the conductive polymer film by the electrolytic oxidative polymerization, and has an excellent effect that can greatly contribute to the improvement of the life characteristics.

【0013】[0013]

【実施例】以下に、本発明の一実施例について説明す
る。
EXAMPLES An example of the present invention will be described below.

【0014】すなわち、図1に示すように、直径0.3
mmのタンタル線からなる陽極線1を植立したタンタル
粉末を4.0mm×3.0mm×1.3mmの大きさに
成型し、これを1600℃で焼結して焼結体2を形成す
る。次にこの焼結体2に70Vを印加して化成処理を行
い誘電体酸化皮膜3を形成し、次に前記陽極線1導出部
を含む陽極線1導出部近傍に位置する誘電体酸化皮膜3
の一部をマレイミド樹脂からなる耐熱性絶縁体4で被覆
し、この耐熱性絶縁体4表面をポリアクリル酸塩,イソ
ブチレン無水マレイン酸共重合体,デンプンアクリル酸
グラフト共重合体,アクリル酸ビニールアルコール共重
合体,ポリアクリル酸塩アクリル繊維重合体,ポリビニ
ルアルコール,ポリアクリル酸ポリアクリル酸エステ
ル,ポリアクリルアミドポリエチレンオキサイド等から
なる粉末樹脂で被覆した後、硬化させ吸水性樹脂体5を
形成し、しかる後、この吸水性樹脂体5を形成した焼結
体2を過酸化水素6M、硫酸3Mの水溶液中に10分間
浸漬し、直ちにピロール液に20分間浸漬して化学酸化
重合を行い、前記誘電体酸化皮膜3及び吸水性樹脂体5
上に導電性高分子膜であるポリピロールからなる化学重
合膜6を形成する。
That is, as shown in FIG. 1, the diameter is 0.3.
The tantalum powder in which the anode wire 1 made of a tantalum wire of mm is erected is molded into a size of 4.0 mm × 3.0 mm × 1.3 mm, and this is sintered at 1600 ° C. to form a sintered body 2. . Next, 70 V is applied to the sintered body 2 to perform a chemical conversion treatment to form a dielectric oxide film 3, and then the dielectric oxide film 3 located near the anode wire 1 lead-out portion including the anode wire 1 lead-out portion.
Is partially coated with a heat-resistant insulator 4 made of maleimide resin, and the surface of the heat-resistant insulator 4 is polyacrylate, isobutylene maleic anhydride copolymer, starch acrylic acid graft copolymer, vinyl acrylate acrylate. After being coated with a powder resin composed of a copolymer, a polyacrylic acid acrylic fiber polymer, polyvinyl alcohol, a polyacrylic acid polyacrylic acid ester, a polyacrylamide polyethylene oxide, etc., it is cured to form a water absorbent resin body 5. Then, the sintered body 2 on which the water-absorbent resin body 5 is formed is immersed in an aqueous solution of hydrogen peroxide 6M and sulfuric acid 3M for 10 minutes, and immediately immersed in a pyrrole solution for 20 minutes to perform chemical oxidative polymerization. Oxide film 3 and water absorbent resin body 5
A chemically polymerized film 6 made of polypyrrole, which is a conductive polymer film, is formed on top.

【0015】しかして、電解液としてピロールモノマー
1mol/リットル及び支持電解質としてパラトルエン
スルホン酸ナトリウム1mol/リットルを含むアセト
ニトリル液中に浸漬し、前記吸水性樹脂体5の表面に形
成した化学酸化重合による導電性高分子膜であるポリピ
ロールからなる化学重合膜6の一部に接触した白金線を
陽極として、外部電極との間に定電流電解酸化重合(5
0mA/cm2 ,1h)を行い、前記化学重合膜6上に
導電性高分子膜であるポリピロールからなる電解重合膜
7を形成した後、コロイダルカーボンに浸漬してカーボ
ン層8を形成し、更にこのカーボン層8の上に銀ペース
トを塗布し陰極導電体層9を形成しコンデンサ素子10
を構成する。
However, by immersion in an acetonitrile solution containing 1 mol / liter of a pyrrole monomer as an electrolytic solution and 1 mol / liter of sodium paratoluenesulfonate as a supporting electrolyte, a chemical oxidative polymerization formed on the surface of the water absorbent resin body 5 is performed. A platinum wire in contact with a part of the chemically polymerized film 6 made of polypyrrole, which is a conductive polymer film, is used as an anode, and constant current electrolytic oxidation polymerization (5
0 mA / cm 2 , 1 h) to form an electropolymerized film 7 made of polypyrrole, which is a conductive polymer film, on the chemically polymerized film 6 and then immersed in colloidal carbon to form a carbon layer 8. A silver paste is applied on the carbon layer 8 to form a cathode conductor layer 9, and a capacitor element 10 is formed.
Make up.

【0016】次に、このコンデンサ素子10を用いチッ
プ構造の固体電解コンデンサを得る場合、このコンデン
サ素子10の陰極導電体層9の一部に陰極外部端子(図
示せず)を導電性銀接着剤にて接続し、前記陽極リード
線1に陽極外部端子(図示せず)を溶接によって接続し
た後、少なくとも前記陰極外部端子の前記陰極導電層7
との接続部及び陽極リード線1と陽極外部端子の接続部
を含む前記コンデンサ素子10全体を外装樹脂層(図示
せず)にて被覆しコンデンサ本体(図示せず)を形成
し、このコンデンサ本体側面から導出した前記陽極外部
端子及び陰極外部端子をコンデンサ本体の側面に沿って
コンデンサ本体の底面まで延在するように折り曲げ加工
してなるものである。
Next, when a solid electrolytic capacitor having a chip structure is obtained by using this capacitor element 10, a cathode external terminal (not shown) is provided with a conductive silver adhesive on a part of the cathode conductor layer 9 of this capacitor element 10. And connecting an anode external terminal (not shown) to the anode lead wire 1 by welding, and then at least the cathode conductive layer 7 of the cathode external terminal.
A capacitor body (not shown) is formed by covering the entire capacitor element 10 including a connecting portion with and a connecting portion between the anode lead wire 1 and the anode external terminal with an exterior resin layer (not shown). The anode external terminal and the cathode external terminal led out from the side surface are bent so as to extend along the side surface of the capacitor body to the bottom surface of the capacitor body.

【0017】以上のような構成になる固体電解コンデン
サの製造方法によれば、電解酸化重合工程での給電電極
である白金線の接触箇所となる化学酸化重合による導電
性高分子膜であるポリピロールからなる化学重合膜6
が、耐熱性絶縁体4表面を被覆した吸水性樹脂体5表面
部分となるため、誘電体酸化皮膜3の損傷がなく、誘電
体酸化皮膜3損傷に起因する漏れ電流、あるいはtan
δ特性劣化をはじめ短絡不良に至る致命的な欠点はなく
なる。
According to the method of manufacturing the solid electrolytic capacitor having the above-mentioned structure, the polypyrrole which is the conductive polymer film by the chemical oxidative polymerization which becomes the contact point of the platinum wire which is the power feeding electrode in the electrolytic oxidative polymerization step is formed. Chemically polymerized film 6
However, since it is the surface portion of the water-absorbent resin body 5 that covers the surface of the heat-resistant insulator 4, there is no damage to the dielectric oxide film 3, and the leakage current or tan resulting from the damage to the dielectric oxide film 3
There are no fatal defects such as δ characteristic deterioration and short circuit failure.

【0018】また、吸水性樹脂体5は自重の数百倍から
数千倍の水を吸収することができるため、化学酸化重合
工程での酸化剤溶液を十分に保持することが可能で、所
望厚さの電解重合膜7形成に必要な化学重合膜6を均一
に形成することができtanδ及び寿命特性改善に大き
く寄与する。
Further, since the water-absorbent resin body 5 can absorb several hundred to several thousand times its own weight of water, it is possible to sufficiently retain the oxidant solution in the chemical oxidative polymerization step, which is desirable. The chemically polymerized film 6 necessary for forming the electrolytic polymerized film 7 having a thickness can be uniformly formed, which greatly contributes to the improvement of tan δ and life characteristics.

【0019】次に本発明と従来例の特性比較について説
明する。すなわち、前記した実施例によって製作した定
格電圧10V、公称静電容量33μFの固体電解コンデ
ンサ(実施例A)と、以下に示す従来例によっ製作した
定格電圧10V、公称静電容量33μFの固体電解コン
デンサ(従来例B)及び(従来例C)それぞれの初期特
性及び寿命試験(85℃,1000h)後の特性を調べ
たところ表1及び表2に示すような結果が得られた。
Next, a characteristic comparison between the present invention and the conventional example will be described. That is, a solid electrolytic capacitor having a rated voltage of 10 V and a nominal capacitance of 33 μF (Example A) manufactured according to the above-described embodiment, and a solid electrolytic capacitor having a rated voltage of 10 V and a nominal capacitance of 33 μF manufactured by the following conventional example. When the initial characteristics of the capacitors (Conventional example B) and (Conventional example C) and the characteristics after the life test (85 ° C., 1000 h) were examined, the results shown in Tables 1 and 2 were obtained.

【0020】表1及び表2中の試料数はそれぞれ100
個であり、数値は平均値で、括弧内の数値はバラツキを
示す。 (従来例B)吸水性樹脂体を形成しない以外は、前記実
施例と同様の手段で製作した。 (従来例C)耐熱性絶縁体被覆及び吸水性樹脂体を形成
しない以外は、前記実施例と同様の手段で製作した。
The number of samples in Table 1 and Table 2 is 100, respectively.
The numbers are average values, and the numbers in parentheses show variations. (Prior art example B) Except that the water absorbent resin was not formed, it was manufactured by the same means as in the above example. (Prior art example C) It was manufactured by the same means as the above-mentioned example except that the heat-resistant insulating coating and the water-absorbent resin body were not formed.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】表1及び表2から明らかなように初期特性
において、従来例Bのものは容量出現率及びtanδ特
性が悪く、従来例Cのものは漏れ電流特性が極端に悪
く、かつ短絡不良の発生も多く実用的でない。また、従
来例Bのものは、寿命試験において容量出現率及びta
nδ特性を更に悪化し不安定である。
As is apparent from Tables 1 and 2, in the initial characteristics, the conventional example B has a poor capacity appearance rate and tan δ characteristic, and the conventional example C has an extremely poor leakage current characteristic and a short circuit failure. There are many occurrences and it is not practical. Further, in the conventional example B, the capacity appearance ratio and ta
The nδ characteristic is further deteriorated and unstable.

【0024】これに対して本発明の実施例Aのものは、
いづれの特性においても初期特性は安定しており、また
寿命試験後においてもその安定した諸特性を維持し、寿
命特性改善に大きく貢献できることを実証された。
On the other hand, in the embodiment A of the present invention,
It was proved that the initial characteristics were stable in any of the characteristics, and that the stable characteristics were maintained even after the life test, and that it could contribute greatly to the improvement of the life characteristics.

【0025】なお、本発明は前記実施例に限定されるも
のではなく、例えば、焼結体としては、タンタル以外の
アルミニウム又はニオブ等の弁作用のある金属、或いは
これらアルミニウム,タンタル,ニオブ等の弁作用のあ
る金属箔を用いたものにも適用できることは勿論であ
る。
The present invention is not limited to the above-mentioned embodiment. For example, as the sintered body, a metal having valve action such as aluminum or niobium other than tantalum, or a metal such as aluminum, tantalum, niobium or the like is used. Of course, it can be applied to the one using the metal foil having the valve action.

【0026】また、本発明の実施例において、導電性高
分子としてピロールを例示して説明したが、チオフェ
ン,フラン又はアニリンを用いたものにおいても同効で
ある。
In the embodiments of the present invention, pyrrole was used as an example of the conductive polymer, but the same effect can be obtained by using thiophene, furan or aniline.

【0027】[0027]

【発明の効果】以上述べたように本発明によれば、初期
特性が優れており、かつ高温下における諸特性劣化のな
い実用的価値の高い導電性高分子膜を固体電解質として
用いた固体電解コンデンサの製造方法を得ることができ
る。
As described above, according to the present invention, a solid electrolytic using a conductive polymer film having excellent initial characteristics and high practical value without deterioration of various characteristics at high temperature as a solid electrolyte. A method of manufacturing a capacitor can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例によって得られた製造途中の
固体電解コンデンサを示す正断面図。
FIG. 1 is a front cross-sectional view showing a solid electrolytic capacitor in the process of manufacturing, which is obtained according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 陽極線 2 焼結体 3 誘電体酸化皮膜 4 耐熱性絶縁体 5 吸水性樹脂体 6 化学重合膜 7 電解重合膜 8 カーボン層 9 陰極導電体層 10 コンデンサ素子 DESCRIPTION OF SYMBOLS 1 Anode wire 2 Sintered body 3 Dielectric oxide film 4 Heat resistant insulator 5 Water absorbent resin body 6 Chemically polymerized film 7 Electropolymerized film 8 Carbon layer 9 Cathode conductor layer 10 Capacitor element

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 陽極線を植立した弁作用金属からなる陽
極体の表面に誘電体酸化皮膜を形成する工程と、前記陽
極線導出部を含む陽極線近傍に位置する誘電体酸化皮膜
の一部を耐熱性絶縁体で被覆する工程と、この耐熱性絶
縁体の表面を吸水性樹脂体で被覆する工程と、この吸水
性樹脂体表面を含む誘電体酸化皮膜上に化学酸化重合に
よる導電性高分子膜を形成する工程と、前記吸水性樹脂
体の表面に形成した化学酸化重合による導電性高分子膜
の一部に陽極としての導電体を接触させて外部陰極との
間で電解酸化重合し前記化学酸化重合による導電性高分
子膜上に電解酸化重合による導電性高分子膜を形成する
工程とを順次経ることを特徴とする固体電解コンデンサ
の製造方法。
1. A step of forming a dielectric oxide film on a surface of an anode body made of valve metal having an anode wire planted thereon, and one of a dielectric oxide film located in the vicinity of the anode wire including the anode wire lead-out portion. Part with a heat-resistant insulator, the step of coating the surface of this heat-resistant insulator with a water-absorbent resin body, and the conductivity by chemical oxidative polymerization on the dielectric oxide film including this water-absorbent resin body surface. A step of forming a polymer film, and a conductive polymer film formed on the surface of the water-absorbent resin body by a chemical oxidation polymerization is brought into contact with a conductor as an anode to carry out electrolytic oxidation polymerization with an external cathode. And a step of forming a conductive polymer film by electrolytic oxidative polymerization on the conductive polymer film by chemical oxidative polymerization.
【請求項2】 吸水性樹脂体が、ポリアクリル酸塩,イ
ソブチレン無水マレイン酸共重合体,デンプンアクリル
酸グラフト共重合体,アクリル酸ビニールアルコール共
重合体,ポリアクリル酸塩アクリル繊維重合体,ポリビ
ニルアルコール,ポリアクリル酸ポリアクリル酸エステ
ル,ポリアクリルアミドポリエチレンオキサイドである
請求項1記載の固体電解コンデンサの製造方法。
2. The water-absorbent resin material is polyacrylic acid salt, isobutylene maleic anhydride copolymer, starch acrylic acid graft copolymer, vinyl acrylate acrylate copolymer, polyacrylate acrylic fiber polymer, polyvinyl. The method for producing a solid electrolytic capacitor according to claim 1, wherein the solid electrolytic capacitor is alcohol, polyacrylic acid polyacrylic acid ester, or polyacrylamide polyethylene oxide.
JP05691392A 1992-02-08 1992-02-08 Method for manufacturing solid electrolytic capacitor Expired - Fee Related JP3195819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05691392A JP3195819B2 (en) 1992-02-08 1992-02-08 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05691392A JP3195819B2 (en) 1992-02-08 1992-02-08 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH05226191A true JPH05226191A (en) 1993-09-03
JP3195819B2 JP3195819B2 (en) 2001-08-06

Family

ID=13040713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05691392A Expired - Fee Related JP3195819B2 (en) 1992-02-08 1992-02-08 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3195819B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156681A (en) * 2004-11-29 2006-06-15 Tdk Corp Solid electrolytic capacitor
JP2009246288A (en) * 2008-03-31 2009-10-22 Nippon Chemicon Corp Solid-state electrolytic capacitor
US7773366B2 (en) 2007-02-28 2010-08-10 Sanyo Electric Co., Ltd. Solid electrolytic capacitor and method of fabricating the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156681A (en) * 2004-11-29 2006-06-15 Tdk Corp Solid electrolytic capacitor
JP4677775B2 (en) * 2004-11-29 2011-04-27 Tdk株式会社 Solid electrolytic capacitor
US7773366B2 (en) 2007-02-28 2010-08-10 Sanyo Electric Co., Ltd. Solid electrolytic capacitor and method of fabricating the same
JP2009246288A (en) * 2008-03-31 2009-10-22 Nippon Chemicon Corp Solid-state electrolytic capacitor

Also Published As

Publication number Publication date
JP3195819B2 (en) 2001-08-06

Similar Documents

Publication Publication Date Title
US4943892A (en) Solid electrolytic capacitor and method for manufacturing the same
JP2950670B2 (en) Solid electrolytic capacitors
JP3245567B2 (en) Method for manufacturing solid electrolytic capacitor
JP3195819B2 (en) Method for manufacturing solid electrolytic capacitor
JP2007173454A (en) Solid electrolytic capacitor
JP5091710B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2002246271A (en) Method and system for producing electrolytic capacitor
JPH0434915A (en) Manufacture of solid electrolytic capacitor
JPH11204377A (en) Solid-state electrolytic capacitor
JP3469756B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH05152169A (en) Manufacture of solid electrolytic capacitor
JPH05304056A (en) Manufacture of solid electrolytic capacitor
JP2876843B2 (en) Capacitor and method of manufacturing the same
JP2640866B2 (en) Method for manufacturing solid electrolytic capacitor
JP2995109B2 (en) Method for manufacturing solid electrolytic capacitor
JPH06168851A (en) Solid-state electrolytic capacitor and manufacture thereof
JPH0536575A (en) Solid electrolytic capacitor and its manufacture
JPH0645200A (en) Solid-state electrolytic capacitor
JP4678094B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH0487316A (en) Capacitor
JPH03139816A (en) Manufacture of solid electrolytic capacitor
JP2004128033A (en) Method of manufacturing solid state electrolytic capacitor
JPH10303080A (en) Method for manufacturing solid electrolytic capacitor
JPH0883735A (en) Manufacture of capacitor
JPH0684712A (en) Manufacture of chip type solid electrolytic capacitor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080601

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080601

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090601

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090601

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees